1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26
27/*
28 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
29 * Copyright (c) 2013 by Delphix. All rights reserved.
30 */
31
32#ifndef _SYS_DTRACE_H
33#define _SYS_DTRACE_H
34
35#ifdef __cplusplus
36extern "C" {
37#endif
38
39/*
40 * DTrace Dynamic Tracing Software: Kernel Interfaces
41 *
42 * Note: The contents of this file are private to the implementation of the
43 * Solaris system and DTrace subsystem and are subject to change at any time
44 * without notice. Applications and drivers using these interfaces will fail
45 * to run on future releases. These interfaces should not be used for any
46 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
47 * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
48 */
49
50#ifndef _ASM
51
52#include <sys/types.h>
53#include <sys/modctl.h>
54#include <sys/processor.h>
55#ifdef illumos
56#include <sys/systm.h>
57#else
58#include <sys/cpuvar.h>
59#include <sys/param.h>
60#include <sys/linker.h>
61#include <sys/ioccom.h>
62#include <sys/proc.h>
63#include <sys/ucred.h>
64typedef int model_t;
65#endif
66#include <sys/ctf_api.h>
67#ifdef illumos
68#include <sys/cyclic.h>
69#include <sys/int_limits.h>
70#else
71#include <sys/stdint.h>
72#endif
73
74/*
75 * DTrace Universal Constants and Typedefs
76 */
77#define DTRACE_CPUALL -1 /* all CPUs */
78#define DTRACE_IDNONE 0 /* invalid probe identifier */
79#define DTRACE_EPIDNONE 0 /* invalid enabled probe identifier */
80#define DTRACE_AGGIDNONE 0 /* invalid aggregation identifier */
81#define DTRACE_AGGVARIDNONE 0 /* invalid aggregation variable ID */
82#define DTRACE_CACHEIDNONE 0 /* invalid predicate cache */
83#define DTRACE_PROVNONE 0 /* invalid provider identifier */
84#define DTRACE_METAPROVNONE 0 /* invalid meta-provider identifier */
85#define DTRACE_ARGNONE -1 /* invalid argument index */
86
87#define DTRACE_PROVNAMELEN 64
88#define DTRACE_MODNAMELEN 64
89#define DTRACE_FUNCNAMELEN 192
90#define DTRACE_NAMELEN 64
91#define DTRACE_FULLNAMELEN (DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \
92 DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4)
93#define DTRACE_ARGTYPELEN 128
94
95typedef uint32_t dtrace_id_t; /* probe identifier */
96typedef uint32_t dtrace_epid_t; /* enabled probe identifier */
97typedef uint32_t dtrace_aggid_t; /* aggregation identifier */
98typedef int64_t dtrace_aggvarid_t; /* aggregation variable identifier */
99typedef uint16_t dtrace_actkind_t; /* action kind */
100typedef int64_t dtrace_optval_t; /* option value */
101typedef uint32_t dtrace_cacheid_t; /* predicate cache identifier */
102
103typedef enum dtrace_probespec {
104 DTRACE_PROBESPEC_NONE = -1,
105 DTRACE_PROBESPEC_PROVIDER = 0,
106 DTRACE_PROBESPEC_MOD,
107 DTRACE_PROBESPEC_FUNC,
108 DTRACE_PROBESPEC_NAME
109} dtrace_probespec_t;
110
111/*
112 * DTrace Intermediate Format (DIF)
113 *
114 * The following definitions describe the DTrace Intermediate Format (DIF), a
115 * a RISC-like instruction set and program encoding used to represent
116 * predicates and actions that can be bound to DTrace probes. The constants
117 * below defining the number of available registers are suggested minimums; the
118 * compiler should use DTRACEIOC_CONF to dynamically obtain the number of
119 * registers provided by the current DTrace implementation.
120 */
121#define DIF_VERSION_1 1 /* DIF version 1: Solaris 10 Beta */
122#define DIF_VERSION_2 2 /* DIF version 2: Solaris 10 FCS */
123#define DIF_VERSION DIF_VERSION_2 /* latest DIF instruction set version */
124#define DIF_DIR_NREGS 8 /* number of DIF integer registers */
125#define DIF_DTR_NREGS 8 /* number of DIF tuple registers */
126
127#define DIF_OP_OR 1 /* or r1, r2, rd */
128#define DIF_OP_XOR 2 /* xor r1, r2, rd */
129#define DIF_OP_AND 3 /* and r1, r2, rd */
130#define DIF_OP_SLL 4 /* sll r1, r2, rd */
131#define DIF_OP_SRL 5 /* srl r1, r2, rd */
132#define DIF_OP_SUB 6 /* sub r1, r2, rd */
133#define DIF_OP_ADD 7 /* add r1, r2, rd */
134#define DIF_OP_MUL 8 /* mul r1, r2, rd */
135#define DIF_OP_SDIV 9 /* sdiv r1, r2, rd */
136#define DIF_OP_UDIV 10 /* udiv r1, r2, rd */
137#define DIF_OP_SREM 11 /* srem r1, r2, rd */
138#define DIF_OP_UREM 12 /* urem r1, r2, rd */
139#define DIF_OP_NOT 13 /* not r1, rd */
140#define DIF_OP_MOV 14 /* mov r1, rd */
141#define DIF_OP_CMP 15 /* cmp r1, r2 */
142#define DIF_OP_TST 16 /* tst r1 */
143#define DIF_OP_BA 17 /* ba label */
144#define DIF_OP_BE 18 /* be label */
145#define DIF_OP_BNE 19 /* bne label */
146#define DIF_OP_BG 20 /* bg label */
147#define DIF_OP_BGU 21 /* bgu label */
148#define DIF_OP_BGE 22 /* bge label */
149#define DIF_OP_BGEU 23 /* bgeu label */
150#define DIF_OP_BL 24 /* bl label */
151#define DIF_OP_BLU 25 /* blu label */
152#define DIF_OP_BLE 26 /* ble label */
153#define DIF_OP_BLEU 27 /* bleu label */
154#define DIF_OP_LDSB 28 /* ldsb [r1], rd */
155#define DIF_OP_LDSH 29 /* ldsh [r1], rd */
156#define DIF_OP_LDSW 30 /* ldsw [r1], rd */
157#define DIF_OP_LDUB 31 /* ldub [r1], rd */
158#define DIF_OP_LDUH 32 /* lduh [r1], rd */
159#define DIF_OP_LDUW 33 /* lduw [r1], rd */
160#define DIF_OP_LDX 34 /* ldx [r1], rd */
161#define DIF_OP_RET 35 /* ret rd */
162#define DIF_OP_NOP 36 /* nop */
163#define DIF_OP_SETX 37 /* setx intindex, rd */
164#define DIF_OP_SETS 38 /* sets strindex, rd */
165#define DIF_OP_SCMP 39 /* scmp r1, r2 */
166#define DIF_OP_LDGA 40 /* ldga var, ri, rd */
167#define DIF_OP_LDGS 41 /* ldgs var, rd */
168#define DIF_OP_STGS 42 /* stgs var, rs */
169#define DIF_OP_LDTA 43 /* ldta var, ri, rd */
170#define DIF_OP_LDTS 44 /* ldts var, rd */
171#define DIF_OP_STTS 45 /* stts var, rs */
172#define DIF_OP_SRA 46 /* sra r1, r2, rd */
173#define DIF_OP_CALL 47 /* call subr, rd */
174#define DIF_OP_PUSHTR 48 /* pushtr type, rs, rr */
175#define DIF_OP_PUSHTV 49 /* pushtv type, rs, rv */
176#define DIF_OP_POPTS 50 /* popts */
177#define DIF_OP_FLUSHTS 51 /* flushts */
178#define DIF_OP_LDGAA 52 /* ldgaa var, rd */
179#define DIF_OP_LDTAA 53 /* ldtaa var, rd */
180#define DIF_OP_STGAA 54 /* stgaa var, rs */
181#define DIF_OP_STTAA 55 /* sttaa var, rs */
182#define DIF_OP_LDLS 56 /* ldls var, rd */
183#define DIF_OP_STLS 57 /* stls var, rs */
184#define DIF_OP_ALLOCS 58 /* allocs r1, rd */
185#define DIF_OP_COPYS 59 /* copys r1, r2, rd */
186#define DIF_OP_STB 60 /* stb r1, [rd] */
187#define DIF_OP_STH 61 /* sth r1, [rd] */
188#define DIF_OP_STW 62 /* stw r1, [rd] */
189#define DIF_OP_STX 63 /* stx r1, [rd] */
190#define DIF_OP_ULDSB 64 /* uldsb [r1], rd */
191#define DIF_OP_ULDSH 65 /* uldsh [r1], rd */
192#define DIF_OP_ULDSW 66 /* uldsw [r1], rd */
193#define DIF_OP_ULDUB 67 /* uldub [r1], rd */
194#define DIF_OP_ULDUH 68 /* ulduh [r1], rd */
195#define DIF_OP_ULDUW 69 /* ulduw [r1], rd */
196#define DIF_OP_ULDX 70 /* uldx [r1], rd */
197#define DIF_OP_RLDSB 71 /* rldsb [r1], rd */
198#define DIF_OP_RLDSH 72 /* rldsh [r1], rd */
199#define DIF_OP_RLDSW 73 /* rldsw [r1], rd */
200#define DIF_OP_RLDUB 74 /* rldub [r1], rd */
201#define DIF_OP_RLDUH 75 /* rlduh [r1], rd */
202#define DIF_OP_RLDUW 76 /* rlduw [r1], rd */
203#define DIF_OP_RLDX 77 /* rldx [r1], rd */
204#define DIF_OP_XLATE 78 /* xlate xlrindex, rd */
205#define DIF_OP_XLARG 79 /* xlarg xlrindex, rd */
206
207#define DIF_INTOFF_MAX 0xffff /* highest integer table offset */
208#define DIF_STROFF_MAX 0xffff /* highest string table offset */
209#define DIF_REGISTER_MAX 0xff /* highest register number */
210#define DIF_VARIABLE_MAX 0xffff /* highest variable identifier */
211#define DIF_SUBROUTINE_MAX 0xffff /* highest subroutine code */
212
213#define DIF_VAR_ARRAY_MIN 0x0000 /* lowest numbered array variable */
214#define DIF_VAR_ARRAY_UBASE 0x0080 /* lowest user-defined array */
215#define DIF_VAR_ARRAY_MAX 0x00ff /* highest numbered array variable */
216
217#define DIF_VAR_OTHER_MIN 0x0100 /* lowest numbered scalar or assc */
218#define DIF_VAR_OTHER_UBASE 0x0500 /* lowest user-defined scalar or assc */
219#define DIF_VAR_OTHER_MAX 0xffff /* highest numbered scalar or assc */
220
221#define DIF_VAR_ARGS 0x0000 /* arguments array */
222#define DIF_VAR_REGS 0x0001 /* registers array */
223#define DIF_VAR_UREGS 0x0002 /* user registers array */
224#define DIF_VAR_CURTHREAD 0x0100 /* thread pointer */
225#define DIF_VAR_TIMESTAMP 0x0101 /* timestamp */
226#define DIF_VAR_VTIMESTAMP 0x0102 /* virtual timestamp */
227#define DIF_VAR_IPL 0x0103 /* interrupt priority level */
228#define DIF_VAR_EPID 0x0104 /* enabled probe ID */
229#define DIF_VAR_ID 0x0105 /* probe ID */
230#define DIF_VAR_ARG0 0x0106 /* first argument */
231#define DIF_VAR_ARG1 0x0107 /* second argument */
232#define DIF_VAR_ARG2 0x0108 /* third argument */
233#define DIF_VAR_ARG3 0x0109 /* fourth argument */
234#define DIF_VAR_ARG4 0x010a /* fifth argument */
235#define DIF_VAR_ARG5 0x010b /* sixth argument */
236#define DIF_VAR_ARG6 0x010c /* seventh argument */
237#define DIF_VAR_ARG7 0x010d /* eighth argument */
238#define DIF_VAR_ARG8 0x010e /* ninth argument */
239#define DIF_VAR_ARG9 0x010f /* tenth argument */
240#define DIF_VAR_STACKDEPTH 0x0110 /* stack depth */
241#define DIF_VAR_CALLER 0x0111 /* caller */
242#define DIF_VAR_PROBEPROV 0x0112 /* probe provider */
243#define DIF_VAR_PROBEMOD 0x0113 /* probe module */
244#define DIF_VAR_PROBEFUNC 0x0114 /* probe function */
245#define DIF_VAR_PROBENAME 0x0115 /* probe name */
246#define DIF_VAR_PID 0x0116 /* process ID */
247#define DIF_VAR_TID 0x0117 /* (per-process) thread ID */
248#define DIF_VAR_EXECNAME 0x0118 /* name of executable */
249#define DIF_VAR_ZONENAME 0x0119 /* zone name associated with process */
250#define DIF_VAR_WALLTIMESTAMP 0x011a /* wall-clock timestamp */
251#define DIF_VAR_USTACKDEPTH 0x011b /* user-land stack depth */
252#define DIF_VAR_UCALLER 0x011c /* user-level caller */
253#define DIF_VAR_PPID 0x011d /* parent process ID */
254#define DIF_VAR_UID 0x011e /* process user ID */
255#define DIF_VAR_GID 0x011f /* process group ID */
256#define DIF_VAR_ERRNO 0x0120 /* thread errno */
257#define DIF_VAR_EXECARGS 0x0121 /* process arguments */
258
259#ifndef illumos
260#define DIF_VAR_CPU 0x0200
261#endif
262
263#define DIF_SUBR_RAND 0
264#define DIF_SUBR_MUTEX_OWNED 1
265#define DIF_SUBR_MUTEX_OWNER 2
266#define DIF_SUBR_MUTEX_TYPE_ADAPTIVE 3
267#define DIF_SUBR_MUTEX_TYPE_SPIN 4
268#define DIF_SUBR_RW_READ_HELD 5
269#define DIF_SUBR_RW_WRITE_HELD 6
270#define DIF_SUBR_RW_ISWRITER 7
271#define DIF_SUBR_COPYIN 8
272#define DIF_SUBR_COPYINSTR 9
273#define DIF_SUBR_SPECULATION 10
274#define DIF_SUBR_PROGENYOF 11
275#define DIF_SUBR_STRLEN 12
276#define DIF_SUBR_COPYOUT 13
277#define DIF_SUBR_COPYOUTSTR 14
278#define DIF_SUBR_ALLOCA 15
279#define DIF_SUBR_BCOPY 16
280#define DIF_SUBR_COPYINTO 17
281#define DIF_SUBR_MSGDSIZE 18
282#define DIF_SUBR_MSGSIZE 19
283#define DIF_SUBR_GETMAJOR 20
284#define DIF_SUBR_GETMINOR 21
285#define DIF_SUBR_DDI_PATHNAME 22
286#define DIF_SUBR_STRJOIN 23
287#define DIF_SUBR_LLTOSTR 24
288#define DIF_SUBR_BASENAME 25
289#define DIF_SUBR_DIRNAME 26
290#define DIF_SUBR_CLEANPATH 27
291#define DIF_SUBR_STRCHR 28
292#define DIF_SUBR_STRRCHR 29
293#define DIF_SUBR_STRSTR 30
294#define DIF_SUBR_STRTOK 31
295#define DIF_SUBR_SUBSTR 32
296#define DIF_SUBR_INDEX 33
297#define DIF_SUBR_RINDEX 34
298#define DIF_SUBR_HTONS 35
299#define DIF_SUBR_HTONL 36
300#define DIF_SUBR_HTONLL 37
301#define DIF_SUBR_NTOHS 38
302#define DIF_SUBR_NTOHL 39
303#define DIF_SUBR_NTOHLL 40
304#define DIF_SUBR_INET_NTOP 41
305#define DIF_SUBR_INET_NTOA 42
306#define DIF_SUBR_INET_NTOA6 43
307#define DIF_SUBR_TOUPPER 44
308#define DIF_SUBR_TOLOWER 45
309#define DIF_SUBR_MEMREF 46
310#define DIF_SUBR_SX_SHARED_HELD 47
311#define DIF_SUBR_SX_EXCLUSIVE_HELD 48
312#define DIF_SUBR_SX_ISEXCLUSIVE 49
313#define DIF_SUBR_MEMSTR 50
314#define DIF_SUBR_GETF 51
315#define DIF_SUBR_JSON 52
316#define DIF_SUBR_STRTOLL 53
317#define DIF_SUBR_MAX 53 /* max subroutine value */
318
319typedef uint32_t dif_instr_t;
320
321#define DIF_INSTR_OP(i) (((i) >> 24) & 0xff)
322#define DIF_INSTR_R1(i) (((i) >> 16) & 0xff)
323#define DIF_INSTR_R2(i) (((i) >> 8) & 0xff)
324#define DIF_INSTR_RD(i) ((i) & 0xff)
325#define DIF_INSTR_RS(i) ((i) & 0xff)
326#define DIF_INSTR_LABEL(i) ((i) & 0xffffff)
327#define DIF_INSTR_VAR(i) (((i) >> 8) & 0xffff)
328#define DIF_INSTR_INTEGER(i) (((i) >> 8) & 0xffff)
329#define DIF_INSTR_STRING(i) (((i) >> 8) & 0xffff)
330#define DIF_INSTR_SUBR(i) (((i) >> 8) & 0xffff)
331#define DIF_INSTR_TYPE(i) (((i) >> 16) & 0xff)
332#define DIF_INSTR_XLREF(i) (((i) >> 8) & 0xffff)
333
334#define DIF_INSTR_FMT(op, r1, r2, d) \
335 (((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d))
336
337#define DIF_INSTR_NOT(r1, d) (DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d))
338#define DIF_INSTR_MOV(r1, d) (DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d))
339#define DIF_INSTR_CMP(op, r1, r2) (DIF_INSTR_FMT(op, r1, r2, 0))
340#define DIF_INSTR_TST(r1) (DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0))
341#define DIF_INSTR_BRANCH(op, label) (((op) << 24) | (label))
342#define DIF_INSTR_LOAD(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
343#define DIF_INSTR_STORE(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d))
344#define DIF_INSTR_SETX(i, d) ((DIF_OP_SETX << 24) | ((i) << 8) | (d))
345#define DIF_INSTR_SETS(s, d) ((DIF_OP_SETS << 24) | ((s) << 8) | (d))
346#define DIF_INSTR_RET(d) (DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d))
347#define DIF_INSTR_NOP (DIF_OP_NOP << 24)
348#define DIF_INSTR_LDA(op, v, r, d) (DIF_INSTR_FMT(op, v, r, d))
349#define DIF_INSTR_LDV(op, v, d) (((op) << 24) | ((v) << 8) | (d))
350#define DIF_INSTR_STV(op, v, rs) (((op) << 24) | ((v) << 8) | (rs))
351#define DIF_INSTR_CALL(s, d) ((DIF_OP_CALL << 24) | ((s) << 8) | (d))
352#define DIF_INSTR_PUSHTS(op, t, r2, rs) (DIF_INSTR_FMT(op, t, r2, rs))
353#define DIF_INSTR_POPTS (DIF_OP_POPTS << 24)
354#define DIF_INSTR_FLUSHTS (DIF_OP_FLUSHTS << 24)
355#define DIF_INSTR_ALLOCS(r1, d) (DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d))
356#define DIF_INSTR_COPYS(r1, r2, d) (DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d))
357#define DIF_INSTR_XLATE(op, r, d) (((op) << 24) | ((r) << 8) | (d))
358
359#define DIF_REG_R0 0 /* %r0 is always set to zero */
360
361/*
362 * A DTrace Intermediate Format Type (DIF Type) is used to represent the types
363 * of variables, function and associative array arguments, and the return type
364 * for each DIF object (shown below). It contains a description of the type,
365 * its size in bytes, and a module identifier.
