1 | /* |
2 | * CDDL HEADER START |
3 | * |
4 | * The contents of this file are subject to the terms of the |
5 | * Common Development and Distribution License (the "License"). |
6 | * You may not use this file except in compliance with the License. |
7 | * |
8 | * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE |
9 | * or http://www.opensolaris.org/os/licensing. |
10 | * See the License for the specific language governing permissions |
11 | * and limitations under the License. |
12 | * |
13 | * When distributing Covered Code, include this CDDL HEADER in each |
14 | * file and include the License file at usr/src/OPENSOLARIS.LICENSE. |
15 | * If applicable, add the following below this CDDL HEADER, with the |
16 | * fields enclosed by brackets "[]" replaced with your own identifying |
17 | * information: Portions Copyright [yyyy] [name of copyright owner] |
18 | * |
19 | * CDDL HEADER END |
20 | */ |
21 | |
22 | /* |
23 | * Copyright 2008 Sun Microsystems, Inc. All rights reserved. |
24 | * Use is subject to license terms. |
25 | */ |
26 | |
27 | /* |
28 | * Copyright (c) 2013, Joyent, Inc. All rights reserved. |
29 | * Copyright (c) 2012 by Delphix. All rights reserved. |
30 | */ |
31 | |
32 | #include <stdlib.h> |
33 | #include <strings.h> |
34 | #include <errno.h> |
35 | #include <unistd.h> |
36 | #include <dt_impl.h> |
37 | #include <assert.h> |
38 | #ifdef illumos |
39 | #include <alloca.h> |
40 | #else |
41 | #include <sys/sysctl.h> |
42 | #include <libproc_compat.h> |
43 | #endif |
44 | #include <limits.h> |
45 | |
46 | #define DTRACE_AHASHSIZE 32779 /* big 'ol prime */ |
47 | |
48 | /* |
49 | * Because qsort(3C) does not allow an argument to be passed to a comparison |
50 | * function, the variables that affect comparison must regrettably be global; |
51 | * they are protected by a global static lock, dt_qsort_lock. |
52 | */ |
53 | static pthread_mutex_t dt_qsort_lock = PTHREAD_MUTEX_INITIALIZER; |
54 | |
55 | static int dt_revsort; |
56 | static int dt_keysort; |
57 | static int dt_keypos; |
58 | |
59 | #define DT_LESSTHAN (dt_revsort == 0 ? -1 : 1) |
60 | #define DT_GREATERTHAN (dt_revsort == 0 ? 1 : -1) |
61 | |
62 | static void |
63 | dt_aggregate_count(int64_t *existing, int64_t *new, size_t size) |
64 | { |
65 | uint_t i; |
66 | |
67 | for (i = 0; i < size / sizeof (int64_t); i++) |
68 | existing[i] = existing[i] + new[i]; |
69 | } |
70 | |
71 | static int |
72 | dt_aggregate_countcmp(int64_t *lhs, int64_t *rhs) |
73 | { |
74 | int64_t lvar = *lhs; |
75 | int64_t rvar = *rhs; |
76 | |
77 | if (lvar < rvar) |
78 | return (DT_LESSTHAN); |
79 | |
80 | if (lvar > rvar) |
81 | return (DT_GREATERTHAN); |
82 | |
83 | return (0); |
84 | } |
85 | |
86 | /*ARGSUSED*/ |
87 | static void |
88 | dt_aggregate_min(int64_t *existing, int64_t *new, size_t size) |
89 | { |
90 | if (*new < *existing) |
91 | *existing = *new; |
92 | } |
93 | |
94 | /*ARGSUSED*/ |
95 | static void |
96 | dt_aggregate_max(int64_t *existing, int64_t *new, size_t size) |
97 | { |
98 | if (*new > *existing) |
99 | *existing = *new; |
100 | } |
101 | |
102 | static int |
103 | dt_aggregate_averagecmp(int64_t *lhs, int64_t *rhs) |
104 | { |
105 | int64_t lavg = lhs[0] ? (lhs[1] / lhs[0]) : 0; |
106 | int64_t ravg = rhs[0] ? (rhs[1] / rhs[0]) : 0; |
107 | |
108 | if (lavg < ravg) |
109 | return (DT_LESSTHAN); |
110 | |
111 | if (lavg > ravg) |
112 | return (DT_GREATERTHAN); |
113 | |
114 | return (0); |
115 | } |
116 | |
117 | static int |
118 | dt_aggregate_stddevcmp(int64_t *lhs, int64_t *rhs) |
119 | { |
120 | uint64_t lsd = dt_stddev((uint64_t *)lhs, 1); |
121 | uint64_t rsd = dt_stddev((uint64_t *)rhs, 1); |
122 | |
123 | if (lsd < rsd) |
124 | return (DT_LESSTHAN); |
125 | |
126 | if (lsd > rsd) |
127 | return (DT_GREATERTHAN); |
128 | |
129 | return (0); |
130 | } |
131 | |
132 | /*ARGSUSED*/ |
133 | static void |
134 | dt_aggregate_lquantize(int64_t *existing, int64_t *new, size_t size) |
135 | { |
136 | int64_t arg = *existing++; |
137 | uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); |
138 | int i; |
139 | |
140 | for (i = 0; i <= levels + 1; i++) |
141 | existing[i] = existing[i] + new[i + 1]; |
142 | } |
143 | |
144 | static long double |
145 | dt_aggregate_lquantizedsum(int64_t *lquanta) |
146 | { |
147 | int64_t arg = *lquanta++; |
148 | int32_t base = DTRACE_LQUANTIZE_BASE(arg); |
149 | uint16_t step = DTRACE_LQUANTIZE_STEP(arg); |
150 | uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg), i; |
151 | long double total = (long double)lquanta[0] * (long double)(base - 1); |
152 | |
153 | for (i = 0; i < levels; base += step, i++) |
154 | total += (long double)lquanta[i + 1] * (long double)base; |
155 | |
156 | return (total + (long double)lquanta[levels + 1] * |
157 | (long double)(base + 1)); |
158 | } |
159 | |
160 | static int64_t |
161 | dt_aggregate_lquantizedzero(int64_t *lquanta) |
162 | { |
163 | int64_t arg = *lquanta++; |
164 | int32_t base = DTRACE_LQUANTIZE_BASE(arg); |
165 | uint16_t step = DTRACE_LQUANTIZE_STEP(arg); |
166 | uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg), i; |
167 | |
168 | if (base - 1 == 0) |
169 | return (lquanta[0]); |
170 | |
171 | for (i = 0; i < levels; base += step, i++) { |
172 | if (base != 0) |
173 | continue; |
174 | |
175 | return (lquanta[i + 1]); |
176 | } |
177 | |
178 | if (base + 1 == 0) |
179 | return (lquanta[levels + 1]); |
180 | |
181 | return (0); |
182 | } |
183 | |
184 | static int |
185 | dt_aggregate_lquantizedcmp(int64_t *lhs, int64_t *rhs) |
186 | { |
187 | long double lsum = dt_aggregate_lquantizedsum(lhs); |
188 | long double rsum = dt_aggregate_lquantizedsum(rhs); |
189 | int64_t lzero = 0, rzero = 0; |
190 | |
191 | if (lsum < rsum) |
192 | return (DT_LESSTHAN); |
193 | |
194 | if (lsum > rsum) |
195 | return (DT_GREATERTHAN); |
196 | |
197 | /* |
198 | * If they're both equal, then we will compare based on the weights at |