366 */
367typedef struct dtrace_diftype {
368 uint8_t dtdt_kind; /* type kind (see below) */
369 uint8_t dtdt_ckind; /* type kind in CTF */
370 uint8_t dtdt_flags; /* type flags (see below) */
371 uint8_t dtdt_pad; /* reserved for future use */
372 uint32_t dtdt_size; /* type size in bytes (unless string) */
373} dtrace_diftype_t;
374
375#define DIF_TYPE_CTF 0 /* type is a CTF type */
376#define DIF_TYPE_STRING 1 /* type is a D string */
377
378#define DIF_TF_BYREF 0x1 /* type is passed by reference */
379#define DIF_TF_BYUREF 0x2 /* user type is passed by reference */
380
381/*
382 * A DTrace Intermediate Format variable record is used to describe each of the
383 * variables referenced by a given DIF object. It contains an integer variable
384 * identifier along with variable scope and properties, as shown below. The
385 * size of this structure must be sizeof (int) aligned.
386 */
387typedef struct dtrace_difv {
388 uint32_t dtdv_name; /* variable name index in dtdo_strtab */
389 uint32_t dtdv_id; /* variable reference identifier */
390 uint8_t dtdv_kind; /* variable kind (see below) */
391 uint8_t dtdv_scope; /* variable scope (see below) */
392 uint16_t dtdv_flags; /* variable flags (see below) */
393 dtrace_diftype_t dtdv_type; /* variable type (see above) */
394} dtrace_difv_t;
395
396#define DIFV_KIND_ARRAY 0 /* variable is an array of quantities */
397#define DIFV_KIND_SCALAR 1 /* variable is a scalar quantity */
398
399#define DIFV_SCOPE_GLOBAL 0 /* variable has global scope */
400#define DIFV_SCOPE_THREAD 1 /* variable has thread scope */
401#define DIFV_SCOPE_LOCAL 2 /* variable has local scope */
402
403#define DIFV_F_REF 0x1 /* variable is referenced by DIFO */
404#define DIFV_F_MOD 0x2 /* variable is written by DIFO */
405
406/*
407 * DTrace Actions
408 *
409 * The upper byte determines the class of the action; the low bytes determines
410 * the specific action within that class. The classes of actions are as
411 * follows:
412 *
413 * [ no class ] <= May record process- or kernel-related data
414 * DTRACEACT_PROC <= Only records process-related data
415 * DTRACEACT_PROC_DESTRUCTIVE <= Potentially destructive to processes
416 * DTRACEACT_KERNEL <= Only records kernel-related data
417 * DTRACEACT_KERNEL_DESTRUCTIVE <= Potentially destructive to the kernel
418 * DTRACEACT_SPECULATIVE <= Speculation-related action
419 * DTRACEACT_AGGREGATION <= Aggregating action
420 */
421#define DTRACEACT_NONE 0 /* no action */
422#define DTRACEACT_DIFEXPR 1 /* action is DIF expression */
423#define DTRACEACT_EXIT 2 /* exit() action */
424#define DTRACEACT_PRINTF 3 /* printf() action */
425#define DTRACEACT_PRINTA 4 /* printa() action */
426#define DTRACEACT_LIBACT 5 /* library-controlled action */
427#define DTRACEACT_TRACEMEM 6 /* tracemem() action */
428#define DTRACEACT_TRACEMEM_DYNSIZE 7 /* dynamic tracemem() size */
429#define DTRACEACT_PRINTM 8 /* printm() action (BSD) */
430
431#define DTRACEACT_PROC 0x0100
432#define DTRACEACT_USTACK (DTRACEACT_PROC + 1)
433#define DTRACEACT_JSTACK (DTRACEACT_PROC + 2)
434#define DTRACEACT_USYM (DTRACEACT_PROC + 3)
435#define DTRACEACT_UMOD (DTRACEACT_PROC + 4)
436#define DTRACEACT_UADDR (DTRACEACT_PROC + 5)
437
438#define DTRACEACT_PROC_DESTRUCTIVE 0x0200
439#define DTRACEACT_STOP (DTRACEACT_PROC_DESTRUCTIVE + 1)
440#define DTRACEACT_RAISE (DTRACEACT_PROC_DESTRUCTIVE + 2)
441#define DTRACEACT_SYSTEM (DTRACEACT_PROC_DESTRUCTIVE + 3)
442#define DTRACEACT_FREOPEN (DTRACEACT_PROC_DESTRUCTIVE + 4)
443
444#define DTRACEACT_PROC_CONTROL 0x0300
445
446#define DTRACEACT_KERNEL 0x0400
447#define DTRACEACT_STACK (DTRACEACT_KERNEL + 1)
448#define DTRACEACT_SYM (DTRACEACT_KERNEL + 2)
449#define DTRACEACT_MOD (DTRACEACT_KERNEL + 3)
450
451#define DTRACEACT_KERNEL_DESTRUCTIVE 0x0500
452#define DTRACEACT_BREAKPOINT (DTRACEACT_KERNEL_DESTRUCTIVE + 1)
453#define DTRACEACT_PANIC (DTRACEACT_KERNEL_DESTRUCTIVE + 2)
454#define DTRACEACT_CHILL (DTRACEACT_KERNEL_DESTRUCTIVE + 3)
455
456#define DTRACEACT_SPECULATIVE 0x0600
457#define DTRACEACT_SPECULATE (DTRACEACT_SPECULATIVE + 1)
458#define DTRACEACT_COMMIT (DTRACEACT_SPECULATIVE + 2)
459#define DTRACEACT_DISCARD (DTRACEACT_SPECULATIVE + 3)
460
461#define DTRACEACT_CLASS(x) ((x) & 0xff00)
462
463#define DTRACEACT_ISDESTRUCTIVE(x) \
464 (DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \
465 DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE)
466
467#define DTRACEACT_ISSPECULATIVE(x) \
468 (DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE)
469
470#define DTRACEACT_ISPRINTFLIKE(x) \
471 ((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \
472 (x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN)
473
474/*
475 * DTrace Aggregating Actions
476 *
477 * These are functions f(x) for which the following is true:
478 *
479 * f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n)
480 *
481 * where x_n is a set of arbitrary data. Aggregating actions are in their own
482 * DTrace action class, DTTRACEACT_AGGREGATION. The macros provided here allow
483 * for easier processing of the aggregation argument and data payload for a few
484 * aggregating actions (notably: quantize(), lquantize(), and ustack()).
485 */
486#define DTRACEACT_AGGREGATION 0x0700
487#define DTRACEAGG_COUNT (DTRACEACT_AGGREGATION + 1)
488#define DTRACEAGG_MIN (DTRACEACT_AGGREGATION + 2)
489#define DTRACEAGG_MAX (DTRACEACT_AGGREGATION + 3)
490#define DTRACEAGG_AVG (DTRACEACT_AGGREGATION + 4)
491#define DTRACEAGG_SUM (DTRACEACT_AGGREGATION + 5)
492#define DTRACEAGG_STDDEV (DTRACEACT_AGGREGATION + 6)
493#define DTRACEAGG_QUANTIZE (DTRACEACT_AGGREGATION + 7)
494#define DTRACEAGG_LQUANTIZE (DTRACEACT_AGGREGATION + 8)
495#define DTRACEAGG_LLQUANTIZE (DTRACEACT_AGGREGATION + 9)
496
497#define DTRACEACT_ISAGG(x) \
498 (DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION)
499
500#define DTRACE_QUANTIZE_NBUCKETS \
501 (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1)
502
503#define DTRACE_QUANTIZE_ZEROBUCKET ((sizeof (uint64_t) * NBBY) - 1)
504
505#define DTRACE_QUANTIZE_BUCKETVAL(buck) \
506 (int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ? \
507 -(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) : \
508 (buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 : \
509 1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1))
510
511#define DTRACE_LQUANTIZE_STEPSHIFT 48
512#define DTRACE_LQUANTIZE_STEPMASK ((uint64_t)UINT16_MAX << 48)
513#define DTRACE_LQUANTIZE_LEVELSHIFT 32
514#define DTRACE_LQUANTIZE_LEVELMASK ((uint64_t)UINT16_MAX << 32)
515#define DTRACE_LQUANTIZE_BASESHIFT 0
516#define DTRACE_LQUANTIZE_BASEMASK UINT32_MAX
517
518#define DTRACE_LQUANTIZE_STEP(x) \
519 (uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \
520 DTRACE_LQUANTIZE_STEPSHIFT)
521
522#define DTRACE_LQUANTIZE_LEVELS(x) \
523 (uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \
524 DTRACE_LQUANTIZE_LEVELSHIFT)
525
526#define DTRACE_LQUANTIZE_BASE(x) \
527 (int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \
528 DTRACE_LQUANTIZE_BASESHIFT)
529
530#define DTRACE_LLQUANTIZE_FACTORSHIFT 48
531#define DTRACE_LLQUANTIZE_FACTORMASK ((uint64_t)UINT16_MAX << 48)
532#define DTRACE_LLQUANTIZE_LOWSHIFT 32
533#define DTRACE_LLQUANTIZE_LOWMASK ((uint64_t)UINT16_MAX << 32)
534#define DTRACE_LLQUANTIZE_HIGHSHIFT 16
535#define DTRACE_LLQUANTIZE_HIGHMASK ((uint64_t)UINT16_MAX << 16)
536#define DTRACE_LLQUANTIZE_NSTEPSHIFT 0
537#define DTRACE_LLQUANTIZE_NSTEPMASK UINT16_MAX
538
539#define DTRACE_LLQUANTIZE_FACTOR(x) \
540 (uint16_t)(((x) & DTRACE_LLQUANTIZE_FACTORMASK) >> \
541 DTRACE_LLQUANTIZE_FACTORSHIFT)
542
543#define DTRACE_LLQUANTIZE_LOW(x) \
544 (uint16_t)(((x) & DTRACE_LLQUANTIZE_LOWMASK) >> \
545 DTRACE_LLQUANTIZE_LOWSHIFT)
546
547#define DTRACE_LLQUANTIZE_HIGH(x) \
548 (uint16_t)(((x) & DTRACE_LLQUANTIZE_HIGHMASK) >> \
549 DTRACE_LLQUANTIZE_HIGHSHIFT)
550
551#define DTRACE_LLQUANTIZE_NSTEP(x) \
552 (uint16_t)(((x) & DTRACE_LLQUANTIZE_NSTEPMASK) >> \
553 DTRACE_LLQUANTIZE_NSTEPSHIFT)
554
555#define DTRACE_USTACK_NFRAMES(x) (uint32_t)((x) & UINT32_MAX)
556#define DTRACE_USTACK_STRSIZE(x) (uint32_t)((x) >> 32)
557#define DTRACE_USTACK_ARG(x, y) \
558 ((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX))
559
560#ifndef _LP64
561#if BYTE_ORDER == _BIG_ENDIAN
562#define DTRACE_PTR(type, name) uint32_t name##pad; type *name
563#else
564#define DTRACE_PTR(type, name) type *name; uint32_t name##pad
565#endif
566#else
567#define DTRACE_PTR(type, name) type *name
568#endif
569
570/*
571 * DTrace Object Format (DOF)
572 *
573 * DTrace programs can be persistently encoded in the DOF format so that they
574 * may be embedded in other programs (for example, in an ELF file) or in the
575 * dtrace driver configuration file for use in anonymous tracing. The DOF
576 * format is versioned and extensible so that it can be revised and so that
577 * internal data structures can be modified or extended compatibly. All DOF
578 * structures use fixed-size types, so the 32-bit and 64-bit representations
579 * are identical and consumers can use either data model transparently.