199 | * zero. If the weights at zero are equal (or if zero is not within |
200 | * the range of the linear quantization), then this will be judged a |
201 | * tie and will be resolved based on the key comparison. |
202 | */ |
203 | lzero = dt_aggregate_lquantizedzero(lhs); |
204 | rzero = dt_aggregate_lquantizedzero(rhs); |
205 | |
206 | if (lzero < rzero) |
207 | return (DT_LESSTHAN); |
208 | |
209 | if (lzero > rzero) |
210 | return (DT_GREATERTHAN); |
211 | |
212 | return (0); |
213 | } |
214 | |
215 | static void |
216 | dt_aggregate_llquantize(int64_t *existing, int64_t *new, size_t size) |
217 | { |
218 | int i; |
219 | |
220 | for (i = 1; i < size / sizeof (int64_t); i++) |
221 | existing[i] = existing[i] + new[i]; |
222 | } |
223 | |
224 | static long double |
225 | dt_aggregate_llquantizedsum(int64_t *llquanta) |
226 | { |
227 | int64_t arg = *llquanta++; |
228 | uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg); |
229 | uint16_t low = DTRACE_LLQUANTIZE_LOW(arg); |
230 | uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg); |
231 | uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); |
232 | int bin = 0, order; |
233 | int64_t value = 1, next, step; |
234 | long double total; |
235 | |
236 | assert(nsteps >= factor); |
237 | assert(nsteps % factor == 0); |
238 | |
239 | for (order = 0; order < low; order++) |
240 | value *= factor; |
241 | |
242 | total = (long double)llquanta[bin++] * (long double)(value - 1); |
243 | |
244 | next = value * factor; |
245 | step = next > nsteps ? next / nsteps : 1; |
246 | |
247 | while (order <= high) { |
248 | assert(value < next); |
249 | total += (long double)llquanta[bin++] * (long double)(value); |
250 | |
251 | if ((value += step) != next) |
252 | continue; |
253 | |
254 | next = value * factor; |
255 | step = next > nsteps ? next / nsteps : 1; |
256 | order++; |
257 | } |
258 | |
259 | return (total + (long double)llquanta[bin] * (long double)value); |
260 | } |
261 | |
262 | static int |
263 | dt_aggregate_llquantizedcmp(int64_t *lhs, int64_t *rhs) |
264 | { |
265 | long double lsum = dt_aggregate_llquantizedsum(lhs); |
266 | long double rsum = dt_aggregate_llquantizedsum(rhs); |
267 | int64_t lzero, rzero; |
268 | |
269 | if (lsum < rsum) |
270 | return (DT_LESSTHAN); |
271 | |
272 | if (lsum > rsum) |
273 | return (DT_GREATERTHAN); |
274 | |
275 | /* |
276 | * If they're both equal, then we will compare based on the weights at |
277 | * zero. If the weights at zero are equal, then this will be judged a |
278 | * tie and will be resolved based on the key comparison. |
279 | */ |
280 | lzero = lhs[1]; |
281 | rzero = rhs[1]; |
282 | |
283 | if (lzero < rzero) |
284 | return (DT_LESSTHAN); |
285 | |
286 | if (lzero > rzero) |
287 | return (DT_GREATERTHAN); |
288 | |
289 | return (0); |
290 | } |
291 | |
292 | static int |
293 | dt_aggregate_quantizedcmp(int64_t *lhs, int64_t *rhs) |
294 | { |
295 | int nbuckets = DTRACE_QUANTIZE_NBUCKETS; |
296 | long double ltotal = 0, rtotal = 0; |
297 | int64_t lzero = 0, rzero = 0; |
298 | uint_t i; |
299 | |
300 | for (i = 0; i < nbuckets; i++) { |
301 | int64_t bucketval = DTRACE_QUANTIZE_BUCKETVAL(i); |
302 | |
303 | if (bucketval == 0) { |
304 | lzero = lhs[i]; |
305 | rzero = rhs[i]; |
306 | } |
307 | |
308 | ltotal += (long double)bucketval * (long double)lhs[i]; |
309 | rtotal += (long double)bucketval * (long double)rhs[i]; |
310 | } |
311 | |
312 | if (ltotal < rtotal) |
313 | return (DT_LESSTHAN); |
314 | |
315 | if (ltotal > rtotal) |
316 | return (DT_GREATERTHAN); |
317 | |
318 | /* |
319 | * If they're both equal, then we will compare based on the weights at |
320 | * zero. If the weights at zero are equal, then this will be judged a |
321 | * tie and will be resolved based on the key comparison. |
322 | */ |
323 | if (lzero < rzero) |
324 | return (DT_LESSTHAN); |
325 | |
326 | if (lzero > rzero) |
327 | return (DT_GREATERTHAN); |
328 | |
329 | return (0); |
330 | } |
331 | |
332 | static void |
333 | dt_aggregate_usym(dtrace_hdl_t *dtp, uint64_t *data) |
334 | { |
335 | uint64_t pid = data[0]; |
336 | uint64_t *pc = &data[1]; |
337 | struct ps_prochandle *P; |
338 | GElf_Sym sym; |
339 | |
340 | if (dtp->dt_vector != NULL) |
341 | return; |
342 | |
343 | if ((P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0)) == NULL) |
344 | return; |
345 | |
346 | dt_proc_lock(dtp, P); |
347 | |
348 | if (Plookup_by_addr(P, *pc, NULL, 0, &sym) == 0) |
349 | *pc = sym.st_value; |
350 | |
351 | dt_proc_unlock(dtp, P); |
352 | dt_proc_release(dtp, P); |
353 | } |
354 | |
355 | static void |
356 | dt_aggregate_umod(dtrace_hdl_t *dtp, uint64_t *data) |
357 | { |
358 | uint64_t pid = data[0]; |
359 | uint64_t *pc = &data[1]; |
360 | struct ps_prochandle *P; |
361 | const prmap_t *map; |
362 | |
363 | if (dtp->dt_vector != NULL) |
364 | return; |
365 | |
366 | if ((P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0)) == NULL) |
367 | return; |
368 | |
369 | dt_proc_lock(dtp, P); |
370 | |
371 | if ((map = Paddr_to_map(P, *pc)) != NULL) |
372 | *pc = map->pr_vaddr; |
373 | |
374 | dt_proc_unlock(dtp, P); |
375 | dt_proc_release(dtp, P); |
376 | } |
377 | |
378 | static void |
379 | dt_aggregate_sym(dtrace_hdl_t *dtp, uint64_t *data) |
380 | { |
381 | GElf_Sym sym; |
382 | uint64_t *pc = data; |
383 | |
384 | if (dtrace_lookup_by_addr(dtp, *pc, &sym, NULL) == 0) |
385 | *pc = sym.st_value; |
386 | } |
387 | |
388 | static void |
389 | dt_aggregate_mod(dtrace_hdl_t *dtp, uint64_t *data) |
390 | { |
391 | uint64_t *pc = data; |
392 | dt_module_t *dmp; |
393 | |
394 | if (dtp->dt_vector != NULL) { |
395 | /* |
396 | * We don't have a way of just getting the module for a |
397 | * vectored open, and it doesn't seem to be worth defining |
398 | * one. This means that use of mod() won't get true |
399 | * aggregation in the postmortem case (some modules may |