580 *
581 * The file layout is structured as follows:
582 *
583 * +---------------+-------------------+----- ... ----+---- ... ------+
584 * | dof_hdr_t | dof_sec_t[ ... ] | loadable | non-loadable |
585 * | (file header) | (section headers) | section data | section data |
586 * +---------------+-------------------+----- ... ----+---- ... ------+
587 * |<------------ dof_hdr.dofh_loadsz --------------->| |
588 * |<------------ dof_hdr.dofh_filesz ------------------------------->|
589 *
590 * The file header stores meta-data including a magic number, data model for
591 * the instrumentation, data encoding, and properties of the DIF code within.
592 * The header describes its own size and the size of the section headers. By
593 * convention, an array of section headers follows the file header, and then
594 * the data for all loadable sections and unloadable sections. This permits
595 * consumer code to easily download the headers and all loadable data into the
596 * DTrace driver in one contiguous chunk, omitting other extraneous sections.
597 *
598 * The section headers describe the size, offset, alignment, and section type
599 * for each section. Sections are described using a set of #defines that tell
600 * the consumer what kind of data is expected. Sections can contain links to
601 * other sections by storing a dof_secidx_t, an index into the section header
602 * array, inside of the section data structures. The section header includes
603 * an entry size so that sections with data arrays can grow their structures.
604 *
605 * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which
606 * are represented themselves as a collection of related DOF sections. This
607 * permits us to change the set of sections associated with a DIFO over time,
608 * and also permits us to encode DIFOs that contain different sets of sections.
609 * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a
610 * section of type DOF_SECT_DIFOHDR. This section's data is then an array of
611 * dof_secidx_t's which in turn denote the sections associated with this DIFO.
612 *
613 * This loose coupling of the file structure (header and sections) to the
614 * structure of the DTrace program itself (ECB descriptions, action
615 * descriptions, and DIFOs) permits activities such as relocation processing
616 * to occur in a single pass without having to understand D program structure.
617 *
618 * Finally, strings are always stored in ELF-style string tables along with a
619 * string table section index and string table offset. Therefore strings in
620 * DOF are always arbitrary-length and not bound to the current implementation.
621 */
622
623#define DOF_ID_SIZE 16 /* total size of dofh_ident[] in bytes */
624
625typedef struct dof_hdr {
626 uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */
627 uint32_t dofh_flags; /* file attribute flags (if any) */
628 uint32_t dofh_hdrsize; /* size of file header in bytes */
629 uint32_t dofh_secsize; /* size of section header in bytes */
630 uint32_t dofh_secnum; /* number of section headers */
631 uint64_t dofh_secoff; /* file offset of section headers */
632 uint64_t dofh_loadsz; /* file size of loadable portion */
633 uint64_t dofh_filesz; /* file size of entire DOF file */
634 uint64_t dofh_pad; /* reserved for future use */
635} dof_hdr_t;
636
637#define DOF_ID_MAG0 0 /* first byte of magic number */
638#define DOF_ID_MAG1 1 /* second byte of magic number */
639#define DOF_ID_MAG2 2 /* third byte of magic number */
640#define DOF_ID_MAG3 3 /* fourth byte of magic number */
641#define DOF_ID_MODEL 4 /* DOF data model (see below) */
642#define DOF_ID_ENCODING 5 /* DOF data encoding (see below) */
643#define DOF_ID_VERSION 6 /* DOF file format major version (see below) */
644#define DOF_ID_DIFVERS 7 /* DIF instruction set version */
645#define DOF_ID_DIFIREG 8 /* DIF integer registers used by compiler */
646#define DOF_ID_DIFTREG 9 /* DIF tuple registers used by compiler */
647#define DOF_ID_PAD 10 /* start of padding bytes (all zeroes) */
648
649#define DOF_MAG_MAG0 0x7F /* DOF_ID_MAG[0-3] */
650#define DOF_MAG_MAG1 'D'
651#define DOF_MAG_MAG2 'O'
652#define DOF_MAG_MAG3 'F'
653
654#define DOF_MAG_STRING "\177DOF"
655#define DOF_MAG_STRLEN 4
656
657#define DOF_MODEL_NONE 0 /* DOF_ID_MODEL */
658#define DOF_MODEL_ILP32 1
659#define DOF_MODEL_LP64 2
660
661#ifdef _LP64
662#define DOF_MODEL_NATIVE DOF_MODEL_LP64
663#else
664#define DOF_MODEL_NATIVE DOF_MODEL_ILP32
665#endif
666
667#define DOF_ENCODE_NONE 0 /* DOF_ID_ENCODING */
668#define DOF_ENCODE_LSB 1
669#define DOF_ENCODE_MSB 2
670
671#if BYTE_ORDER == _BIG_ENDIAN
672#define DOF_ENCODE_NATIVE DOF_ENCODE_MSB
673#else
674#define DOF_ENCODE_NATIVE DOF_ENCODE_LSB
675#endif
676
677#define DOF_VERSION_1 1 /* DOF version 1: Solaris 10 FCS */
678#define DOF_VERSION_2 2 /* DOF version 2: Solaris Express 6/06 */
679#define DOF_VERSION DOF_VERSION_2 /* Latest DOF version */
680
681#define DOF_FL_VALID 0 /* mask of all valid dofh_flags bits */
682
683typedef uint32_t dof_secidx_t; /* section header table index type */
684typedef uint32_t dof_stridx_t; /* string table index type */
685
686#define DOF_SECIDX_NONE (-1U) /* null value for section indices */
687#define DOF_STRIDX_NONE (-1U) /* null value for string indices */
688
689typedef struct dof_sec {
690 uint32_t dofs_type; /* section type (see below) */
691 uint32_t dofs_align; /* section data memory alignment */
692 uint32_t dofs_flags; /* section flags (if any) */
693 uint32_t dofs_entsize; /* size of section entry (if table) */
694 uint64_t dofs_offset; /* offset of section data within file */
695 uint64_t dofs_size; /* size of section data in bytes */
696} dof_sec_t;
697
698#define DOF_SECT_NONE 0 /* null section */
699#define DOF_SECT_COMMENTS 1 /* compiler comments */
700#define DOF_SECT_SOURCE 2 /* D program source code */
701#define DOF_SECT_ECBDESC 3 /* dof_ecbdesc_t */
702#define DOF_SECT_PROBEDESC 4 /* dof_probedesc_t */
703#define DOF_SECT_ACTDESC 5 /* dof_actdesc_t array */
704#define DOF_SECT_DIFOHDR 6 /* dof_difohdr_t (variable length) */
705#define DOF_SECT_DIF 7 /* uint32_t array of byte code */
706#define DOF_SECT_STRTAB 8 /* string table */
707#define DOF_SECT_VARTAB 9 /* dtrace_difv_t array */
708#define DOF_SECT_RELTAB 10 /* dof_relodesc_t array */
709#define DOF_SECT_TYPTAB 11 /* dtrace_diftype_t array */
710#define DOF_SECT_URELHDR 12 /* dof_relohdr_t (user relocations) */
711#define DOF_SECT_KRELHDR 13 /* dof_relohdr_t (kernel relocations) */
712#define DOF_SECT_OPTDESC 14 /* dof_optdesc_t array */
713#define DOF_SECT_PROVIDER 15 /* dof_provider_t */
714#define DOF_SECT_PROBES 16 /* dof_probe_t array */
715#define DOF_SECT_PRARGS 17 /* uint8_t array (probe arg mappings) */
716#define DOF_SECT_PROFFS 18 /* uint32_t array (probe arg offsets) */
717#define DOF_SECT_INTTAB 19 /* uint64_t array */
718#define DOF_SECT_UTSNAME 20 /* struct utsname */
719#define DOF_SECT_XLTAB 21 /* dof_xlref_t array */
720#define DOF_SECT_XLMEMBERS 22 /* dof_xlmember_t array */
721#define DOF_SECT_XLIMPORT 23 /* dof_xlator_t */
722#define DOF_SECT_XLEXPORT 24 /* dof_xlator_t */
723#define DOF_SECT_PREXPORT 25 /* dof_secidx_t array (exported objs) */
724#define DOF_SECT_PRENOFFS 26 /* uint32_t array (enabled offsets) */
725
726#define DOF_SECF_LOAD 1 /* section should be loaded */
727
728#define DOF_SEC_ISLOADABLE(x) \
729 (((x) == DOF_SECT_ECBDESC) || ((x) == DOF_SECT_PROBEDESC) || \
730 ((x) == DOF_SECT_ACTDESC) || ((x) == DOF_SECT_DIFOHDR) || \
731 ((x) == DOF_SECT_DIF) || ((x) == DOF_SECT_STRTAB) || \
732 ((x) == DOF_SECT_VARTAB) || ((x) == DOF_SECT_RELTAB) || \
733 ((x) == DOF_SECT_TYPTAB) || ((x) == DOF_SECT_URELHDR) || \
734 ((x) == DOF_SECT_KRELHDR) || ((x) == DOF_SECT_OPTDESC) || \
735 ((x) == DOF_SECT_PROVIDER) || ((x) == DOF_SECT_PROBES) || \
736 ((x) == DOF_SECT_PRARGS) || ((x) == DOF_SECT_PROFFS) || \
737 ((x) == DOF_SECT_INTTAB) || ((x) == DOF_SECT_XLTAB) || \
738 ((x) == DOF_SECT_XLMEMBERS) || ((x) == DOF_SECT_XLIMPORT) || \
739 ((x) == DOF_SECT_XLEXPORT) || ((x) == DOF_SECT_PREXPORT) || \
740 ((x) == DOF_SECT_PRENOFFS))
741
742typedef struct dof_ecbdesc {
743 dof_secidx_t dofe_probes; /* link to DOF_SECT_PROBEDESC */
744 dof_secidx_t dofe_pred; /* link to DOF_SECT_DIFOHDR */
745 dof_secidx_t dofe_actions; /* link to DOF_SECT_ACTDESC */
746 uint32_t dofe_pad; /* reserved for future use */
747 uint64_t dofe_uarg; /* user-supplied library argument */
748} dof_ecbdesc_t;
749
750typedef struct dof_probedesc {
751 dof_secidx_t dofp_strtab; /* link to DOF_SECT_STRTAB section */
752 dof_stridx_t dofp_provider; /* provider string */
753 dof_stridx_t dofp_mod; /* module string */
754 dof_stridx_t dofp_func; /* function string */
755 dof_stridx_t dofp_name; /* name string */
756 uint32_t dofp_id; /* probe identifier (or zero) */
757} dof_probedesc_t;
758
759typedef struct dof_actdesc {
760 dof_secidx_t dofa_difo; /* link to DOF_SECT_DIFOHDR */
761 dof_secidx_t dofa_strtab; /* link to DOF_SECT_STRTAB section */
762 uint32_t dofa_kind; /* action kind (DTRACEACT_* constant) */
763 uint32_t dofa_ntuple; /* number of subsequent tuple actions */
764 uint64_t dofa_arg; /* kind-specific argument */
765 uint64_t dofa_uarg; /* user-supplied argument */
766} dof_actdesc_t;
767
768typedef struct dof_difohdr {
769 dtrace_diftype_t dofd_rtype; /* return type for this fragment */
770 dof_secidx_t dofd_links[1]; /* variable length array of indices */
771} dof_difohdr_t;
772
773typedef struct dof_relohdr {
774 dof_secidx_t dofr_strtab; /* link to DOF_SECT_STRTAB for names */
775 dof_secidx_t dofr_relsec; /* link to DOF_SECT_RELTAB for relos */
776 dof_secidx_t dofr_tgtsec; /* link to section we are relocating */
777} dof_relohdr_t;
778
779typedef struct dof_relodesc {
780 dof_stridx_t dofr_name; /* string name of relocation symbol */
781 uint32_t dofr_type; /* relo type (DOF_RELO_* constant) */
782 uint64_t dofr_offset; /* byte offset for relocation */
783 uint64_t dofr_data; /* additional type-specific data */
784} dof_relodesc_t;
785
786#define DOF_RELO_NONE 0 /* empty relocation entry */
787#define DOF_RELO_SETX 1 /* relocate setx value */
788#define DOF_RELO_DOFREL 2 /* relocate DOF-relative value */
789
790typedef struct dof_optdesc {
791 uint32_t dofo_option; /* option identifier */
792 dof_secidx_t dofo_strtab; /* string table, if string option */
793 uint64_t dofo_value; /* option value or string index */
794} dof_optdesc_t;
795
796typedef uint32_t dof_attr_t; /* encoded stability attributes */
797
798#define DOF_ATTR(n, d, c) (((n) << 24) | ((d) << 16) | ((c) << 8))
799#define DOF_ATTR_NAME(a) (((a) >> 24) & 0xff)
800#define DOF_ATTR_DATA(a) (((a) >> 16) & 0xff)
801#define DOF_ATTR_CLASS(a) (((a) >> 8) & 0xff)
802
803typedef struct dof_provider {
804 dof_secidx_t dofpv_strtab; /* link to DOF_SECT_STRTAB section */
805 dof_secidx_t dofpv_probes; /* link to DOF_SECT_PROBES section */
806 dof_secidx_t dofpv_prargs; /* link to DOF_SECT_PRARGS section */
807 dof_secidx_t dofpv_proffs; /* link to DOF_SECT_PROFFS section */
808 dof_stridx_t dofpv_name; /* provider name string */
809 dof_attr_t dofpv_provattr; /* provider attributes */
810 dof_attr_t dofpv_modattr; /* module attributes */
811 dof_attr_t dofpv_funcattr; /* function attributes */
812 dof_attr_t dofpv_nameattr; /* name attributes */
813 dof_attr_t dofpv_argsattr; /* args attributes */
814 dof_secidx_t dofpv_prenoffs; /* link to DOF_SECT_PRENOFFS section */
815} dof_provider_t;
816
817typedef struct dof_probe {
818 uint64_t dofpr_addr; /* probe base address or offset */
819 dof_stridx_t dofpr_func; /* probe function string */
820 dof_stridx_t dofpr_name; /* probe name string */
821 dof_stridx_t dofpr_nargv; /* native argument type strings */
822 dof_stridx_t dofpr_xargv; /* translated argument type strings */
823 uint32_t dofpr_argidx; /* index of first argument mapping */
824 uint32_t dofpr_offidx; /* index of first offset entry */
825 uint8_t dofpr_nargc; /* native argument count */
826 uint8_t dofpr_xargc; /* translated argument count */
827 uint16_t dofpr_noffs; /* number of offset entries for probe */
828 uint32_t dofpr_enoffidx; /* index of first is-enabled offset */
829 uint16_t dofpr_nenoffs; /* number of is-enabled offsets */
830 uint16_t dofpr_pad1; /* reserved for future use */
831 uint32_t dofpr_pad2; /* reserved for future use */
832} dof_probe_t;
833
834typedef struct dof_xlator {
835 dof_secidx_t dofxl_members; /* link to DOF_SECT_XLMEMBERS section */
836 dof_secidx_t dofxl_strtab; /* link to DOF_SECT_STRTAB section */
837 dof_stridx_t dofxl_argv; /* input parameter type strings */
838 uint32_t dofxl_argc; /* input parameter list length */
839 dof_stridx_t dofxl_type; /* output type string name */
840 dof_attr_t dofxl_attr; /* output stability attributes */
841} dof_xlator_t;
842
843typedef struct dof_xlmember {
844 dof_secidx_t dofxm_difo; /* member link to DOF_SECT_DIFOHDR */
845 dof_stridx_t dofxm_name; /* member name */
846 dtrace_diftype_t dofxm_type; /* member type */
847} dof_xlmember_t;
848
849typedef struct dof_xlref {
850 dof_secidx_t dofxr_xlator; /* link to DOF_SECT_XLATORS section */
851 uint32_t dofxr_member; /* index of referenced dof_xlmember */
852 uint32_t dofxr_argn; /* index of argument for DIF_OP_XLARG */
853} dof_xlref_t;
854
855/*
856 * DTrace Intermediate Format Object (DIFO)
857 *
858 * A DIFO is used to store the compiled DIF for a D expression, its return
859 * type, and its string and variable tables. The string table is a single
860 * buffer of character data into which sets instructions and variable
861 * references can reference strings using a byte offset. The variable table
862 * is an array of dtrace_difv_t structures that describe the name and type of
863 * each variable and the id used in the DIF code. This structure is described
864 * above in the DIF section of this header file. The DIFO is used at both
865 * user-level (in the library) and in the kernel, but the structure is never
866 * passed between the two: the DOF structures form the only interface. As a
867 * result, the definition can change depending on the presence of _KERNEL.
868 */
869typedef struct dtrace_difo {
870 dif_instr_t *dtdo_buf; /* instruction buffer */
871 uint64_t *dtdo_inttab; /* integer table (optional) */
872 char *dtdo_strtab; /* string table (optional) */
873 dtrace_difv_t *dtdo_vartab; /* variable table (optional) */
874 uint_t dtdo_len; /* length of instruction buffer */
875 uint_t dtdo_intlen; /* length of integer table */
876 uint_t dtdo_strlen; /* length of string table */
877 uint_t dtdo_varlen; /* length of variable table */
878 dtrace_diftype_t dtdo_rtype; /* return type */
879 uint_t dtdo_refcnt; /* owner reference count */
880 uint_t dtdo_destructive; /* invokes destructive subroutines */
881#ifndef _KERNEL
882 dof_relodesc_t *dtdo_kreltab; /* kernel relocations */
883 dof_relodesc_t *dtdo_ureltab; /* user relocations */
884 struct dt_node **dtdo_xlmtab; /* translator references */
885 uint_t dtdo_krelen; /* length of krelo table */
886 uint_t dtdo_urelen; /* length of urelo table */
887 uint_t dtdo_xlmlen; /* length of translator table */
888#endif
889} dtrace_difo_t;
890
891/*
892 * DTrace Enabling Description Structures
893 *
894 * When DTrace is tracking the description of a DTrace enabling entity (probe,
895 * predicate, action, ECB, record, etc.), it does so in a description
896 * structure. These structures all end in "desc", and are used at both
897 * user-level and in the kernel -- but (with the exception of
898 * dtrace_probedesc_t) they are never passed between them. Typically,
899 * user-level will use the description structures when assembling an enabling.
900 * It will then distill those description structures into a DOF object (see
901 * above), and send it into the kernel. The kernel will again use the
902 * description structures to create a description of the enabling as it reads
903 * the DOF. When the description is complete, the enabling will be actually
904 * created -- turning it into the structures that represent the enabling
905 * instead of merely describing it. Not surprisingly, the description
906 * structures bear a strong resemblance to the DOF structures that act as their
907 * conduit.
908 */
909struct dtrace_predicate;
910
911typedef struct dtrace_probedesc {
912 dtrace_id_t dtpd_id; /* probe identifier */
913 char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */
914 char dtpd_mod[DTRACE_MODNAMELEN]; /* probe module name */
915 char dtpd_func[DTRACE_FUNCNAMELEN]; /* probe function name */
916 char dtpd_name[DTRACE_NAMELEN]; /* probe name */
917} dtrace_probedesc_t;
918
919typedef struct dtrace_repldesc {
920 dtrace_probedesc_t dtrpd_match; /* probe descr. to match */
921 dtrace_probedesc_t dtrpd_create; /* probe descr. to create */
922} dtrace_repldesc_t;
923
924typedef struct dtrace_preddesc {
925 dtrace_difo_t *dtpdd_difo; /* pointer to DIF object */
926 struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */
927} dtrace_preddesc_t;
928
929typedef struct dtrace_actdesc {
930 dtrace_difo_t *dtad_difo; /* pointer to DIF object */
931 struct dtrace_actdesc *dtad_next; /* next action */
932 dtrace_actkind_t dtad_kind; /* kind of action */
933 uint32_t dtad_ntuple; /* number in tuple */
934 uint64_t dtad_arg; /* action argument */
935 uint64_t dtad_uarg; /* user argument */
936 int dtad_refcnt; /* reference count */
937} dtrace_actdesc_t;
938
939typedef struct dtrace_ecbdesc {
940 dtrace_actdesc_t *dted_action; /* action description(s) */
941 dtrace_preddesc_t dted_pred; /* predicate description */
942 dtrace_probedesc_t dted_probe; /* probe description */
943 uint64_t dted_uarg; /* library argument */
944 int dted_refcnt; /* reference count */
945} dtrace_ecbdesc_t;
946
947/*
948 * DTrace Metadata Description Structures
949 *
950 * DTrace separates the trace data stream from the metadata stream. The only
951 * metadata tokens placed in the data stream are the dtrace_rechdr_t (EPID +
952 * timestamp) or (in the case of aggregations) aggregation identifiers. To
953 * determine the structure of the data, DTrace consumers pass the token to the
954 * kernel, and receive in return a corresponding description of the enabled
955 * probe (via the dtrace_eprobedesc structure) or the aggregation (via the
956 * dtrace_aggdesc structure). Both of these structures are expressed in terms
957 * of record descriptions (via the dtrace_recdesc structure) that describe the
958 * exact structure of the data. Some record descriptions may also contain a
959 * format identifier; this additional bit of metadata can be retrieved from the
960 * kernel, for which a format description is returned via the dtrace_fmtdesc
961 * structure. Note that all four of these structures must be bitness-neutral
962 * to allow for a 32-bit DTrace consumer on a 64-bit kernel.
963 */
964typedef struct dtrace_recdesc {
965 dtrace_actkind_t dtrd_action; /* kind of action */
966 uint32_t dtrd_size; /* size of record */
967 uint32_t dtrd_offset; /* offset in ECB's data */
968 uint16_t dtrd_alignment; /* required alignment */
969 uint16_t dtrd_format; /* format, if any */
970 uint64_t dtrd_arg; /* action argument */
971 uint64_t dtrd_uarg; /* user argument */
972} dtrace_recdesc_t;
973
974typedef struct dtrace_eprobedesc {
975 dtrace_epid_t dtepd_epid; /* enabled probe ID */
976 dtrace_id_t dtepd_probeid; /* probe ID */
977 uint64_t dtepd_uarg; /* library argument */
978 uint32_t dtepd_size; /* total size */
979 int dtepd_nrecs; /* number of records */
980 dtrace_recdesc_t dtepd_rec[1]; /* records themselves */
981} dtrace_eprobedesc_t;
982
983typedef struct dtrace_aggdesc {
984 DTRACE_PTR(char, dtagd_name); /* not filled in by kernel */
985 dtrace_aggvarid_t dtagd_varid; /* not filled in by kernel */
986 int dtagd_flags; /* not filled in by kernel */
987 dtrace_aggid_t dtagd_id; /* aggregation ID */
988 dtrace_epid_t dtagd_epid; /* enabled probe ID */
989 uint32_t dtagd_size; /* size in bytes */
990 int dtagd_nrecs; /* number of records */
991 uint32_t dtagd_pad; /* explicit padding */
992 dtrace_recdesc_t dtagd_rec[1]; /* record descriptions */
993} dtrace_aggdesc_t;
994
995typedef struct dtrace_fmtdesc {
996 DTRACE_PTR(char, dtfd_string); /* format string */
997 int dtfd_length; /* length of format string */
998 uint16_t dtfd_format; /* format identifier */
999} dtrace_fmtdesc_t;
1000
1001#define DTRACE_SIZEOF_EPROBEDESC(desc) \
1002 (sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ? \
1003 (((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
1004
1005#define DTRACE_SIZEOF_AGGDESC(desc) \
1006 (sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ? \
1007 (((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
1008
1009/*
1010 * DTrace Option Interface
1011 *
1012 * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections
1013 * in a DOF image. The dof_optdesc structure contains an option identifier and
1014 * an option value. The valid option identifiers are found below; the mapping
1015 * between option identifiers and option identifying strings is maintained at
1016 * user-level. Note that the value of DTRACEOPT_UNSET is such that all of the
1017 * following are potentially valid option values: all positive integers, zero
1018 * and negative one. Some options (notably "bufpolicy" and "bufresize") take
1019 * predefined tokens as their values; these are defined with
1020 * DTRACEOPT_{option}_{token}.
1021 */
1022#define DTRACEOPT_BUFSIZE 0 /* buffer size */
1023#define DTRACEOPT_BUFPOLICY 1 /* buffer policy */
1024#define DTRACEOPT_DYNVARSIZE 2 /* dynamic variable size */
1025#define DTRACEOPT_AGGSIZE 3 /* aggregation size */
1026#define DTRACEOPT_SPECSIZE 4 /* speculation size */
1027#define DTRACEOPT_NSPEC 5 /* number of speculations */
1028#define DTRACEOPT_STRSIZE 6 /* string size */
1029#define DTRACEOPT_CLEANRATE 7 /* dynvar cleaning rate */
1030#define DTRACEOPT_CPU 8 /* CPU to trace */
1031#define DTRACEOPT_BUFRESIZE 9 /* buffer resizing policy */
1032#define DTRACEOPT_GRABANON 10 /* grab anonymous state, if any */
1033#define DTRACEOPT_FLOWINDENT 11 /* indent function entry/return */
1034#define DTRACEOPT_QUIET 12 /* only output explicitly traced data */
1035#define DTRACEOPT_STACKFRAMES 13 /* number of stack frames */
1036#define DTRACEOPT_USTACKFRAMES 14 /* number of user stack frames */
1037#define DTRACEOPT_AGGRATE 15 /* aggregation snapshot rate */
1038#define DTRACEOPT_SWITCHRATE 16 /* buffer switching rate */
1039#define DTRACEOPT_STATUSRATE 17 /* status rate */
1040#define DTRACEOPT_DESTRUCTIVE 18 /* destructive actions allowed */
1041#define DTRACEOPT_STACKINDENT 19 /* output indent for stack traces */
1042#define DTRACEOPT_RAWBYTES 20 /* always print bytes in raw form */
1043#define DTRACEOPT_JSTACKFRAMES 21 /* number of jstack() frames */
1044#define DTRACEOPT_JSTACKSTRSIZE 22 /* size of jstack() string table */
1045#define DTRACEOPT_AGGSORTKEY 23 /* sort aggregations by key */
1046#define DTRACEOPT_AGGSORTREV 24 /* reverse-sort aggregations */
1047#define DTRACEOPT_AGGSORTPOS 25 /* agg. position to sort on */
1048#define DTRACEOPT_AGGSORTKEYPOS 26 /* agg. key position to sort on */
1049#define DTRACEOPT_TEMPORAL 27 /* temporally ordered output */
1050#define DTRACEOPT_AGGHIST 28 /* histogram aggregation output */
1051#define DTRACEOPT_AGGPACK 29 /* packed aggregation output */
1052#define DTRACEOPT_AGGZOOM 30 /* zoomed aggregation scaling */
1053#define DTRACEOPT_ZONE 31 /* zone in which to enable probes */
1054#define DTRACEOPT_MAX 32 /* number of options */
1055
1056#define DTRACEOPT_UNSET (dtrace_optval_t)-2 /* unset option */
1057
1058#define DTRACEOPT_BUFPOLICY_RING 0 /* ring buffer */
1059#define DTRACEOPT_BUFPOLICY_FILL 1 /* fill buffer, then stop */
1060#define DTRACEOPT_BUFPOLICY_SWITCH 2 /* switch buffers */
1061
1062#define DTRACEOPT_BUFRESIZE_AUTO 0 /* automatic resizing */
1063#define DTRACEOPT_BUFRESIZE_MANUAL 1 /* manual resizing */
1064
1065/*
1066 * DTrace Buffer Interface
1067 *
1068 * In order to get a snapshot of the principal or aggregation buffer,
1069 * user-level passes a buffer description to the kernel with the dtrace_bufdesc
1070 * structure. This describes which CPU user-level is interested in, and
1071 * where user-level wishes the kernel to snapshot the buffer to (the
1072 * dtbd_data field). The kernel uses the same structure to pass back some
1073 * information regarding the buffer: the size of data actually copied out, the
1074 * number of drops, the number of errors, the offset of the oldest record,
1075 * and the time of the snapshot.
1076 *
1077 * If the buffer policy is a "switch" policy, taking a snapshot of the
1078 * principal buffer has the additional effect of switching the active and
1079 * inactive buffers. Taking a snapshot of the aggregation buffer _always_ has
1080 * the additional effect of switching the active and inactive buffers.
1081 */
1082typedef struct dtrace_bufdesc {
1083 uint64_t dtbd_size; /* size of buffer */
1084 uint32_t dtbd_cpu; /* CPU or DTRACE_CPUALL */
1085 uint32_t dtbd_errors; /* number of errors */
1086 uint64_t dtbd_drops; /* number of drops */
1087 DTRACE_PTR(char, dtbd_data); /* data */
1088 uint64_t dtbd_oldest; /* offset of oldest record */
1089 uint64_t dtbd_timestamp; /* hrtime of snapshot */
1090} dtrace_bufdesc_t;
1091
1092/*
1093 * Each record in the buffer (dtbd_data) begins with a header that includes
1094 * the epid and a timestamp. The timestamp is split into two 4-byte parts
1095 * so that we do not require 8-byte alignment.
1096 */
1097typedef struct dtrace_rechdr {
1098 dtrace_epid_t dtrh_epid; /* enabled probe id */
1099 uint32_t dtrh_timestamp_hi; /* high bits of hrtime_t */
1100 uint32_t dtrh_timestamp_lo; /* low bits of hrtime_t */
1101} dtrace_rechdr_t;
1102
1103#define DTRACE_RECORD_LOAD_TIMESTAMP(dtrh) \
1104 ((dtrh)->dtrh_timestamp_lo + \
1105 ((uint64_t)(dtrh)->dtrh_timestamp_hi << 32))
1106
1107#define DTRACE_RECORD_STORE_TIMESTAMP(dtrh, hrtime) { \
1108 (dtrh)->dtrh_timestamp_lo = (uint32_t)hrtime; \
1109 (dtrh)->dtrh_timestamp_hi = hrtime >> 32; \
1110}
1111
1112/*
1113 * DTrace Status
1114 *
1115 * The status of DTrace is relayed via the dtrace_status structure. This
1116 * structure contains members to count drops other than the capacity drops
1117 * available via the buffer interface (see above). This consists of dynamic
1118 * drops (including capacity dynamic drops, rinsing drops and dirty drops), and
1119 * speculative drops (including capacity speculative drops, drops due to busy
1120 * speculative buffers and drops due to unavailable speculative buffers).
1121 * Additionally, the status structure contains a field to indicate the number
1122 * of "fill"-policy buffers have been filled and a boolean field to indicate
1123 * that exit() has been called. If the dtst_exiting field is non-zero, no
1124 * further data will be generated until tracing is stopped (at which time any
1125 * enablings of the END action will be processed); if user-level sees that
1126 * this field is non-zero, tracing should be stopped as soon as possible.