400 | * appear more than once in aggregation output). It seems |
401 | * unlikely that anyone will ever notice or care... |
402 | */ |
403 | return; |
404 | } |
405 | |
406 | for (dmp = dt_list_next(&dtp->dt_modlist); dmp != NULL; |
407 | dmp = dt_list_next(dmp)) { |
408 | if (*pc - dmp->dm_text_va < dmp->dm_text_size) { |
409 | *pc = dmp->dm_text_va; |
410 | return; |
411 | } |
412 | } |
413 | } |
414 | |
415 | static dtrace_aggvarid_t |
416 | dt_aggregate_aggvarid(dt_ahashent_t *ent) |
417 | { |
418 | dtrace_aggdesc_t *agg = ent->dtahe_data.dtada_desc; |
419 | caddr_t data = ent->dtahe_data.dtada_data; |
420 | dtrace_recdesc_t *rec = agg->dtagd_rec; |
421 | |
422 | /* |
423 | * First, we'll check the variable ID in the aggdesc. If it's valid, |
424 | * we'll return it. If not, we'll use the compiler-generated ID |
425 | * present as the first record. |
426 | */ |
427 | if (agg->dtagd_varid != DTRACE_AGGVARIDNONE) |
428 | return (agg->dtagd_varid); |
429 | |
430 | agg->dtagd_varid = *((dtrace_aggvarid_t *)(uintptr_t)(data + |
431 | rec->dtrd_offset)); |
432 | |
433 | return (agg->dtagd_varid); |
434 | } |
435 | |
436 | |
437 | static int |
438 | dt_aggregate_snap_cpu(dtrace_hdl_t *dtp, processorid_t cpu) |
439 | { |
440 | dtrace_epid_t id; |
441 | uint64_t hashval; |
442 | size_t offs, roffs, size, ndx; |
443 | int i, j, rval; |
444 | caddr_t addr, data; |
445 | dtrace_recdesc_t *rec; |
446 | dt_aggregate_t *agp = &dtp->dt_aggregate; |
447 | dtrace_aggdesc_t *agg; |
448 | dt_ahash_t *hash = &agp->dtat_hash; |
449 | dt_ahashent_t *h; |
450 | dtrace_bufdesc_t b = agp->dtat_buf, *buf = &b; |
451 | dtrace_aggdata_t *aggdata; |
452 | int flags = agp->dtat_flags; |
453 | |
454 | buf->dtbd_cpu = cpu; |
455 | |
456 | #ifdef illumos |
457 | if (dt_ioctl(dtp, DTRACEIOC_AGGSNAP, buf) == -1) { |
458 | #else |
459 | if (dt_ioctl(dtp, DTRACEIOC_AGGSNAP, &buf) == -1) { |
460 | #endif |
461 | if (errno == ENOENT) { |
462 | /* |
463 | * If that failed with ENOENT, it may be because the |
464 | * CPU was unconfigured. This is okay; we'll just |
465 | * do nothing but return success. |
466 | */ |
467 | return (0); |
468 | } |
469 | |
470 | return (dt_set_errno(dtp, errno)); |
471 | } |
472 | |
473 | if (buf->dtbd_drops != 0) { |
474 | if (dt_handle_cpudrop(dtp, cpu, |
475 | DTRACEDROP_AGGREGATION, buf->dtbd_drops) == -1) |
476 | return (-1); |
477 | } |
478 | |
479 | if (buf->dtbd_size == 0) |
480 | return (0); |
481 | |
482 | if (hash->dtah_hash == NULL) { |
483 | size_t size; |
484 | |
485 | hash->dtah_size = DTRACE_AHASHSIZE; |
486 | size = hash->dtah_size * sizeof (dt_ahashent_t *); |
487 | |
488 | if ((hash->dtah_hash = malloc(size)) == NULL) |
489 | return (dt_set_errno(dtp, EDT_NOMEM)); |
490 | |
491 | bzero(hash->dtah_hash, size); |
492 | } |
493 | |
494 | for (offs = 0; offs < buf->dtbd_size; ) { |
495 | /* |
496 | * We're guaranteed to have an ID. |
497 | */ |
498 | id = *((dtrace_epid_t *)((uintptr_t)buf->dtbd_data + |
499 | (uintptr_t)offs)); |
500 | |
501 | if (id == DTRACE_AGGIDNONE) { |
502 | /* |
503 | * This is filler to assure proper alignment of the |
504 | * next record; we simply ignore it. |
505 | */ |
506 | offs += sizeof (id); |
507 | continue; |
508 | } |
509 | |
510 | if ((rval = dt_aggid_lookup(dtp, id, &agg)) != 0) |
511 | return (rval); |
512 | |
513 | addr = buf->dtbd_data + offs; |
514 | size = agg->dtagd_size; |
515 | hashval = 0; |
516 | |
517 | for (j = 0; j < agg->dtagd_nrecs - 1; j++) { |
518 | rec = &agg->dtagd_rec[j]; |
519 | roffs = rec->dtrd_offset; |
520 | |
521 | switch (rec->dtrd_action) { |
522 | case DTRACEACT_USYM: |
523 | dt_aggregate_usym(dtp, |
524 | /* LINTED - alignment */ |
525 | (uint64_t *)&addr[roffs]); |
526 | break; |
527 | |
528 | case DTRACEACT_UMOD: |
529 | dt_aggregate_umod(dtp, |
530 | /* LINTED - alignment */ |
531 | (uint64_t *)&addr[roffs]); |
532 | break; |
533 | |
534 | case DTRACEACT_SYM: |
535 | /* LINTED - alignment */ |
536 | dt_aggregate_sym(dtp, (uint64_t *)&addr[roffs]); |
537 | break; |
538 | |
539 | case DTRACEACT_MOD: |
540 | /* LINTED - alignment */ |
541 | dt_aggregate_mod(dtp, (uint64_t *)&addr[roffs]); |
542 | break; |
543 | |
544 | default: |
545 | break; |
546 | } |
547 | |
548 | for (i = 0; i < rec->dtrd_size; i++) |
549 | hashval += addr[roffs + i]; |
550 | } |
551 | |
552 | ndx = hashval % hash->dtah_size; |
553 | |
554 | for (h = hash->dtah_hash[ndx]; h != NULL; h = h->dtahe_next) { |
555 | if (h->dtahe_hashval != hashval) |
556 | continue; |
557 | |
558 | if (h->dtahe_size != size) |
559 | continue; |
560 | |
561 | aggdata = &h->dtahe_data; |
562 | data = aggdata->dtada_data; |
563 | |
564 | for (j = 0; j < agg->dtagd_nrecs - 1; j++) { |
565 | rec = &agg->dtagd_rec[j]; |
566 | roffs = rec->dtrd_offset; |
567 | |
568 | for (i = 0; i < rec->dtrd_size; i++) |
569 | if (addr[roffs + i] != data[roffs + i]) |
570 | goto hashnext; |
571 | } |
572 | |
573 | /* |
574 | * We found it. Now we need to apply the aggregating |
575 | * action on the data here. |
576 | */ |
577 | rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1]; |
578 | roffs = rec->dtrd_offset; |
579 | /* LINTED - alignment */ |
580 | h->dtahe_aggregate((int64_t *)&data[roffs], |
581 | /* LINTED - alignment */ |
582 | (int64_t *)&addr[roffs], rec->dtrd_size); |
583 | |
584 | /* |
585 | * If we're keeping per CPU data, apply the aggregating |
586 | * action there as well. |
587 | */ |
588 | if (aggdata->dtada_percpu != NULL) { |
589 | data = aggdata->dtada_percpu[cpu]; |
590 | |
591 | /* LINTED - alignment */ |
592 | h->dtahe_aggregate((int64_t *)data, |
593 | /* LINTED - alignment */ |
594 | (int64_t *)&addr[roffs], rec->dtrd_size); |
595 | } |
596 | |
597 | goto bufnext; |
598 | hashnext: |
599 | continue; |
600 | } |
601 | |
602 | /* |
603 | * If we're here, we couldn't find an entry for this record. |
604 | */ |
605 | if ((h = malloc(sizeof (dt_ahashent_t))) == NULL) |
606 | return (dt_set_errno(dtp, EDT_NOMEM)); |
607 | bzero(h, sizeof (dt_ahashent_t)); |
608 | aggdata = &h->dtahe_data; |
609 | |
610 | if ((aggdata->dtada_data = malloc(size)) == NULL) { |
611 | free(h); |
612 | return (dt_set_errno(dtp, EDT_NOMEM)); |
613 | } |
614 | |
615 | bcopy(addr, aggdata->dtada_data, size); |
616 | aggdata->dtada_size = size; |
617 | aggdata->dtada_desc = agg; |
618 | aggdata->dtada_handle = dtp; |
619 | (void) dt_epid_lookup(dtp, agg->dtagd_epid, |
620 | &aggdata->dtada_edesc, &aggdata->dtada_pdesc); |
621 | aggdata->dtada_normal = 1; |
622 | |
623 | h->dtahe_hashval = hashval; |
624 | h->dtahe_size = size; |
625 | (void) dt_aggregate_aggvarid(h); |
626 | |
627 | rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1]; |
628 | |
629 | if (flags & DTRACE_A_PERCPU) { |
630 | int max_cpus = agp->dtat_maxcpu; |
631 | caddr_t *percpu = malloc(max_cpus * sizeof (caddr_t)); |
632 | |
633 | if (percpu == NULL) { |
634 | free(aggdata->dtada_data); |
635 | free(h); |
636 | return (dt_set_errno(dtp, EDT_NOMEM)); |
637 | } |
638 | |
639 | for (j = 0; j < max_cpus; j++) { |
640 | percpu[j] = malloc(rec->dtrd_size); |
641 | |
642 | if (percpu[j] == NULL) { |
643 | while (--j >= 0) |
644 | free(percpu[j]); |
645 | |
646 | free(aggdata->dtada_data); |
647 | free(h); |
648 | return (dt_set_errno(dtp, EDT_NOMEM)); |
649 | } |
650 | |
651 | if (j == cpu) { |
652 | bcopy(&addr[rec->dtrd_offset], |
653 | percpu[j], rec->dtrd_size); |
654 | } else { |
655 | bzero(percpu[j], rec->dtrd_size); |
656 | } |
657 | } |
658 | |
659 | aggdata->dtada_percpu = percpu; |
660 | } |
661 | |
662 | switch (rec->dtrd_action) { |
663 | case DTRACEAGG_MIN: |
664 | h->dtahe_aggregate = dt_aggregate_min; |
665 | break; |
666 | |
667 | case DTRACEAGG_MAX: |
668 | h->dtahe_aggregate = dt_aggregate_max; |
669 | break; |
670 | |
671 | case DTRACEAGG_LQUANTIZE: |
672 | h->dtahe_aggregate = dt_aggregate_lquantize; |
673 | break; |
674 | |
675 | case DTRACEAGG_LLQUANTIZE: |
676 | h->dtahe_aggregate = dt_aggregate_llquantize; |
677 | break; |
678 | |
679 | case DTRACEAGG_COUNT: |
680 | case DTRACEAGG_SUM: |
681 | case DTRACEAGG_AVG: |
682 | case DTRACEAGG_STDDEV: |
683 | case DTRACEAGG_QUANTIZE: |
684 | h->dtahe_aggregate = dt_aggregate_count; |
685 | break; |
686 | |
687 | default: |
688 | return (dt_set_errno(dtp, EDT_BADAGG)); |
689 | } |
690 | |
691 | if (hash->dtah_hash[ndx] != NULL) |
692 | hash->dtah_hash[ndx]->dtahe_prev = h; |
693 | |
694 | h->dtahe_next = hash->dtah_hash[ndx]; |
695 | hash->dtah_hash[ndx] = h; |
696 | |
697 | if (hash->dtah_all != NULL) |
698 | hash->dtah_all->dtahe_prevall = h; |
699 | |
700 | h->dtahe_nextall = hash->dtah_all; |
701 | hash->dtah_all = h; |
702 | bufnext: |
703 | offs += agg->dtagd_size; |
704 | } |
705 | |
706 | return (0); |
707 | } |
708 | |
709 | int |
710 | dtrace_aggregate_snap(dtrace_hdl_t *dtp) |
711 | { |
712 | int i, rval; |
713 | dt_aggregate_t *agp = &dtp->dt_aggregate; |
714 | hrtime_t now = gethrtime(); |
715 | dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_AGGRATE]; |
716 | |
717 | if (dtp->dt_lastagg != 0) { |
718 | if (now - dtp->dt_lastagg < interval) |
719 | return (0); |
720 | |
721 | dtp->dt_lastagg += interval; |
722 | } else { |
723 | dtp->dt_lastagg = now; |
724 | } |
725 | |
726 | if (!dtp->dt_active) |
727 | return (dt_set_errno(dtp, EINVAL)); |
728 | |
729 | if (agp->dtat_buf.dtbd_size == 0) |
730 | return (0); |
731 | |
732 | for (i = 0; i < agp->dtat_ncpus; i++) { |
733 | if ((rval = dt_aggregate_snap_cpu(dtp, agp->dtat_cpus[i]))) |
734 | return (rval); |
735 | } |
736 | |
737 | return (0); |
738 | } |
739 | |
740 | static int |
741 | dt_aggregate_hashcmp(const void *lhs, const void *rhs) |
742 | { |
743 | dt_ahashent_t *lh = *((dt_ahashent_t **)lhs); |
744 | dt_ahashent_t *rh = *((dt_ahashent_t **)rhs); |
745 | dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc; |
746 | dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc; |
747 | |
748 | if (lagg->dtagd_nrecs < ragg->dtagd_nrecs) |
749 | return (DT_LESSTHAN); |
750 | |
751 | if (lagg->dtagd_nrecs > ragg->dtagd_nrecs) |
752 | return (DT_GREATERTHAN); |
753 | |
754 | return (0); |
755 | } |
756 | |
757 | static int |
758 | dt_aggregate_varcmp(const void *lhs, const void *rhs) |
759 | { |
760 | dt_ahashent_t *lh = *((dt_ahashent_t **)lhs); |
761 | dt_ahashent_t *rh = *((dt_ahashent_t **)rhs); |
762 | dtrace_aggvarid_t lid, rid; |
763 | |
764 | lid = dt_aggregate_aggvarid(lh); |
765 | rid = dt_aggregate_aggvarid(rh); |
766 | |
767 | if (lid < rid) |
768 | return (DT_LESSTHAN); |
769 | |
770 | if (lid > rid) |
771 | return (DT_GREATERTHAN); |
772 | |
773 | return (0); |
774 | } |
775 | |
776 | static int |
777 | dt_aggregate_keycmp(const void *lhs, const void *rhs) |
778 | { |
779 | dt_ahashent_t *lh = *((dt_ahashent_t **)lhs); |
780 | dt_ahashent_t *rh = *((dt_ahashent_t **)rhs); |
781 | dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc; |
782 | dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc; |
783 | dtrace_recdesc_t *lrec, *rrec; |
784 | char *ldata, *rdata; |
785 | int rval, i, j, keypos, nrecs; |
786 | |
787 | if ((rval = dt_aggregate_hashcmp(lhs, rhs)) != 0) |
788 | return (rval); |
789 | |
790 | nrecs = lagg->dtagd_nrecs - 1; |
791 | assert(nrecs == ragg->dtagd_nrecs - 1); |
792 | |
793 | keypos = dt_keypos + 1 >= nrecs ? 0 : dt_keypos; |
794 | |
795 | for (i = 1; i < nrecs; i++) { |
796 | uint64_t lval, rval; |
797 | int ndx = i + keypos; |
798 | |
799 | if (ndx >= nrecs) |
800 | ndx = ndx - nrecs + 1; |
801 | |
802 | lrec = &lagg->dtagd_rec[ndx]; |
803 | rrec = &ragg->dtagd_rec[ndx]; |
804 | |
805 | ldata = lh->dtahe_data.dtada_data + lrec->dtrd_offset; |
806 | rdata = rh->dtahe_data.dtada_data + rrec->dtrd_offset; |
807 | |
808 | if (lrec->dtrd_size < rrec->dtrd_size) |
809 | return (DT_LESSTHAN); |
810 | |