1127 */
1128typedef struct dtrace_status {
1129 uint64_t dtst_dyndrops; /* dynamic drops */
1130 uint64_t dtst_dyndrops_rinsing; /* dyn drops due to rinsing */
1131 uint64_t dtst_dyndrops_dirty; /* dyn drops due to dirty */
1132 uint64_t dtst_specdrops; /* speculative drops */
1133 uint64_t dtst_specdrops_busy; /* spec drops due to busy */
1134 uint64_t dtst_specdrops_unavail; /* spec drops due to unavail */
1135 uint64_t dtst_errors; /* total errors */
1136 uint64_t dtst_filled; /* number of filled bufs */
1137 uint64_t dtst_stkstroverflows; /* stack string tab overflows */
1138 uint64_t dtst_dblerrors; /* errors in ERROR probes */
1139 char dtst_killed; /* non-zero if killed */
1140 char dtst_exiting; /* non-zero if exit() called */
1141 char dtst_pad[6]; /* pad out to 64-bit align */
1142} dtrace_status_t;
1143
1144/*
1145 * DTrace Configuration
1146 *
1147 * User-level may need to understand some elements of the kernel DTrace
1148 * configuration in order to generate correct DIF. This information is
1149 * conveyed via the dtrace_conf structure.
1150 */
1151typedef struct dtrace_conf {
1152 uint_t dtc_difversion; /* supported DIF version */
1153 uint_t dtc_difintregs; /* # of DIF integer registers */
1154 uint_t dtc_diftupregs; /* # of DIF tuple registers */
1155 uint_t dtc_ctfmodel; /* CTF data model */
1156 uint_t dtc_pad[8]; /* reserved for future use */
1157} dtrace_conf_t;
1158
1159/*
1160 * DTrace Faults
1161 *
1162 * The constants below DTRACEFLT_LIBRARY indicate probe processing faults;
1163 * constants at or above DTRACEFLT_LIBRARY indicate faults in probe
1164 * postprocessing at user-level. Probe processing faults induce an ERROR
1165 * probe and are replicated in unistd.d to allow users' ERROR probes to decode
1166 * the error condition using thse symbolic labels.
1167 */
1168#define DTRACEFLT_UNKNOWN 0 /* Unknown fault */
1169#define DTRACEFLT_BADADDR 1 /* Bad address */
1170#define DTRACEFLT_BADALIGN 2 /* Bad alignment */
1171#define DTRACEFLT_ILLOP 3 /* Illegal operation */
1172#define DTRACEFLT_DIVZERO 4 /* Divide-by-zero */
1173#define DTRACEFLT_NOSCRATCH 5 /* Out of scratch space */
1174#define DTRACEFLT_KPRIV 6 /* Illegal kernel access */
1175#define DTRACEFLT_UPRIV 7 /* Illegal user access */
1176#define DTRACEFLT_TUPOFLOW 8 /* Tuple stack overflow */
1177#define DTRACEFLT_BADSTACK 9 /* Bad stack */
1178
1179#define DTRACEFLT_LIBRARY 1000 /* Library-level fault */
1180
1181/*
1182 * DTrace Argument Types
1183 *
1184 * Because it would waste both space and time, argument types do not reside
1185 * with the probe. In order to determine argument types for args[X]
1186 * variables, the D compiler queries for argument types on a probe-by-probe
1187 * basis. (This optimizes for the common case that arguments are either not
1188 * used or used in an untyped fashion.) Typed arguments are specified with a
1189 * string of the type name in the dtragd_native member of the argument
1190 * description structure. Typed arguments may be further translated to types
1191 * of greater stability; the provider indicates such a translated argument by
1192 * filling in the dtargd_xlate member with the string of the translated type.
1193 * Finally, the provider may indicate which argument value a given argument
1194 * maps to by setting the dtargd_mapping member -- allowing a single argument
1195 * to map to multiple args[X] variables.
1196 */
1197typedef struct dtrace_argdesc {
1198 dtrace_id_t dtargd_id; /* probe identifier */
1199 int dtargd_ndx; /* arg number (-1 iff none) */
1200 int dtargd_mapping; /* value mapping */
1201 char dtargd_native[DTRACE_ARGTYPELEN]; /* native type name */
1202 char dtargd_xlate[DTRACE_ARGTYPELEN]; /* translated type name */
1203} dtrace_argdesc_t;
1204
1205/*
1206 * DTrace Stability Attributes
1207 *
1208 * Each DTrace provider advertises the name and data stability of each of its
1209 * probe description components, as well as its architectural dependencies.
1210 * The D compiler can query the provider attributes (dtrace_pattr_t below) in
1211 * order to compute the properties of an input program and report them.
1212 */
1213typedef uint8_t dtrace_stability_t; /* stability code (see attributes(5)) */
1214typedef uint8_t dtrace_class_t; /* architectural dependency class */
1215
1216#define DTRACE_STABILITY_INTERNAL 0 /* private to DTrace itself */
1217#define DTRACE_STABILITY_PRIVATE 1 /* private to Sun (see docs) */
1218#define DTRACE_STABILITY_OBSOLETE 2 /* scheduled for removal */
1219#define DTRACE_STABILITY_EXTERNAL 3 /* not controlled by Sun */
1220#define DTRACE_STABILITY_UNSTABLE 4 /* new or rapidly changing */
1221#define DTRACE_STABILITY_EVOLVING 5 /* less rapidly changing */
1222#define DTRACE_STABILITY_STABLE 6 /* mature interface from Sun */
1223#define DTRACE_STABILITY_STANDARD 7 /* industry standard */
1224#define DTRACE_STABILITY_MAX 7 /* maximum valid stability */
1225
1226#define DTRACE_CLASS_UNKNOWN 0 /* unknown architectural dependency */
1227#define DTRACE_CLASS_CPU 1 /* CPU-module-specific */
1228#define DTRACE_CLASS_PLATFORM 2 /* platform-specific (uname -i) */
1229#define DTRACE_CLASS_GROUP 3 /* hardware-group-specific (uname -m) */
1230#define DTRACE_CLASS_ISA 4 /* ISA-specific (uname -p) */
1231#define DTRACE_CLASS_COMMON 5 /* common to all systems */
1232#define DTRACE_CLASS_MAX 5 /* maximum valid class */
1233
1234#define DTRACE_PRIV_NONE 0x0000
1235#define DTRACE_PRIV_KERNEL 0x0001
1236#define DTRACE_PRIV_USER 0x0002
1237#define DTRACE_PRIV_PROC 0x0004
1238#define DTRACE_PRIV_OWNER 0x0008
1239#define DTRACE_PRIV_ZONEOWNER 0x0010
1240
1241#define DTRACE_PRIV_ALL \
1242 (DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \
1243 DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER)
1244
1245typedef struct dtrace_ppriv {
1246 uint32_t dtpp_flags; /* privilege flags */
1247 uid_t dtpp_uid; /* user ID */
1248 zoneid_t dtpp_zoneid; /* zone ID */
1249} dtrace_ppriv_t;
1250
1251typedef struct dtrace_attribute {
1252 dtrace_stability_t dtat_name; /* entity name stability */
1253 dtrace_stability_t dtat_data; /* entity data stability */
1254 dtrace_class_t dtat_class; /* entity data dependency */
1255} dtrace_attribute_t;
1256
1257typedef struct dtrace_pattr {
1258 dtrace_attribute_t dtpa_provider; /* provider attributes */
1259 dtrace_attribute_t dtpa_mod; /* module attributes */
1260 dtrace_attribute_t dtpa_func; /* function attributes */
1261 dtrace_attribute_t dtpa_name; /* name attributes */
1262 dtrace_attribute_t dtpa_args; /* args[] attributes */
1263} dtrace_pattr_t;
1264
1265typedef struct dtrace_providerdesc {
1266 char dtvd_name[DTRACE_PROVNAMELEN]; /* provider name */
1267 dtrace_pattr_t dtvd_attr; /* stability attributes */
1268 dtrace_ppriv_t dtvd_priv; /* privileges required */
1269} dtrace_providerdesc_t;
1270
1271/*
1272 * DTrace Pseudodevice Interface
1273 *
1274 * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace
1275 * pseudodevice driver. These ioctls comprise the user-kernel interface to
1276 * DTrace.
1277 */
1278#ifdef illumos
1279#define DTRACEIOC (('d' << 24) | ('t' << 16) | ('r' << 8))
1280#define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */
1281#define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */
1282#define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */
1283#define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */
1284#define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */
1285#define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */
1286#define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */
1287#define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */
1288#define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */
1289#define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */
1290#define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */
1291#define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */
1292#define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */
1293#define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */
1294#define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */
1295#define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */
1296#else
1297#define DTRACEIOC_PROVIDER _IOWR('x',1,dtrace_providerdesc_t)
1298 /* provider query */
1299#define DTRACEIOC_PROBES _IOWR('x',2,dtrace_probedesc_t)
1300 /* probe query */
1301#define DTRACEIOC_BUFSNAP _IOW('x',4,dtrace_bufdesc_t *)
1302 /* snapshot buffer */
1303#define DTRACEIOC_PROBEMATCH _IOWR('x',5,dtrace_probedesc_t)
1304 /* match probes */
1305typedef struct {
1306 void *dof; /* DOF userland address written to driver. */
1307 int n_matched; /* # matches returned by driver. */
1308} dtrace_enable_io_t;
1309#define DTRACEIOC_ENABLE _IOWR('x',6,dtrace_enable_io_t)
1310 /* enable probes */
1311#define DTRACEIOC_AGGSNAP _IOW('x',7,dtrace_bufdesc_t *)
1312 /* snapshot agg. */
1313#define DTRACEIOC_EPROBE _IOW('x',8,dtrace_eprobedesc_t)
1314 /* get eprobe desc. */
1315#define DTRACEIOC_PROBEARG _IOWR('x',9,dtrace_argdesc_t)
1316 /* get probe arg */
1317#define DTRACEIOC_CONF _IOR('x',10,dtrace_conf_t)
1318 /* get config. */
1319#define DTRACEIOC_STATUS _IOR('x',11,dtrace_status_t)
1320 /* get status */
1321#define DTRACEIOC_GO _IOR('x',12,processorid_t)
1322 /* start tracing */
1323#define DTRACEIOC_STOP _IOWR('x',13,processorid_t)
1324 /* stop tracing */
1325#define DTRACEIOC_AGGDESC _IOW('x',15,dtrace_aggdesc_t *)
1326 /* get agg. desc. */
1327#define DTRACEIOC_FORMAT _IOWR('x',16,dtrace_fmtdesc_t)
1328 /* get format str */
1329#define DTRACEIOC_DOFGET _IOW('x',17,dof_hdr_t *)
1330 /* get DOF */
1331#define DTRACEIOC_REPLICATE _IOW('x',18,dtrace_repldesc_t)
1332 /* replicate enab */
1333#endif
1334
1335/*
1336 * DTrace Helpers
1337 *
1338 * In general, DTrace establishes probes in processes and takes actions on
1339 * processes without knowing their specific user-level structures. Instead of
1340 * existing in the framework, process-specific knowledge is contained by the
1341 * enabling D program -- which can apply process-specific knowledge by making
1342 * appropriate use of DTrace primitives like copyin() and copyinstr() to
1343 * operate on user-level data. However, there may exist some specific probes
1344 * of particular semantic relevance that the application developer may wish to
1345 * explicitly export. For example, an application may wish to export a probe
1346 * at the point that it begins and ends certain well-defined transactions. In
1347 * addition to providing probes, programs may wish to offer assistance for
1348 * certain actions. For example, in highly dynamic environments (e.g., Java),
1349 * it may be difficult to obtain a stack trace in terms of meaningful symbol
1350 * names (the translation from instruction addresses to corresponding symbol
1351 * names may only be possible in situ); these environments may wish to define
1352 * a series of actions to be applied in situ to obtain a meaningful stack
1353 * trace.
1354 *
1355 * These two mechanisms -- user-level statically defined tracing and assisting
1356 * DTrace actions -- are provided via DTrace _helpers_. Helpers are specified
1357 * via DOF, but unlike enabling DOF, helper DOF may contain definitions of
1358 * providers, probes and their arguments. If a helper wishes to provide
1359 * action assistance, probe descriptions and corresponding DIF actions may be
1360 * specified in the helper DOF. For such helper actions, however, the probe
1361 * description describes the specific helper: all DTrace helpers have the
1362 * provider name "dtrace" and the module name "helper", and the name of the
1363 * helper is contained in the function name (for example, the ustack() helper
1364 * is named "ustack"). Any helper-specific name may be contained in the name
1365 * (for example, if a helper were to have a constructor, it might be named
1366 * "dtrace:helper:<helper>:init"). Helper actions are only called when the
1367 * action that they are helping is taken. Helper actions may only return DIF
1368 * expressions, and may only call the following subroutines:
1369 *
1370 * alloca() <= Allocates memory out of the consumer's scratch space
1371 * bcopy() <= Copies memory to scratch space
1372 * copyin() <= Copies memory from user-level into consumer's scratch
1373 * copyinto() <= Copies memory into a specific location in scratch
1374 * copyinstr() <= Copies a string into a specific location in scratch
1375 *
1376 * Helper actions may only access the following built-in variables:
1377 *
1378 * curthread <= Current kthread_t pointer
1379 * tid <= Current thread identifier
1380 * pid <= Current process identifier
1381 * ppid <= Parent process identifier
1382 * uid <= Current user ID
1383 * gid <= Current group ID
1384 * execname <= Current executable name
1385 * zonename <= Current zone name
1386 *
1387 * Helper actions may not manipulate or allocate dynamic variables, but they
1388 * may have clause-local and statically-allocated global variables. The
1389 * helper action variable state is specific to the helper action -- variables
1390 * used by the helper action may not be accessed outside of the helper
1391 * action, and the helper action may not access variables that like outside
1392 * of it. Helper actions may not load from kernel memory at-large; they are
1393 * restricting to loading current user state (via copyin() and variants) and
1394 * scratch space. As with probe enablings, helper actions are executed in
1395 * program order. The result of the helper action is the result of the last
1396 * executing helper expression.
1397 *
1398 * Helpers -- composed of either providers/probes or probes/actions (or both)
1399 * -- are added by opening the "helper" minor node, and issuing an ioctl(2)
1400 * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This
1401 * encapsulates the name and base address of the user-level library or
1402 * executable publishing the helpers and probes as well as the DOF that
1403 * contains the definitions of those helpers and probes.
1404 *
1405 * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy
1406 * helpers and should no longer be used. No other ioctls are valid on the
1407 * helper minor node.
1408 */
1409#ifdef illumos
1410#define DTRACEHIOC (('d' << 24) | ('t' << 16) | ('h' << 8))
1411#define DTRACEHIOC_ADD (DTRACEHIOC | 1) /* add helper */
1412#define DTRACEHIOC_REMOVE (DTRACEHIOC | 2) /* remove helper */
1413#define DTRACEHIOC_ADDDOF (DTRACEHIOC | 3) /* add helper DOF */
1414#else
1415#define DTRACEHIOC_REMOVE _IOW('z', 2, int) /* remove helper */
1416#define DTRACEHIOC_ADDDOF _IOWR('z', 3, dof_helper_t)/* add helper DOF */
1417#endif
1418
1419typedef struct dof_helper {
1420 char dofhp_mod[DTRACE_MODNAMELEN]; /* executable or library name */
1421 uint64_t dofhp_addr; /* base address of object */
1422 uint64_t dofhp_dof; /* address of helper DOF */
1423#if defined(__FreeBSD__) || defined(__NetBSD__)
1424 pid_t dofhp_pid; /* target process ID */
1425 int dofhp_gen;
1426#endif
1427} dof_helper_t;
1428
1429#define DTRACEMNR_DTRACE "dtrace" /* node for DTrace ops */
1430#define DTRACEMNR_HELPER "helper" /* node for helpers */
1431#define DTRACEMNRN_DTRACE 0 /* minor for DTrace ops */
1432#define DTRACEMNRN_HELPER 1 /* minor for helpers */
1433#define DTRACEMNRN_CLONE 2 /* first clone minor */
1434
1435#ifdef _KERNEL
1436
1437/*
1438 * DTrace Provider API
1439 *
1440 * The following functions are implemented by the DTrace framework and are
1441 * used to implement separate in-kernel DTrace providers. Common functions
1442 * are provided in uts/common/os/dtrace.c. ISA-dependent subroutines are
1443 * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c.