811 | if (lrec->dtrd_size > rrec->dtrd_size) |
812 | return (DT_GREATERTHAN); |
813 | |
814 | switch (lrec->dtrd_size) { |
815 | case sizeof (uint64_t): |
816 | /* LINTED - alignment */ |
817 | lval = *((uint64_t *)ldata); |
818 | /* LINTED - alignment */ |
819 | rval = *((uint64_t *)rdata); |
820 | break; |
821 | |
822 | case sizeof (uint32_t): |
823 | /* LINTED - alignment */ |
824 | lval = *((uint32_t *)ldata); |
825 | /* LINTED - alignment */ |
826 | rval = *((uint32_t *)rdata); |
827 | break; |
828 | |
829 | case sizeof (uint16_t): |
830 | /* LINTED - alignment */ |
831 | lval = *((uint16_t *)ldata); |
832 | /* LINTED - alignment */ |
833 | rval = *((uint16_t *)rdata); |
834 | break; |
835 | |
836 | case sizeof (uint8_t): |
837 | lval = *((uint8_t *)ldata); |
838 | rval = *((uint8_t *)rdata); |
839 | break; |
840 | |
841 | default: |
842 | switch (lrec->dtrd_action) { |
843 | case DTRACEACT_UMOD: |
844 | case DTRACEACT_UADDR: |
845 | case DTRACEACT_USYM: |
846 | for (j = 0; j < 2; j++) { |
847 | /* LINTED - alignment */ |
848 | lval = ((uint64_t *)ldata)[j]; |
849 | /* LINTED - alignment */ |
850 | rval = ((uint64_t *)rdata)[j]; |
851 | |
852 | if (lval < rval) |
853 | return (DT_LESSTHAN); |
854 | |
855 | if (lval > rval) |
856 | return (DT_GREATERTHAN); |
857 | } |
858 | |
859 | break; |
860 | |
861 | default: |
862 | for (j = 0; j < lrec->dtrd_size; j++) { |
863 | lval = ((uint8_t *)ldata)[j]; |
864 | rval = ((uint8_t *)rdata)[j]; |
865 | |
866 | if (lval < rval) |
867 | return (DT_LESSTHAN); |
868 | |
869 | if (lval > rval) |
870 | return (DT_GREATERTHAN); |
871 | } |
872 | } |
873 | |
874 | continue; |
875 | } |
876 | |
877 | if (lval < rval) |
878 | return (DT_LESSTHAN); |
879 | |
880 | if (lval > rval) |
881 | return (DT_GREATERTHAN); |
882 | } |
883 | |
884 | return (0); |
885 | } |
886 | |
887 | static int |
888 | dt_aggregate_valcmp(const void *lhs, const void *rhs) |
889 | { |
890 | dt_ahashent_t *lh = *((dt_ahashent_t **)lhs); |
891 | dt_ahashent_t *rh = *((dt_ahashent_t **)rhs); |
892 | dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc; |
893 | dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc; |
894 | caddr_t ldata = lh->dtahe_data.dtada_data; |
895 | caddr_t rdata = rh->dtahe_data.dtada_data; |
896 | dtrace_recdesc_t *lrec, *rrec; |
897 | int64_t *laddr, *raddr; |
898 | int rval; |
899 | |
900 | assert(lagg->dtagd_nrecs == ragg->dtagd_nrecs); |
901 | |
902 | lrec = &lagg->dtagd_rec[lagg->dtagd_nrecs - 1]; |
903 | rrec = &ragg->dtagd_rec[ragg->dtagd_nrecs - 1]; |
904 | |
905 | assert(lrec->dtrd_action == rrec->dtrd_action); |
906 | |
907 | laddr = (int64_t *)(uintptr_t)(ldata + lrec->dtrd_offset); |
908 | raddr = (int64_t *)(uintptr_t)(rdata + rrec->dtrd_offset); |
909 | |
910 | switch (lrec->dtrd_action) { |
911 | case DTRACEAGG_AVG: |
912 | rval = dt_aggregate_averagecmp(laddr, raddr); |
913 | break; |
914 | |
915 | case DTRACEAGG_STDDEV: |
916 | rval = dt_aggregate_stddevcmp(laddr, raddr); |
917 | break; |
918 | |
919 | case DTRACEAGG_QUANTIZE: |
920 | rval = dt_aggregate_quantizedcmp(laddr, raddr); |
921 | break; |
922 | |
923 | case DTRACEAGG_LQUANTIZE: |
924 | rval = dt_aggregate_lquantizedcmp(laddr, raddr); |
925 | break; |
926 | |
927 | case DTRACEAGG_LLQUANTIZE: |
928 | rval = dt_aggregate_llquantizedcmp(laddr, raddr); |
929 | break; |
930 | |
931 | case DTRACEAGG_COUNT: |
932 | case DTRACEAGG_SUM: |
933 | case DTRACEAGG_MIN: |
934 | case DTRACEAGG_MAX: |
935 | rval = dt_aggregate_countcmp(laddr, raddr); |
936 | break; |
937 | |
938 | default: |
939 | assert(0); |
940 | } |
941 | |
942 | return (rval); |
943 | } |
944 | |
945 | static int |
946 | dt_aggregate_valkeycmp(const void *lhs, const void *rhs) |
947 | { |
948 | int rval; |
949 | |
950 | if ((rval = dt_aggregate_valcmp(lhs, rhs)) != 0) |
951 | return (rval); |
952 | |
953 | /* |
954 | * If we're here, the values for the two aggregation elements are |
955 | * equal. We already know that the key layout is the same for the two |
956 | * elements; we must now compare the keys themselves as a tie-breaker. |
957 | */ |
958 | return (dt_aggregate_keycmp(lhs, rhs)); |
959 | } |
960 | |
961 | static int |
962 | dt_aggregate_keyvarcmp(const void *lhs, const void *rhs) |
963 | { |
964 | int rval; |
965 | |
966 | if ((rval = dt_aggregate_keycmp(lhs, rhs)) != 0) |
967 | return (rval); |
968 | |
969 | return (dt_aggregate_varcmp(lhs, rhs)); |
970 | } |
971 | |
972 | static int |
973 | dt_aggregate_varkeycmp(const void *lhs, const void *rhs) |
974 | { |
975 | int rval; |
976 | |
977 | if ((rval = dt_aggregate_varcmp(lhs, rhs)) != 0) |
978 | return (rval); |
979 | |
980 | return (dt_aggregate_keycmp(lhs, rhs)); |
981 | } |
982 | |
983 | static int |
984 | dt_aggregate_valvarcmp(const void *lhs, const void *rhs) |
985 | { |
986 | int rval; |
987 | |
988 | if ((rval = dt_aggregate_valkeycmp(lhs, rhs)) != 0) |
989 | return (rval); |
990 | |
991 | return (dt_aggregate_varcmp(lhs, rhs)); |
992 | } |
993 | |
994 | static int |
995 | dt_aggregate_varvalcmp(const void *lhs, const void *rhs) |
996 | { |
997 | int rval; |
998 | |
999 | if ((rval = dt_aggregate_varcmp(lhs, rhs)) != 0) |
1000 | return (rval); |
1001 | |
1002 | return (dt_aggregate_valkeycmp(lhs, rhs)); |
1003 | } |
1004 | |
1005 | static int |
1006 | dt_aggregate_keyvarrevcmp(const void *lhs, const void *rhs) |
1007 | { |
1008 | return (dt_aggregate_keyvarcmp(rhs, lhs)); |
1009 | } |
1010 | |
1011 | static int |
1012 | dt_aggregate_varkeyrevcmp(const void *lhs, const void *rhs) |
1013 | { |
1014 | return (dt_aggregate_varkeycmp(rhs, lhs)); |
1015 | } |
1016 | |
1017 | static int |
1018 | dt_aggregate_valvarrevcmp(const void *lhs, const void *rhs) |
1019 | { |
1020 | return (dt_aggregate_valvarcmp(rhs, lhs)); |
1021 | } |
1022 | |
1023 | static int |
1024 | dt_aggregate_varvalrevcmp(const void *lhs, const void *rhs) |
1025 | { |
1026 | return (dt_aggregate_varvalcmp(rhs, lhs)); |
1027 | } |
1028 | |
1029 | static int |
1030 | dt_aggregate_bundlecmp(const void *lhs, const void *rhs) |
1031 | { |
1032 | dt_ahashent_t **lh = *((dt_ahashent_t ***)lhs); |
1033 | dt_ahashent_t **rh = *((dt_ahashent_t ***)rhs); |
1034 | int i, rval; |
1035 | |
1036 | if (dt_keysort) { |
1037 | /* |
1038 | * If we're sorting on keys, we need to scan until we find the |
1039 | * last entry -- that's the representative key. (The order of |
1040 | * the bundle is values followed by key to accommodate the |
1041 | * default behavior of sorting by value.) If the keys are |
1042 | * equal, we'll fall into the value comparison loop, below. |
1043 | */ |
1044 | for (i = 0; lh[i + 1] != NULL; i++) |
1045 | continue; |
1046 | |
1047 | assert(i != 0); |
1048 | assert(rh[i + 1] == NULL); |
1049 | |
1050 | if ((rval = dt_aggregate_keycmp(&lh[i], &rh[i])) != 0) |
1051 | return (rval); |
1052 | } |
1053 | |
1054 | for (i = 0; ; i++) { |
1055 | if (lh[i + 1] == NULL) { |
1056 | /* |
1057 | * All of the values are equal; if we're sorting on |
1058 | * keys, then we're only here because the keys were |
1059 | * found to be equal and these records are therefore |
1060 | * equal. If we're not sorting on keys, we'll use the |
1061 | * key comparison from the representative key as the |
1062 | * tie-breaker. |
1063 | */ |
1064 | if (dt_keysort) |
1065 | return (0); |
1066 | |
1067 | assert(i != 0); |
1068 | assert(rh[i + 1] == NULL); |
1069 | return (dt_aggregate_keycmp(&lh[i], &rh[i])); |
1070 | } else { |
1071 | if ((rval = dt_aggregate_valcmp(&lh[i], &rh[i])) != 0) |
1072 | return (rval); |
1073 | } |
1074 | } |
1075 | } |
1076 | |
1077 | int |
1078 | dt_aggregate_go(dtrace_hdl_t *dtp) |
1079 | { |
1080 | dt_aggregate_t *agp = &dtp->dt_aggregate; |
1081 | dtrace_optval_t size, cpu; |
1082 | dtrace_bufdesc_t *buf = &agp->dtat_buf; |
1083 | int rval, i; |
1084 | |
1085 | assert(agp->dtat_maxcpu == 0); |
1086 | assert(agp->dtat_ncpu == 0); |
1087 | assert(agp->dtat_cpus == NULL); |
1088 | |
1089 | agp->dtat_maxcpu = dt_sysconf(dtp, _SC_CPUID_MAX) + 1; |
1090 | agp->dtat_ncpu = dt_sysconf(dtp, _SC_NPROCESSORS_MAX); |
1091 | agp->dtat_cpus = malloc(agp->dtat_ncpu * sizeof (processorid_t)); |
1092 | |
1093 | if (agp->dtat_cpus == NULL) |
1094 | return (dt_set_errno(dtp, EDT_NOMEM)); |
1095 | |
1096 | /* |
1097 | * Use the aggregation buffer size as reloaded from the kernel. |
1098 | */ |
1099 | size = dtp->dt_options[DTRACEOPT_AGGSIZE]; |
1100 | |
1101 | rval = dtrace_getopt(dtp, "aggsize" , &size); |
1102 | assert(rval == 0); |
1103 | |
1104 | if (size == 0 || size == DTRACEOPT_UNSET) |
1105 | return (0); |
1106 | |
1107 | buf = &agp->dtat_buf; |
1108 | buf->dtbd_size = size; |
1109 | |
1110 | if ((buf->dtbd_data = malloc(buf->dtbd_size)) == NULL) |
1111 | return (dt_set_errno(dtp, EDT_NOMEM)); |
1112 | |
1113 | /* |
1114 | * Now query for the CPUs enabled. |
1115 | */ |
1116 | rval = dtrace_getopt(dtp, "cpu" , &cpu); |
1117 | assert(rval == 0 && cpu != DTRACEOPT_UNSET); |
1118 | |
1119 | if (cpu != DTRACE_CPUALL) { |
1120 | assert(cpu < agp->dtat_ncpu); |
1121 | agp->dtat_cpus[agp->dtat_ncpus++] = (processorid_t)cpu; |
1122 | |
1123 | return (0); |
1124 | } |
1125 | |
1126 | agp->dtat_ncpus = 0; |
1127 | for (i = 0; i < agp->dtat_maxcpu; i++) { |
1128 | if (dt_status(dtp, i) == -1) |
1129 | continue; |
1130 | |
1131 | agp->dtat_cpus[agp->dtat_ncpus++] = i; |
1132 | } |
1133 | |
1134 | return (0); |
1135 | } |
1136 | |
1137 | static int |
1138 | dt_aggwalk_rval(dtrace_hdl_t *dtp, dt_ahashent_t *h, int rval) |
1139 | { |
1140 | dt_aggregate_t *agp = &dtp->dt_aggregate; |
1141 | dtrace_aggdata_t *data; |
1142 | dtrace_aggdesc_t *aggdesc; |
1143 | dtrace_recdesc_t *rec; |
1144 | int i; |
1145 | |
1146 | switch (rval) { |
1147 | case DTRACE_AGGWALK_NEXT: |
1148 | break; |
1149 | |
1150 | case DTRACE_AGGWALK_CLEAR: { |
1151 | uint32_t size, offs = 0; |
1152 | |
1153 | aggdesc = h->dtahe_data.dtada_desc; |
1154 | rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1]; |
1155 | size = rec->dtrd_size; |
1156 | data = &h->dtahe_data; |
1157 | |
1158 | if (rec->dtrd_action == DTRACEAGG_LQUANTIZE) { |
1159 | offs = sizeof (uint64_t); |
1160 | size -= sizeof (uint64_t); |
1161 | } |
1162 | |
1163 | bzero(&data->dtada_data[rec->dtrd_offset] + offs, size); |
1164 | |
1165 | if (data->dtada_percpu == NULL) |
1166 | break; |
1167 | |
1168 | for (i = 0; i < dtp->dt_aggregate.dtat_maxcpu; i++) |
1169 | bzero(data->dtada_percpu[i] + offs, size); |
1170 | break; |
1171 | } |
1172 | |
1173 | case DTRACE_AGGWALK_ERROR: |
1174 | /* |
1175 | * We assume that errno is already set in this case. |
1176 | */ |
1177 | return (dt_set_errno(dtp, errno)); |
1178 | |
1179 | case DTRACE_AGGWALK_ABORT: |
1180 | return (dt_set_errno(dtp, EDT_DIRABORT)); |
1181 | |
1182 | case DTRACE_AGGWALK_DENORMALIZE: |
1183 | h->dtahe_data.dtada_normal = 1; |
1184 | return (0); |
1185 | |
1186 | case DTRACE_AGGWALK_NORMALIZE: |
1187 | if (h->dtahe_data.dtada_normal == 0) { |
1188 | h->dtahe_data.dtada_normal = 1; |
1189 | return (dt_set_errno(dtp, EDT_BADRVAL)); |
1190 | } |
1191 | |
1192 | return (0); |
1193 | |
1194 | case DTRACE_AGGWALK_REMOVE: { |
1195 | dtrace_aggdata_t *aggdata = &h->dtahe_data; |
1196 | int max_cpus = agp->dtat_maxcpu; |
1197 | |
1198 | /* |
1199 | * First, remove this hash entry from its hash chain. |
1200 | */ |
1201 | if (h->dtahe_prev != NULL) { |
1202 | h->dtahe_prev->dtahe_next = h->dtahe_next; |
1203 | } else { |
1204 | dt_ahash_t *hash = &agp->dtat_hash; |
1205 | size_t ndx = h->dtahe_hashval % hash->dtah_size; |
1206 | |
1207 | assert(hash->dtah_hash[ndx] == h); |
1208 | hash->dtah_hash[ndx] = h->dtahe_next; |
1209 | } |
1210 | |
1211 | if (h->dtahe_next != NULL) |
1212 | h->dtahe_next->dtahe_prev = h->dtahe_prev; |
1213 | |
1214 | /* |
1215 | * Now remove it from the list of all hash entries. |