1444 *
1445 * The provider API has two halves: the API that the providers consume from
1446 * DTrace, and the API that providers make available to DTrace.
1447 *
1448 * 1 Framework-to-Provider API
1449 *
1450 * 1.1 Overview
1451 *
1452 * The Framework-to-Provider API is represented by the dtrace_pops structure
1453 * that the provider passes to the framework when registering itself. This
1454 * structure consists of the following members:
1455 *
1456 * dtps_provide() <-- Provide all probes, all modules
1457 * dtps_provide_module() <-- Provide all probes in specified module
1458 * dtps_enable() <-- Enable specified probe
1459 * dtps_disable() <-- Disable specified probe
1460 * dtps_suspend() <-- Suspend specified probe
1461 * dtps_resume() <-- Resume specified probe
1462 * dtps_getargdesc() <-- Get the argument description for args[X]
1463 * dtps_getargval() <-- Get the value for an argX or args[X] variable
1464 * dtps_usermode() <-- Find out if the probe was fired in user mode
1465 * dtps_destroy() <-- Destroy all state associated with this probe
1466 *
1467 * 1.2 void dtps_provide(void *arg, const dtrace_probedesc_t *spec)
1468 *
1469 * 1.2.1 Overview
1470 *
1471 * Called to indicate that the provider should provide all probes. If the
1472 * specified description is non-NULL, dtps_provide() is being called because
1473 * no probe matched a specified probe -- if the provider has the ability to
1474 * create custom probes, it may wish to create a probe that matches the
1475 * specified description.
1476 *
1477 * 1.2.2 Arguments and notes
1478 *
1479 * The first argument is the cookie as passed to dtrace_register(). The
1480 * second argument is a pointer to a probe description that the provider may
1481 * wish to consider when creating custom probes. The provider is expected to
1482 * call back into the DTrace framework via dtrace_probe_create() to create
1483 * any necessary probes. dtps_provide() may be called even if the provider
1484 * has made available all probes; the provider should check the return value
1485 * of dtrace_probe_create() to handle this case. Note that the provider need
1486 * not implement both dtps_provide() and dtps_provide_module(); see
1487 * "Arguments and Notes" for dtrace_register(), below.
1488 *
1489 * 1.2.3 Return value
1490 *
1491 * None.
1492 *
1493 * 1.2.4 Caller's context
1494 *
1495 * dtps_provide() is typically called from open() or ioctl() context, but may
1496 * be called from other contexts as well. The DTrace framework is locked in
1497 * such a way that providers may not register or unregister. This means that
1498 * the provider may not call any DTrace API that affects its registration with
1499 * the framework, including dtrace_register(), dtrace_unregister(),
1500 * dtrace_invalidate(), and dtrace_condense(). However, the context is such
1501 * that the provider may (and indeed, is expected to) call probe-related
1502 * DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(),
1503 * and dtrace_probe_arg().
1504 *
1505 * 1.3 void dtps_provide_module(void *arg, modctl_t *mp)
1506 *
1507 * 1.3.1 Overview
1508 *
1509 * Called to indicate that the provider should provide all probes in the
1510 * specified module.
1511 *
1512 * 1.3.2 Arguments and notes
1513 *
1514 * The first argument is the cookie as passed to dtrace_register(). The
1515 * second argument is a pointer to a modctl structure that indicates the
1516 * module for which probes should be created.
1517 *
1518 * 1.3.3 Return value
1519 *
1520 * None.
1521 *
1522 * 1.3.4 Caller's context
1523 *
1524 * dtps_provide_module() may be called from open() or ioctl() context, but
1525 * may also be called from a module loading context. mod_lock is held, and
1526 * the DTrace framework is locked in such a way that providers may not
1527 * register or unregister. This means that the provider may not call any
1528 * DTrace API that affects its registration with the framework, including
1529 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1530 * dtrace_condense(). However, the context is such that the provider may (and
1531 * indeed, is expected to) call probe-related DTrace routines, including
1532 * dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg(). Note
1533 * that the provider need not implement both dtps_provide() and
1534 * dtps_provide_module(); see "Arguments and Notes" for dtrace_register(),
1535 * below.
1536 *
1537 * 1.4 void dtps_enable(void *arg, dtrace_id_t id, void *parg)
1538 *
1539 * 1.4.1 Overview
1540 *
1541 * Called to enable the specified probe.
1542 *
1543 * 1.4.2 Arguments and notes
1544 *
1545 * The first argument is the cookie as passed to dtrace_register(). The
1546 * second argument is the identifier of the probe to be enabled. The third
1547 * argument is the probe argument as passed to dtrace_probe_create().
1548 * dtps_enable() will be called when a probe transitions from not being
1549 * enabled at all to having one or more ECB. The number of ECBs associated
1550 * with the probe may change without subsequent calls into the provider.
1551 * When the number of ECBs drops to zero, the provider will be explicitly
1552 * told to disable the probe via dtps_disable(). dtrace_probe() should never
1553 * be called for a probe identifier that hasn't been explicitly enabled via
1554 * dtps_enable().
1555 *
1556 * 1.4.3 Return value
1557 *
1558 * None.
1559 *
1560 * 1.4.4 Caller's context
1561 *
1562 * The DTrace framework is locked in such a way that it may not be called
1563 * back into at all. cpu_lock is held. mod_lock is not held and may not
1564 * be acquired.
1565 *
1566 * 1.5 void dtps_disable(void *arg, dtrace_id_t id, void *parg)
1567 *
1568 * 1.5.1 Overview
1569 *
1570 * Called to disable the specified probe.
1571 *
1572 * 1.5.2 Arguments and notes
1573 *
1574 * The first argument is the cookie as passed to dtrace_register(). The
1575 * second argument is the identifier of the probe to be disabled. The third
1576 * argument is the probe argument as passed to dtrace_probe_create().
1577 * dtps_disable() will be called when a probe transitions from being enabled
1578 * to having zero ECBs. dtrace_probe() should never be called for a probe
1579 * identifier that has been explicitly enabled via dtps_disable().
1580 *
1581 * 1.5.3 Return value
1582 *
1583 * None.
1584 *
1585 * 1.5.4 Caller's context
1586 *
1587 * The DTrace framework is locked in such a way that it may not be called
1588 * back into at all. cpu_lock is held. mod_lock is not held and may not
1589 * be acquired.
1590 *
1591 * 1.6 void dtps_suspend(void *arg, dtrace_id_t id, void *parg)
1592 *
1593 * 1.6.1 Overview
1594 *
1595 * Called to suspend the specified enabled probe. This entry point is for
1596 * providers that may need to suspend some or all of their probes when CPUs
1597 * are being powered on or when the boot monitor is being entered for a
1598 * prolonged period of time.
1599 *
1600 * 1.6.2 Arguments and notes
1601 *
1602 * The first argument is the cookie as passed to dtrace_register(). The
1603 * second argument is the identifier of the probe to be suspended. The
1604 * third argument is the probe argument as passed to dtrace_probe_create().
1605 * dtps_suspend will only be called on an enabled probe. Providers that
1606 * provide a dtps_suspend entry point will want to take roughly the action
1607 * that it takes for dtps_disable.
1608 *
1609 * 1.6.3 Return value
1610 *
1611 * None.
1612 *
1613 * 1.6.4 Caller's context
1614 *
1615 * Interrupts are disabled. The DTrace framework is in a state such that the
1616 * specified probe cannot be disabled or destroyed for the duration of
1617 * dtps_suspend(). As interrupts are disabled, the provider is afforded
1618 * little latitude; the provider is expected to do no more than a store to
1619 * memory.
1620 *
1621 * 1.7 void dtps_resume(void *arg, dtrace_id_t id, void *parg)
1622 *
1623 * 1.7.1 Overview
1624 *
1625 * Called to resume the specified enabled probe. This entry point is for
1626 * providers that may need to resume some or all of their probes after the
1627 * completion of an event that induced a call to dtps_suspend().
1628 *
1629 * 1.7.2 Arguments and notes
1630 *
1631 * The first argument is the cookie as passed to dtrace_register(). The
1632 * second argument is the identifier of the probe to be resumed. The
1633 * third argument is the probe argument as passed to dtrace_probe_create().
1634 * dtps_resume will only be called on an enabled probe. Providers that
1635 * provide a dtps_resume entry point will want to take roughly the action
1636 * that it takes for dtps_enable.
1637 *
1638 * 1.7.3 Return value
1639 *
1640 * None.
1641 *
1642 * 1.7.4 Caller's context
1643 *
1644 * Interrupts are disabled. The DTrace framework is in a state such that the
1645 * specified probe cannot be disabled or destroyed for the duration of
1646 * dtps_resume(). As interrupts are disabled, the provider is afforded
1647 * little latitude; the provider is expected to do no more than a store to
1648 * memory.
1649 *
1650 * 1.8 void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg,
1651 * dtrace_argdesc_t *desc)
1652 *
1653 * 1.8.1 Overview
1654 *
1655 * Called to retrieve the argument description for an args[X] variable.
1656 *
1657 * 1.8.2 Arguments and notes
1658 *
1659 * The first argument is the cookie as passed to dtrace_register(). The
1660 * second argument is the identifier of the current probe. The third
1661 * argument is the probe argument as passed to dtrace_probe_create(). The
1662 * fourth argument is a pointer to the argument description. This
1663 * description is both an input and output parameter: it contains the
1664 * index of the desired argument in the dtargd_ndx field, and expects
1665 * the other fields to be filled in upon return. If there is no argument
1666 * corresponding to the specified index, the dtargd_ndx field should be set
1667 * to DTRACE_ARGNONE.
1668 *
1669 * 1.8.3 Return value
1670 *
1671 * None. The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping
1672 * members of the dtrace_argdesc_t structure are all output values.
1673 *
1674 * 1.8.4 Caller's context
1675 *
1676 * dtps_getargdesc() is called from ioctl() context. mod_lock is held, and
1677 * the DTrace framework is locked in such a way that providers may not
1678 * register or unregister. This means that the provider may not call any
1679 * DTrace API that affects its registration with the framework, including
1680 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1681 * dtrace_condense().
1682 *
1683 * 1.9 uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg,
1684 * int argno, int aframes)
1685 *
1686 * 1.9.1 Overview
1687 *
1688 * Called to retrieve a value for an argX or args[X] variable.
1689 *
1690 * 1.9.2 Arguments and notes
1691 *
1692 * The first argument is the cookie as passed to dtrace_register(). The
1693 * second argument is the identifier of the current probe. The third
1694 * argument is the probe argument as passed to dtrace_probe_create(). The
1695 * fourth argument is the number of the argument (the X in the example in
1696 * 1.9.1). The fifth argument is the number of stack frames that were used
1697 * to get from the actual place in the code that fired the probe to
1698 * dtrace_probe() itself, the so-called artificial frames. This argument may
1699 * be used to descend an appropriate number of frames to find the correct
1700 * values. If this entry point is left NULL, the dtrace_getarg() built-in
1701 * function is used.
1702 *
1703 * 1.9.3 Return value
1704 *
1705 * The value of the argument.
1706 *
1707 * 1.9.4 Caller's context
1708 *
1709 * This is called from within dtrace_probe() meaning that interrupts
1710 * are disabled. No locks should be taken within this entry point.
1711 *
1712 * 1.10 int dtps_usermode(void *arg, dtrace_id_t id, void *parg)
1713 *
1714 * 1.10.1 Overview
1715 *
1716 * Called to determine if the probe was fired in a user context.
1717 *
1718 * 1.10.2 Arguments and notes
1719 *
1720 * The first argument is the cookie as passed to dtrace_register(). The
1721 * second argument is the identifier of the current probe. The third
1722 * argument is the probe argument as passed to dtrace_probe_create(). This
1723 * entry point must not be left NULL for providers whose probes allow for
1724 * mixed mode tracing, that is to say those probes that can fire during
1725 * kernel- _or_ user-mode execution
1726 *
1727 * 1.10.3 Return value
1728 *
1729 * A bitwise OR that encapsulates both the mode (either DTRACE_MODE_KERNEL
1730 * or DTRACE_MODE_USER) and the policy when the privilege of the enabling
1731 * is insufficient for that mode (a combination of DTRACE_MODE_NOPRIV_DROP,
1732 * DTRACE_MODE_NOPRIV_RESTRICT, and DTRACE_MODE_LIMITEDPRIV_RESTRICT). If
1733 * DTRACE_MODE_NOPRIV_DROP bit is set, insufficient privilege will result
1734 * in the probe firing being silently ignored for the enabling; if the
1735 * DTRACE_NODE_NOPRIV_RESTRICT bit is set, insufficient privilege will not
1736 * prevent probe processing for the enabling, but restrictions will be in
1737 * place that induce a UPRIV fault upon attempt to examine probe arguments
1738 * or current process state. If the DTRACE_MODE_LIMITEDPRIV_RESTRICT bit
1739 * is set, similar restrictions will be placed upon operation if the
1740 * privilege is sufficient to process the enabling, but does not otherwise
1741 * entitle the enabling to all zones. The DTRACE_MODE_NOPRIV_DROP and
1742 * DTRACE_MODE_NOPRIV_RESTRICT are mutually exclusive (and one of these
1743 * two policies must be specified), but either may be combined (or not)
1744 * with DTRACE_MODE_LIMITEDPRIV_RESTRICT.
1745 *
1746 * 1.10.4 Caller's context
1747 *
1748 * This is called from within dtrace_probe() meaning that interrupts
1749 * are disabled. No locks should be taken within this entry point.
1750 *
1751 * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg)
1752 *
1753 * 1.11.1 Overview
1754 *
1755 * Called to destroy the specified probe.
1756 *
1757 * 1.11.2 Arguments and notes
1758 *
1759 * The first argument is the cookie as passed to dtrace_register(). The
1760 * second argument is the identifier of the probe to be destroyed. The third
1761 * argument is the probe argument as passed to dtrace_probe_create(). The
1762 * provider should free all state associated with the probe. The framework
1763 * guarantees that dtps_destroy() is only called for probes that have either
1764 * been disabled via dtps_disable() or were never enabled via dtps_enable().
1765 * Once dtps_disable() has been called for a probe, no further call will be
1766 * made specifying the probe.
1767 *
1768 * 1.11.3 Return value
1769 *
1770 * None.
1771 *
1772 * 1.11.4 Caller's context
1773 *
1774 * The DTrace framework is locked in such a way that it may not be called
1775 * back into at all. mod_lock is held. cpu_lock is not held, and may not be
1776 * acquired.