1216 | */ |
1217 | if (h->dtahe_prevall != NULL) { |
1218 | h->dtahe_prevall->dtahe_nextall = h->dtahe_nextall; |
1219 | } else { |
1220 | dt_ahash_t *hash = &agp->dtat_hash; |
1221 | |
1222 | assert(hash->dtah_all == h); |
1223 | hash->dtah_all = h->dtahe_nextall; |
1224 | } |
1225 | |
1226 | if (h->dtahe_nextall != NULL) |
1227 | h->dtahe_nextall->dtahe_prevall = h->dtahe_prevall; |
1228 | |
1229 | /* |
1230 | * We're unlinked. We can safely destroy the data. |
1231 | */ |
1232 | if (aggdata->dtada_percpu != NULL) { |
1233 | for (i = 0; i < max_cpus; i++) |
1234 | free(aggdata->dtada_percpu[i]); |
1235 | free(aggdata->dtada_percpu); |
1236 | } |
1237 | |
1238 | free(aggdata->dtada_data); |
1239 | free(h); |
1240 | |
1241 | return (0); |
1242 | } |
1243 | |
1244 | default: |
1245 | return (dt_set_errno(dtp, EDT_BADRVAL)); |
1246 | } |
1247 | |
1248 | return (0); |
1249 | } |
1250 | |
1251 | static void |
1252 | dt_aggregate_qsort(dtrace_hdl_t *dtp, void *base, size_t nel, size_t width, |
1253 | int (*compar)(const void *, const void *)) |
1254 | { |
1255 | int rev = dt_revsort, key = dt_keysort, keypos = dt_keypos; |
1256 | dtrace_optval_t keyposopt = dtp->dt_options[DTRACEOPT_AGGSORTKEYPOS]; |
1257 | |
1258 | dt_revsort = (dtp->dt_options[DTRACEOPT_AGGSORTREV] != DTRACEOPT_UNSET); |
1259 | dt_keysort = (dtp->dt_options[DTRACEOPT_AGGSORTKEY] != DTRACEOPT_UNSET); |
1260 | |
1261 | if (keyposopt != DTRACEOPT_UNSET && keyposopt <= INT_MAX) { |
1262 | dt_keypos = (int)keyposopt; |
1263 | } else { |
1264 | dt_keypos = 0; |
1265 | } |
1266 | |
1267 | if (compar == NULL) { |
1268 | if (!dt_keysort) { |
1269 | compar = dt_aggregate_varvalcmp; |
1270 | } else { |
1271 | compar = dt_aggregate_varkeycmp; |
1272 | } |
1273 | } |
1274 | |
1275 | qsort(base, nel, width, compar); |
1276 | |
1277 | dt_revsort = rev; |
1278 | dt_keysort = key; |
1279 | dt_keypos = keypos; |
1280 | } |
1281 | |
1282 | int |
1283 | dtrace_aggregate_walk(dtrace_hdl_t *dtp, dtrace_aggregate_f *func, void *arg) |
1284 | { |
1285 | dt_ahashent_t *h, *next; |
1286 | dt_ahash_t *hash = &dtp->dt_aggregate.dtat_hash; |
1287 | |
1288 | for (h = hash->dtah_all; h != NULL; h = next) { |
1289 | /* |
1290 | * dt_aggwalk_rval() can potentially remove the current hash |
1291 | * entry; we need to load the next hash entry before calling |
1292 | * into it. |
1293 | */ |
1294 | next = h->dtahe_nextall; |
1295 | |
1296 | if (dt_aggwalk_rval(dtp, h, func(&h->dtahe_data, arg)) == -1) |
1297 | return (-1); |
1298 | } |
1299 | |
1300 | return (0); |
1301 | } |
1302 | |
1303 | static int |
1304 | dt_aggregate_total(dtrace_hdl_t *dtp, boolean_t clear) |
1305 | { |
1306 | dt_ahashent_t *h; |
1307 | dtrace_aggdata_t **total; |
1308 | dtrace_aggid_t max = DTRACE_AGGVARIDNONE, id; |
1309 | dt_aggregate_t *agp = &dtp->dt_aggregate; |
1310 | dt_ahash_t *hash = &agp->dtat_hash; |
1311 | uint32_t tflags; |
1312 | |
1313 | tflags = DTRACE_A_TOTAL | DTRACE_A_HASNEGATIVES | DTRACE_A_HASPOSITIVES; |
1314 | |
1315 | /* |
1316 | * If we need to deliver per-aggregation totals, we're going to take |
1317 | * three passes over the aggregate: one to clear everything out and |
1318 | * determine our maximum aggregation ID, one to actually total |
1319 | * everything up, and a final pass to assign the totals to the |
1320 | * individual elements. |
1321 | */ |
1322 | for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) { |
1323 | dtrace_aggdata_t *aggdata = &h->dtahe_data; |
1324 | |
1325 | if ((id = dt_aggregate_aggvarid(h)) > max) |
1326 | max = id; |
1327 | |
1328 | aggdata->dtada_total = 0; |
1329 | aggdata->dtada_flags &= ~tflags; |
1330 | } |
1331 | |
1332 | if (clear || max == DTRACE_AGGVARIDNONE) |
1333 | return (0); |
1334 | |
1335 | total = dt_zalloc(dtp, (max + 1) * sizeof (dtrace_aggdata_t *)); |
1336 | |
1337 | if (total == NULL) |
1338 | return (-1); |
1339 | |
1340 | for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) { |
1341 | dtrace_aggdata_t *aggdata = &h->dtahe_data; |
1342 | dtrace_aggdesc_t *agg = aggdata->dtada_desc; |
1343 | dtrace_recdesc_t *rec; |
1344 | caddr_t data; |
1345 | int64_t val, *addr; |
1346 | |
1347 | rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1]; |
1348 | data = aggdata->dtada_data; |
1349 | addr = (int64_t *)(uintptr_t)(data + rec->dtrd_offset); |
1350 | |
1351 | switch (rec->dtrd_action) { |
1352 | case DTRACEAGG_STDDEV: |
1353 | val = dt_stddev((uint64_t *)addr, 1); |
1354 | break; |
1355 | |
1356 | case DTRACEAGG_SUM: |
1357 | case DTRACEAGG_COUNT: |
1358 | val = *addr; |
1359 | break; |
1360 | |
1361 | case DTRACEAGG_AVG: |
1362 | val = addr[0] ? (addr[1] / addr[0]) : 0; |
1363 | break; |
1364 | |
1365 | default: |
1366 | continue; |
1367 | } |
1368 | |
1369 | if (total[agg->dtagd_varid] == NULL) { |
1370 | total[agg->dtagd_varid] = aggdata; |
1371 | aggdata->dtada_flags |= DTRACE_A_TOTAL; |
1372 | } else { |
1373 | aggdata = total[agg->dtagd_varid]; |
1374 | } |
1375 | |
1376 | if (val > 0) |
1377 | aggdata->dtada_flags |= DTRACE_A_HASPOSITIVES; |
1378 | |
1379 | if (val < 0) { |
1380 | aggdata->dtada_flags |= DTRACE_A_HASNEGATIVES; |
1381 | val = -val; |
1382 | } |
1383 | |
1384 | if (dtp->dt_options[DTRACEOPT_AGGZOOM] != DTRACEOPT_UNSET) { |
1385 | val = (int64_t)((long double)val * |
1386 | (1 / DTRACE_AGGZOOM_MAX)); |
1387 | |
1388 | if (val > aggdata->dtada_total) |
1389 | aggdata->dtada_total = val; |
1390 | } else { |
1391 | aggdata->dtada_total += val; |
1392 | } |
1393 | } |
1394 | |
1395 | /* |
1396 | * And now one final pass to set everyone's total. |
1397 | */ |
1398 | for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) { |
1399 | dtrace_aggdata_t *aggdata = &h->dtahe_data, *t; |
1400 | dtrace_aggdesc_t *agg = aggdata->dtada_desc; |
1401 | |
1402 | if ((t = total[agg->dtagd_varid]) == NULL || aggdata == t) |
1403 | continue; |
1404 | |
1405 | aggdata->dtada_total = t->dtada_total; |