1777 *
1778 *
1779 * 2 Provider-to-Framework API
1780 *
1781 * 2.1 Overview
1782 *
1783 * The Provider-to-Framework API provides the mechanism for the provider to
1784 * register itself with the DTrace framework, to create probes, to lookup
1785 * probes and (most importantly) to fire probes. The Provider-to-Framework
1786 * consists of:
1787 *
1788 * dtrace_register() <-- Register a provider with the DTrace framework
1789 * dtrace_unregister() <-- Remove a provider's DTrace registration
1790 * dtrace_invalidate() <-- Invalidate the specified provider
1791 * dtrace_condense() <-- Remove a provider's unenabled probes
1792 * dtrace_attached() <-- Indicates whether or not DTrace has attached
1793 * dtrace_probe_create() <-- Create a DTrace probe
1794 * dtrace_probe_lookup() <-- Lookup a DTrace probe based on its name
1795 * dtrace_probe_arg() <-- Return the probe argument for a specific probe
1796 * dtrace_probe() <-- Fire the specified probe
1797 *
1798 * 2.2 int dtrace_register(const char *name, const dtrace_pattr_t *pap,
1799 * uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg,
1800 * dtrace_provider_id_t *idp)
1801 *
1802 * 2.2.1 Overview
1803 *
1804 * dtrace_register() registers the calling provider with the DTrace
1805 * framework. It should generally be called by DTrace providers in their
1806 * attach(9E) entry point.
1807 *
1808 * 2.2.2 Arguments and Notes
1809 *
1810 * The first argument is the name of the provider. The second argument is a
1811 * pointer to the stability attributes for the provider. The third argument
1812 * is the privilege flags for the provider, and must be some combination of:
1813 *
1814 * DTRACE_PRIV_NONE <= All users may enable probes from this provider
1815 *
1816 * DTRACE_PRIV_PROC <= Any user with privilege of PRIV_DTRACE_PROC may
1817 * enable probes from this provider
1818 *
1819 * DTRACE_PRIV_USER <= Any user with privilege of PRIV_DTRACE_USER may
1820 * enable probes from this provider
1821 *
1822 * DTRACE_PRIV_KERNEL <= Any user with privilege of PRIV_DTRACE_KERNEL
1823 * may enable probes from this provider
1824 *
1825 * DTRACE_PRIV_OWNER <= This flag places an additional constraint on
1826 * the privilege requirements above. These probes
1827 * require either (a) a user ID matching the user
1828 * ID of the cred passed in the fourth argument
1829 * or (b) the PRIV_PROC_OWNER privilege.
1830 *
1831 * DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on
1832 * the privilege requirements above. These probes
1833 * require either (a) a zone ID matching the zone
1834 * ID of the cred passed in the fourth argument
1835 * or (b) the PRIV_PROC_ZONE privilege.
1836 *
1837 * Note that these flags designate the _visibility_ of the probes, not
1838 * the conditions under which they may or may not fire.
1839 *
1840 * The fourth argument is the credential that is associated with the
1841 * provider. This argument should be NULL if the privilege flags don't
1842 * include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER. If non-NULL, the
1843 * framework stashes the uid and zoneid represented by this credential
1844 * for use at probe-time, in implicit predicates. These limit visibility
1845 * of the probes to users and/or zones which have sufficient privilege to
1846 * access them.
1847 *
1848 * The fifth argument is a DTrace provider operations vector, which provides
1849 * the implementation for the Framework-to-Provider API. (See Section 1,
1850 * above.) This must be non-NULL, and each member must be non-NULL. The
1851 * exceptions to this are (1) the dtps_provide() and dtps_provide_module()
1852 * members (if the provider so desires, _one_ of these members may be left
1853 * NULL -- denoting that the provider only implements the other) and (2)
1854 * the dtps_suspend() and dtps_resume() members, which must either both be
1855 * NULL or both be non-NULL.
1856 *
1857 * The sixth argument is a cookie to be specified as the first argument for
1858 * each function in the Framework-to-Provider API. This argument may have
1859 * any value.
1860 *
1861 * The final argument is a pointer to dtrace_provider_id_t. If
1862 * dtrace_register() successfully completes, the provider identifier will be
1863 * stored in the memory pointed to be this argument. This argument must be
1864 * non-NULL.
1865 *
1866 * 2.2.3 Return value
1867 *
1868 * On success, dtrace_register() returns 0 and stores the new provider's
1869 * identifier into the memory pointed to by the idp argument. On failure,
1870 * dtrace_register() returns an errno:
1871 *
1872 * EINVAL The arguments passed to dtrace_register() were somehow invalid.
1873 * This may because a parameter that must be non-NULL was NULL,
1874 * because the name was invalid (either empty or an illegal
1875 * provider name) or because the attributes were invalid.
1876 *
1877 * No other failure code is returned.
1878 *
1879 * 2.2.4 Caller's context
1880 *
1881 * dtrace_register() may induce calls to dtrace_provide(); the provider must
1882 * hold no locks across dtrace_register() that may also be acquired by
1883 * dtrace_provide(). cpu_lock and mod_lock must not be held.
1884 *
1885 * 2.3 int dtrace_unregister(dtrace_provider_t id)
1886 *
1887 * 2.3.1 Overview
1888 *
1889 * Unregisters the specified provider from the DTrace framework. It should
1890 * generally be called by DTrace providers in their detach(9E) entry point.
1891 *
1892 * 2.3.2 Arguments and Notes
1893 *
1894 * The only argument is the provider identifier, as returned from a
1895 * successful call to dtrace_register(). As a result of calling
1896 * dtrace_unregister(), the DTrace framework will call back into the provider
1897 * via the dtps_destroy() entry point. Once dtrace_unregister() successfully
1898 * completes, however, the DTrace framework will no longer make calls through
1899 * the Framework-to-Provider API.
1900 *
1901 * 2.3.3 Return value
1902 *
1903 * On success, dtrace_unregister returns 0. On failure, dtrace_unregister()
1904 * returns an errno:
1905 *
1906 * EBUSY There are currently processes that have the DTrace pseudodevice
1907 * open, or there exists an anonymous enabling that hasn't yet
1908 * been claimed.
1909 *
1910 * No other failure code is returned.
1911 *
1912 * 2.3.4 Caller's context
1913 *
1914 * Because a call to dtrace_unregister() may induce calls through the
1915 * Framework-to-Provider API, the caller may not hold any lock across
1916 * dtrace_register() that is also acquired in any of the Framework-to-
1917 * Provider API functions. Additionally, mod_lock may not be held.
1918 *
1919 * 2.4 void dtrace_invalidate(dtrace_provider_id_t id)
1920 *
1921 * 2.4.1 Overview
1922 *
1923 * Invalidates the specified provider. All subsequent probe lookups for the
1924 * specified provider will fail, but its probes will not be removed.
1925 *
1926 * 2.4.2 Arguments and note
1927 *
1928 * The only argument is the provider identifier, as returned from a
1929 * successful call to dtrace_register(). In general, a provider's probes
1930 * always remain valid; dtrace_invalidate() is a mechanism for invalidating
1931 * an entire provider, regardless of whether or not probes are enabled or
1932 * not. Note that dtrace_invalidate() will _not_ prevent already enabled
1933 * probes from firing -- it will merely prevent any new enablings of the
1934 * provider's probes.
1935 *
1936 * 2.5 int dtrace_condense(dtrace_provider_id_t id)
1937 *
1938 * 2.5.1 Overview
1939 *
1940 * Removes all the unenabled probes for the given provider. This function is
1941 * not unlike dtrace_unregister(), except that it doesn't remove the
1942 * provider just as many of its associated probes as it can.
1943 *
1944 * 2.5.2 Arguments and Notes
1945 *
1946 * As with dtrace_unregister(), the sole argument is the provider identifier
1947 * as returned from a successful call to dtrace_register(). As a result of
1948 * calling dtrace_condense(), the DTrace framework will call back into the
1949 * given provider's dtps_destroy() entry point for each of the provider's
1950 * unenabled probes.
1951 *
1952 * 2.5.3 Return value
1953 *
1954 * Currently, dtrace_condense() always returns 0. However, consumers of this
1955 * function should check the return value as appropriate; its behavior may
1956 * change in the future.
1957 *
1958 * 2.5.4 Caller's context
1959 *
1960 * As with dtrace_unregister(), the caller may not hold any lock across
1961 * dtrace_condense() that is also acquired in the provider's entry points.
1962 * Also, mod_lock may not be held.
1963 *
1964 * 2.6 int dtrace_attached()
1965 *
1966 * 2.6.1 Overview
1967 *
1968 * Indicates whether or not DTrace has attached.
1969 *
1970 * 2.6.2 Arguments and Notes
1971 *
1972 * For most providers, DTrace makes initial contact beyond registration.
1973 * That is, once a provider has registered with DTrace, it waits to hear
1974 * from DTrace to create probes. However, some providers may wish to
1975 * proactively create probes without first being told by DTrace to do so.
1976 * If providers wish to do this, they must first call dtrace_attached() to
1977 * determine if DTrace itself has attached. If dtrace_attached() returns 0,
1978 * the provider must not make any other Provider-to-Framework API call.
1979 *
1980 * 2.6.3 Return value
1981 *
1982 * dtrace_attached() returns 1 if DTrace has attached, 0 otherwise.
1983 *
1984 * 2.7 int dtrace_probe_create(dtrace_provider_t id, const char *mod,
1985 * const char *func, const char *name, int aframes, void *arg)
1986 *
1987 * 2.7.1 Overview
1988 *
1989 * Creates a probe with specified module name, function name, and name.
1990 *
1991 * 2.7.2 Arguments and Notes
1992 *
1993 * The first argument is the provider identifier, as returned from a
1994 * successful call to dtrace_register(). The second, third, and fourth
1995 * arguments are the module name, function name, and probe name,
1996 * respectively. Of these, module name and function name may both be NULL
1997 * (in which case the probe is considered to be unanchored), or they may both
1998 * be non-NULL. The name must be non-NULL, and must point to a non-empty
1999 * string.
2000 *
2001 * The fifth argument is the number of artificial stack frames that will be
2002 * found on the stack when dtrace_probe() is called for the new probe. These
2003 * artificial frames will be automatically be pruned should the stack() or
2004 * stackdepth() functions be called as part of one of the probe's ECBs. If
2005 * the parameter doesn't add an artificial frame, this parameter should be
2006 * zero.
2007 *
2008 * The final argument is a probe argument that will be passed back to the
2009 * provider when a probe-specific operation is called. (e.g., via
2010 * dtps_enable(), dtps_disable(), etc.)
2011 *
2012 * Note that it is up to the provider to be sure that the probe that it
2013 * creates does not already exist -- if the provider is unsure of the probe's
2014 * existence, it should assure its absence with dtrace_probe_lookup() before
2015 * calling dtrace_probe_create().
2016 *
2017 * 2.7.3 Return value
2018 *
2019 * dtrace_probe_create() always succeeds, and always returns the identifier
2020 * of the newly-created probe.
2021 *
2022 * 2.7.4 Caller's context
2023 *
2024 * While dtrace_probe_create() is generally expected to be called from
2025 * dtps_provide() and/or dtps_provide_module(), it may be called from other
2026 * non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
2027 *
2028 * 2.8 dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod,
2029 * const char *func, const char *name)
2030 *
2031 * 2.8.1 Overview
2032 *
2033 * Looks up a probe based on provdider and one or more of module name,
2034 * function name and probe name.
2035 *
2036 * 2.8.2 Arguments and Notes
2037 *
2038 * The first argument is the provider identifier, as returned from a
2039 * successful call to dtrace_register(). The second, third, and fourth
2040 * arguments are the module name, function name, and probe name,
2041 * respectively. Any of these may be NULL; dtrace_probe_lookup() will return
2042 * the identifier of the first probe that is provided by the specified
2043 * provider and matches all of the non-NULL matching criteria.
2044 * dtrace_probe_lookup() is generally used by a provider to be check the
2045 * existence of a probe before creating it with dtrace_probe_create().
2046 *
2047 * 2.8.3 Return value
2048 *
2049 * If the probe exists, returns its identifier. If the probe does not exist,
2050 * return DTRACE_IDNONE.
2051 *
2052 * 2.8.4 Caller's context
2053 *
2054 * While dtrace_probe_lookup() is generally expected to be called from
2055 * dtps_provide() and/or dtps_provide_module(), it may also be called from
2056 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
2057 *
2058 * 2.9 void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe)
2059 *
2060 * 2.9.1 Overview
2061 *
2062 * Returns the probe argument associated with the specified probe.
2063 *
2064 * 2.9.2 Arguments and Notes
2065 *
2066 * The first argument is the provider identifier, as returned from a
2067 * successful call to dtrace_register(). The second argument is a probe
2068 * identifier, as returned from dtrace_probe_lookup() or
2069 * dtrace_probe_create(). This is useful if a probe has multiple
2070 * provider-specific components to it: the provider can create the probe
2071 * once with provider-specific state, and then add to the state by looking
2072 * up the probe based on probe identifier.
2073 *
2074 * 2.9.3 Return value
2075 *
2076 * Returns the argument associated with the specified probe. If the
2077 * specified probe does not exist, or if the specified probe is not provided
2078 * by the specified provider, NULL is returned.
2079 *
2080 * 2.9.4 Caller's context
2081 *
2082 * While dtrace_probe_arg() is generally expected to be called from
2083 * dtps_provide() and/or dtps_provide_module(), it may also be called from
2084 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held.
2085 *
2086 * 2.10 void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1,
2087 * uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
2088 *
2089 * 2.10.1 Overview
2090 *
2091 * The epicenter of DTrace: fires the specified probes with the specified
2092 * arguments.
2093 *
2094 * 2.10.2 Arguments and Notes
2095 *
2096 * The first argument is a probe identifier as returned by
2097 * dtrace_probe_create() or dtrace_probe_lookup(). The second through sixth
2098 * arguments are the values to which the D variables "arg0" through "arg4"
2099 * will be mapped.
2100 *
2101 * dtrace_probe() should be called whenever the specified probe has fired --
2102 * however the provider defines it.
2103 *
2104 * 2.10.3 Return value
2105 *
2106 * None.
2107 *
2108 * 2.10.4 Caller's context
2109 *
2110 * dtrace_probe() may be called in virtually any context: kernel, user,
2111 * interrupt, high-level interrupt, with arbitrary adaptive locks held, with
2112 * dispatcher locks held, with interrupts disabled, etc. The only latitude
2113 * that must be afforded to DTrace is the ability to make calls within
2114 * itself (and to its in-kernel subroutines) and the ability to access
2115 * arbitrary (but mapped) memory. On some platforms, this constrains
2116 * context. For example, on UltraSPARC, dtrace_probe() cannot be called
2117 * from any context in which TL is greater than zero. dtrace_probe() may
2118 * also not be called from any routine which may be called by dtrace_probe()
2119 * -- which includes functions in the DTrace framework and some in-kernel
2120 * DTrace subroutines. All such functions "dtrace_"; providers that
2121 * instrument the kernel arbitrarily should be sure to not instrument these
2122 * routines.
2123 */
2124typedef struct dtrace_pops {
2125 void (*dtps_provide)(void *arg, dtrace_probedesc_t *spec);
2126 void (*dtps_provide_module)(void *arg, modctl_t *mp);
2127 int (*dtps_enable)(void *arg, dtrace_id_t id, void *parg);
2128 void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg);
2129 void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg);
2130 void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg);
2131 void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg,
2132 dtrace_argdesc_t *desc);
2133 uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg,
2134 int argno, int aframes);
2135 int (*dtps_usermode)(void *arg, dtrace_id_t id, void *parg);
2136 void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg);
2137} dtrace_pops_t;
2138
2139#define DTRACE_MODE_KERNEL 0x01
2140#define DTRACE_MODE_USER 0x02
2141#define DTRACE_MODE_NOPRIV_DROP 0x10
2142#define DTRACE_MODE_NOPRIV_RESTRICT 0x20
2143#define DTRACE_MODE_LIMITEDPRIV_RESTRICT 0x40
2144
2145typedef uintptr_t dtrace_provider_id_t;
2146
2147extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t,
2148 cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *);
2149extern int dtrace_unregister(dtrace_provider_id_t);
2150extern int dtrace_condense(dtrace_provider_id_t);
2151extern void dtrace_invalidate(dtrace_provider_id_t);
2152extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, char *,
2153 char *, char *);
2154extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *,
2155 const char *, const char *, int, void *);
2156extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t);
2157extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1,
2158 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4);
2159
2160/*
2161 * DTrace Meta Provider API
2162 *
2163 * The following functions are implemented by the DTrace framework and are
2164 * used to implement meta providers. Meta providers plug into the DTrace
2165 * framework and are used to instantiate new providers on the fly. At
2166 * present, there is only one type of meta provider and only one meta
2167 * provider may be registered with the DTrace framework at a time. The
2168 * sole meta provider type provides user-land static tracing facilities
2169 * by taking meta probe descriptions and adding a corresponding provider
2170 * into the DTrace framework.
2171 *
2172 * 1 Framework-to-Provider
2173 *
2174 * 1.1 Overview
2175 *
2176 * The Framework-to-Provider API is represented by the dtrace_mops structure
2177 * that the meta provider passes to the framework when registering itself as
2178 * a meta provider. This structure consists of the following members:
2179 *
2180 * dtms_create_probe() <-- Add a new probe to a created provider
2181 * dtms_provide_pid() <-- Create a new provider for a given process
2182 * dtms_remove_pid() <-- Remove a previously created provider
2183 *
2184 * 1.2 void dtms_create_probe(void *arg, void *parg,
2185 * dtrace_helper_probedesc_t *probedesc);
2186 *
2187 * 1.2.1 Overview
2188 *
2189 * Called by the DTrace framework to create a new probe in a provider
2190 * created by this meta provider.
2191 *
2192 * 1.2.2 Arguments and notes
2193 *
2194 * The first argument is the cookie as passed to dtrace_meta_register().
2195 * The second argument is the provider cookie for the associated provider;
2196 * this is obtained from the return value of dtms_provide_pid(). The third
2197 * argument is the helper probe description.
2198 *
2199 * 1.2.3 Return value
2200 *
2201 * None
2202 *
2203 * 1.2.4 Caller's context
2204 *
2205 * dtms_create_probe() is called from either ioctl() or module load context
2206 * in the context of a newly-created provider (that is, a provider that
2207 * is a result of a call to dtms_provide_pid()). The DTrace framework is
2208 * locked in such a way that meta providers may not register or unregister,
2209 * such that no other thread can call into a meta provider operation and that
2210 * atomicity is assured with respect to meta provider operations across
2211 * dtms_provide_pid() and subsequent calls to dtms_create_probe().
2212 * The context is thus effectively single-threaded with respect to the meta
2213 * provider, and that the meta provider cannot call dtrace_meta_register()
2214 * or dtrace_meta_unregister(). However, the context is such that the
2215 * provider may (and is expected to) call provider-related DTrace provider
2216 * APIs including dtrace_probe_create().
2217 *
2218 * 1.3 void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov,
2219 * pid_t pid)
2220 *
2221 * 1.3.1 Overview
2222 *
2223 * Called by the DTrace framework to instantiate a new provider given the
2224 * description of the provider and probes in the mprov argument. The
2225 * meta provider should call dtrace_register() to insert the new provider
2226 * into the DTrace framework.
2227 *
2228 * 1.3.2 Arguments and notes
2229 *
2230 * The first argument is the cookie as passed to dtrace_meta_register().
2231 * The second argument is a pointer to a structure describing the new
2232 * helper provider. The third argument is the process identifier for
2233 * process associated with this new provider. Note that the name of the
2234 * provider as passed to dtrace_register() should be the contatenation of
2235 * the dtmpb_provname member of the mprov argument and the processs
2236 * identifier as a string.
2237 *
2238 * 1.3.3 Return value
2239 *
2240 * The cookie for the provider that the meta provider creates. This is
2241 * the same value that it passed to dtrace_register().
2242 *
2243 * 1.3.4 Caller's context
2244 *
2245 * dtms_provide_pid() is called from either ioctl() or module load context.
2246 * The DTrace framework is locked in such a way that meta providers may not
2247 * register or unregister. This means that the meta provider cannot call
2248 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2249 * is such that the provider may -- and is expected to -- call
2250 * provider-related DTrace provider APIs including dtrace_register().
2251 *
2252 * 1.4 void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov,
2253 * pid_t pid)
2254 *
2255 * 1.4.1 Overview
2256 *
2257 * Called by the DTrace framework to remove a provider that had previously
2258 * been instantiated via the dtms_provide_pid() entry point. The meta
2259 * provider need not remove the provider immediately, but this entry
2260 * point indicates that the provider should be removed as soon as possible
2261 * using the dtrace_unregister() API.
2262 *
2263 * 1.4.2 Arguments and notes
2264 *
2265 * The first argument is the cookie as passed to dtrace_meta_register().
2266 * The second argument is a pointer to a structure describing the helper
2267 * provider. The third argument is the process identifier for process
2268 * associated with this new provider.
2269 *
2270 * 1.4.3 Return value
2271 *
2272 * None
2273 *
2274 * 1.4.4 Caller's context
2275 *
2276 * dtms_remove_pid() is called from either ioctl() or exit() context.
2277 * The DTrace framework is locked in such a way that meta providers may not
2278 * register or unregister. This means that the meta provider cannot call
2279 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2280 * is such that the provider may -- and is expected to -- call
2281 * provider-related DTrace provider APIs including dtrace_unregister().
2282 */
2283typedef struct dtrace_helper_probedesc {
2284 char *dthpb_mod; /* probe module */
2285 char *dthpb_func; /* probe function */
2286 char *dthpb_name; /* probe name */
2287 uint64_t dthpb_base; /* base address */
2288 uint32_t *dthpb_offs; /* offsets array */
2289 uint32_t *dthpb_enoffs; /* is-enabled offsets array */
2290 uint32_t dthpb_noffs; /* offsets count */
2291 uint32_t dthpb_nenoffs; /* is-enabled offsets count */
2292 uint8_t *dthpb_args; /* argument mapping array */
2293 uint8_t dthpb_xargc; /* translated argument count */
2294 uint8_t dthpb_nargc; /* native argument count */
2295 char *dthpb_xtypes; /* translated types strings */
2296 char *dthpb_ntypes; /* native types strings */
2297} dtrace_helper_probedesc_t;
2298
2299typedef struct dtrace_helper_provdesc {
2300 char *dthpv_provname; /* provider name */
2301 dtrace_pattr_t dthpv_pattr; /* stability attributes */
2302} dtrace_helper_provdesc_t;
2303
2304typedef struct dtrace_mops {
2305 void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *);
2306 void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2307 void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2308} dtrace_mops_t;
2309
2310typedef uintptr_t dtrace_meta_provider_id_t;
2311
2312extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *,
2313 dtrace_meta_provider_id_t *);
2314extern int dtrace_meta_unregister(dtrace_meta_provider_id_t);
2315
2316/*
2317 * DTrace Kernel Hooks
2318 *
2319 * The following functions are implemented by the base kernel and form a set of
2320 * hooks used by the DTrace framework. DTrace hooks are implemented in either
2321 * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a
2322 * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform.
2323 */
2324
2325typedef enum dtrace_vtime_state {
2326 DTRACE_VTIME_INACTIVE = 0, /* No DTrace, no TNF */
2327 DTRACE_VTIME_ACTIVE, /* DTrace virtual time, no TNF */
2328 DTRACE_VTIME_INACTIVE_TNF, /* No DTrace, TNF active */
2329 DTRACE_VTIME_ACTIVE_TNF /* DTrace virtual time _and_ TNF */
2330} dtrace_vtime_state_t;
2331
2332#ifdef illumos
2333extern dtrace_vtime_state_t dtrace_vtime_active;
2334#endif
2335extern void dtrace_vtime_switch(kthread_t *next);
2336extern void dtrace_vtime_enable_tnf(void);
2337extern void dtrace_vtime_disable_tnf(void);
2338extern void dtrace_vtime_enable(void);
2339extern void dtrace_vtime_disable(void);
2340
2341struct regs;
2342struct reg;
2343
2344#ifdef illumos
2345extern int (*dtrace_pid_probe_ptr)(struct reg *);
2346extern int (*dtrace_return_probe_ptr)(struct reg *);
2347extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *);
2348extern void (*dtrace_fasttrap_exec_ptr)(proc_t *);
2349extern void (*dtrace_fasttrap_exit_ptr)(proc_t *);
2350extern void dtrace_fasttrap_fork(proc_t *, proc_t *);
2351#endif
2352
2353typedef uintptr_t dtrace_icookie_t;
2354typedef void (*dtrace_xcall_t)(void *);
2355
2356extern dtrace_icookie_t dtrace_interrupt_disable(void);
2357extern void dtrace_interrupt_enable(dtrace_icookie_t);
2358
2359extern void dtrace_membar_producer(void);
2360extern void dtrace_membar_consumer(void);
2361
2362extern void (*dtrace_cpu_init)(processorid_t);
2363#ifdef illumos
2364extern void (*dtrace_modload)(modctl_t *);
2365extern void (*dtrace_modunload)(modctl_t *);
2366#endif
2367extern void (*dtrace_helpers_cleanup)(void);
2368extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child);
2369extern void (*dtrace_cpustart_init)(void);
2370extern void (*dtrace_cpustart_fini)(void);
2371extern void (*dtrace_closef)(void);
2372
2373extern void (*dtrace_debugger_init)(void);
2374extern void (*dtrace_debugger_fini)(void);
2375extern dtrace_cacheid_t dtrace_predcache_id;
2376
2377#ifdef illumos
2378extern hrtime_t dtrace_gethrtime(void);
2379#else
2380void dtrace_debug_printf(const char *, ...) __printflike(1, 2);
2381#endif
2382extern void dtrace_sync(void);
2383extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t));
2384extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *);
2385extern void dtrace_vpanic(const char *, __va_list);
2386extern void dtrace_panic(const char *, ...);
2387
2388extern int dtrace_safe_defer_signal(void);
2389extern void dtrace_safe_synchronous_signal(void);
2390
2391extern int dtrace_mach_aframes(void);
2392
2393#if defined(__i386) || defined(__amd64)
2394extern int dtrace_instr_size(uchar_t *instr);
2395extern int dtrace_instr_size_isa(uchar_t *, model_t, int *);
2396extern void dtrace_invop_callsite(void);
2397#endif
2398extern void dtrace_invop_add(int (*)(uintptr_t, struct trapframe *, uintptr_t));
2399extern void dtrace_invop_remove(int (*)(uintptr_t, struct trapframe *,
2400 uintptr_t));
2401
2402#ifdef __sparc
2403extern int dtrace_blksuword32(uintptr_t, uint32_t *, int);
2404extern void dtrace_getfsr(uint64_t *);
2405#endif
2406
2407#ifndef illumos
2408extern void dtrace_helpers_duplicate(proc_t *, proc_t *);
2409extern void dtrace_helpers_destroy(proc_t *);
2410#endif
2411
2412#define DTRACE_CPUFLAG_ISSET(flag) \
2413 (cpu_core[cpu_number()].cpuc_dtrace_flags & (flag))
2414
2415#define DTRACE_CPUFLAG_SET(flag) \
2416 (cpu_core[cpu_number()].cpuc_dtrace_flags |= (flag))
2417
2418#define DTRACE_CPUFLAG_CLEAR(flag) \
2419 (cpu_core[cpu_number()].cpuc_dtrace_flags &= ~(flag))
2420
2421#endif /* _KERNEL */
2422
2423#endif /* _ASM */
2424
2425#if defined(__i386) || defined(__amd64)
2426
2427#define DTRACE_INVOP_PUSHL_EBP 1
2428#define DTRACE_INVOP_PUSHQ_RBP DTRACE_INVOP_PUSHL_EBP
2429#define DTRACE_INVOP_POPL_EBP 2
2430#define DTRACE_INVOP_POPQ_RBP DTRACE_INVOP_POPL_EBP
2431#define DTRACE_INVOP_LEAVE 3
2432#define DTRACE_INVOP_NOP 4
2433#define DTRACE_INVOP_RET 5
2434
2435#elif defined(__powerpc__)
2436
2437#define DTRACE_INVOP_RET 1
2438#define DTRACE_INVOP_BCTR 2
2439#define DTRACE_INVOP_BLR 3
2440#define DTRACE_INVOP_JUMP 4
2441#define DTRACE_INVOP_MFLR_R0 5
2442#define DTRACE_INVOP_NOP 6
2443
2444#elif defined(__arm__)
2445
2446#define DTRACE_INVOP_SHIFT 4
2447#define DTRACE_INVOP_MASK ((1 << DTRACE_INVOP_SHIFT) - 1)
2448#define DTRACE_INVOP_DATA(x) ((x) >> DTRACE_INVOP_SHIFT)
2449
2450#define DTRACE_INVOP_PUSHM 1
2451#define DTRACE_INVOP_POPM 2
2452#define DTRACE_INVOP_B 3
2453
2454#define DTRACE_INVOP_MOV_IP_SP 4
2455#define DTRACE_INVOP_BX_LR 5
2456#define DTRACE_INVOP_MOV_PC_LR 6
2457#define DTRACE_INVOP_LDM 7
2458#define DTRACE_INVOP_LDR_IMM 8
2459#define DTRACE_INVOP_MOVW 9
2460#define DTRACE_INVOP_MOV_IMM 10
2461#define DTRACE_INVOP_CMP_IMM 11
2462
2463#elif defined(__aarch64__)
2464
2465#define INSN_SIZE 4
2466
2467#define B_MASK 0xff000000
2468#define B_DATA_MASK 0x00ffffff
2469#define B_INSTR 0x14000000
2470
2471#define RET_INSTR 0xd65f03c0
2472
2473#define LDP_STP_MASK 0xffc00000
2474#define STP_32 0x29800000
2475#define STP_64 0xa9800000
2476#define LDP_32 0x28c00000
2477#define LDP_64 0xa8c00000
2478#define LDP_STP_PREIND (1 << 24)
2479#define LDP_STP_DIR (1 << 22) /* Load instruction */
2480#define ARG1_SHIFT 0
2481#define ARG1_MASK 0x1f
2482#define ARG2_SHIFT 10
2483#define ARG2_MASK 0x1f
2484#define OFFSET_SHIFT 15
2485#define OFFSET_SIZE 7
2486#if 0
2487/* conflicts with lzjb.c */
2488#define OFFSET_MASK ((1 << OFFSET_SIZE) - 1)
2489#endif
2490
2491#define DTRACE_INVOP_PUSHM 1
2492#define DTRACE_INVOP_RET 2
2493#define DTRACE_INVOP_B 3
2494
2495#elif defined(__mips__)
2496
2497#define INSN_SIZE 4
2498
2499/* Load/Store double RA to/from SP */
2500#define LDSD_RA_SP_MASK 0xffff0000
2501#define LDSD_DATA_MASK 0x0000ffff
2502#define SD_RA_SP 0xffbf0000
2503#define LD_RA_SP 0xdfbf0000
2504
2505#define DTRACE_INVOP_SD 1
2506#define DTRACE_INVOP_LD 2
2507
2508#elif defined(__riscv__)
2509
2510#define SD_RA_SP_MASK 0x01fff07f
2511#define SD_RA_SP 0x00113023
2512
2513#define DTRACE_INVOP_SD 1
2514#define DTRACE_INVOP_RET 2
2515#define DTRACE_INVOP_NOP 3
2516
2517#endif
2518
2519#ifdef __cplusplus
2520}
2521#endif
2522
2523#endif /* _SYS_DTRACE_H */
2524