1406 | aggdata->dtada_flags |= (t->dtada_flags & tflags); |
1407 | } |
1408 | |
1409 | dt_free(dtp, total); |
1410 | |
1411 | return (0); |
1412 | } |
1413 | |
1414 | static int |
1415 | dt_aggregate_minmaxbin(dtrace_hdl_t *dtp, boolean_t clear) |
1416 | { |
1417 | dt_ahashent_t *h; |
1418 | dtrace_aggdata_t **minmax; |
1419 | dtrace_aggid_t max = DTRACE_AGGVARIDNONE, id; |
1420 | dt_aggregate_t *agp = &dtp->dt_aggregate; |
1421 | dt_ahash_t *hash = &agp->dtat_hash; |
1422 | |
1423 | for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) { |
1424 | dtrace_aggdata_t *aggdata = &h->dtahe_data; |
1425 | |
1426 | if ((id = dt_aggregate_aggvarid(h)) > max) |
1427 | max = id; |
1428 | |
1429 | aggdata->dtada_minbin = 0; |
1430 | aggdata->dtada_maxbin = 0; |
1431 | aggdata->dtada_flags &= ~DTRACE_A_MINMAXBIN; |
1432 | } |
1433 | |
1434 | if (clear || max == DTRACE_AGGVARIDNONE) |
1435 | return (0); |
1436 | |
1437 | minmax = dt_zalloc(dtp, (max + 1) * sizeof (dtrace_aggdata_t *)); |
1438 | |
1439 | if (minmax == NULL) |
1440 | return (-1); |
1441 | |
1442 | for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) { |
1443 | dtrace_aggdata_t *aggdata = &h->dtahe_data; |
1444 | dtrace_aggdesc_t *agg = aggdata->dtada_desc; |
1445 | dtrace_recdesc_t *rec; |
1446 | caddr_t data; |
1447 | int64_t *addr; |
1448 | int minbin = -1, maxbin = -1, i; |
1449 | int start = 0, size; |
1450 | |
1451 | rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1]; |
1452 | size = rec->dtrd_size / sizeof (int64_t); |
1453 | data = aggdata->dtada_data; |
1454 | addr = (int64_t *)(uintptr_t)(data + rec->dtrd_offset); |
1455 | |
1456 | switch (rec->dtrd_action) { |
1457 | case DTRACEAGG_LQUANTIZE: |
1458 | /* |
1459 | * For lquantize(), we always display the entire range |
1460 | * of the aggregation when aggpack is set. |
1461 | */ |
1462 | start = 1; |
1463 | minbin = start; |
1464 | maxbin = size - 1 - start; |
1465 | break; |
1466 | |
1467 | case DTRACEAGG_QUANTIZE: |
1468 | for (i = start; i < size; i++) { |
1469 | if (!addr[i]) |
1470 | continue; |
1471 | |
1472 | if (minbin == -1) |
1473 | minbin = i - start; |
1474 | |
1475 | maxbin = i - start; |
1476 | } |
1477 | |
1478 | if (minbin == -1) { |
1479 | /* |
1480 | * If we have no data (e.g., due to a clear() |
1481 | * or negative increments), we'll use the |
1482 | * zero bucket as both our min and max. |
1483 | */ |
1484 | minbin = maxbin = DTRACE_QUANTIZE_ZEROBUCKET; |
1485 | } |
1486 | |
1487 | break; |
1488 | |
1489 | default: |
1490 | continue; |
1491 | } |
1492 | |
1493 | if (minmax[agg->dtagd_varid] == NULL) { |
1494 | minmax[agg->dtagd_varid] = aggdata; |
1495 | aggdata->dtada_flags |= DTRACE_A_MINMAXBIN; |
1496 | aggdata->dtada_minbin = minbin; |
1497 | aggdata->dtada_maxbin = maxbin; |
1498 | continue; |
1499 | } |
1500 | |
1501 | if (minbin < minmax[agg->dtagd_varid]->dtada_minbin) |
1502 | minmax[agg->dtagd_varid]->dtada_minbin = minbin; |
1503 | |
1504 | if (maxbin > minmax[agg->dtagd_varid]->dtada_maxbin) |
1505 | minmax[agg->dtagd_varid]->dtada_maxbin = maxbin; |
1506 | } |
1507 | |
1508 | /* |
1509 | * And now one final pass to set everyone's minbin and maxbin. |
1510 | */ |
1511 | for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) { |
1512 | dtrace_aggdata_t *aggdata = &h->dtahe_data, *mm; |
1513 | dtrace_aggdesc_t *agg = aggdata->dtada_desc; |
1514 | |
1515 | if ((mm = minmax[agg->dtagd_varid]) == NULL || aggdata == mm) |
1516 | continue; |
1517 | |
1518 | aggdata->dtada_minbin = mm->dtada_minbin; |
1519 | aggdata->dtada_maxbin = mm->dtada_maxbin; |
1520 | aggdata->dtada_flags |= DTRACE_A_MINMAXBIN; |
1521 | } |
1522 | |
1523 | dt_free(dtp, minmax); |
1524 | |
1525 | return (0); |
1526 | } |
1527 | |
1528 | static int |
1529 | dt_aggregate_walk_sorted(dtrace_hdl_t *dtp, |
1530 | dtrace_aggregate_f *func, void *arg, |
1531 | int (*sfunc)(const void *, const void *)) |
1532 | { |
1533 | dt_aggregate_t *agp = &dtp->dt_aggregate; |
1534 | dt_ahashent_t *h, **sorted; |
1535 | dt_ahash_t *hash = &agp->dtat_hash; |
1536 | size_t i, nentries = 0; |
1537 | int rval = -1; |
1538 | |
1539 | agp->dtat_flags &= ~(DTRACE_A_TOTAL | DTRACE_A_MINMAXBIN); |
1540 | |
1541 | if (dtp->dt_options[DTRACEOPT_AGGHIST] != DTRACEOPT_UNSET) { |
1542 | agp->dtat_flags |= DTRACE_A_TOTAL; |
1543 | |
1544 | if (dt_aggregate_total(dtp, B_FALSE) != 0) |
1545 | return (-1); |
1546 | } |
1547 | |
1548 | if (dtp->dt_options[DTRACEOPT_AGGPACK] != DTRACEOPT_UNSET) { |
1549 | agp->dtat_flags |= DTRACE_A_MINMAXBIN; |
1550 | |
1551 | if (dt_aggregate_minmaxbin(dtp, B_FALSE) != 0) |
1552 | return (-1); |
1553 | } |
1554 | |
1555 | for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) |
1556 | nentries++; |
1557 | |
1558 | sorted = dt_alloc(dtp, nentries * sizeof (dt_ahashent_t *)); |
1559 | |
1560 | if (sorted == NULL) |
1561 | goto out; |
1562 | |
1563 | for (h = hash->dtah_all, i = 0; h != NULL; h = h->dtahe_nextall) |
1564 | sorted[i++] = h; |
1565 | |
1566 | (void) pthread_mutex_lock(&dt_qsort_lock); |
1567 | |
1568 | if (sfunc == NULL) { |
1569 | dt_aggregate_qsort(dtp, sorted, nentries, |
1570 | sizeof (dt_ahashent_t *), NULL); |
1571 | } else { |
1572 | /* |
1573 | * If we've been explicitly passed a sorting function, |
1574 | * we'll use that -- ignoring the values of the "aggsortrev", |
1575 | * "aggsortkey" and "aggsortkeypos" options. |
1576 | */ |
1577 | qsort(sorted, nentries, sizeof (dt_ahashent_t *), sfunc); |
1578 | } |
1579 | |
1580 | (void) pthread_mutex_unlock(&dt_qsort_lock); |
1581 | |
1582 | for (i = 0; i < nentries; i++) { |
1583 | h = sorted[i]; |
1584 | |
1585 | if (dt_aggwalk_rval(dtp, h, func(&h->dtahe_data, arg)) == -1) |
1586 | goto out; |
1587 | } |
1588 | |
1589 | rval = 0; |
1590 | out: |
1591 | if (agp->dtat_flags & DTRACE_A_TOTAL) |
1592 | (void) dt_aggregate_total(dtp, B_TRUE); |
1593 | |
1594 | if (agp->dtat_flags & DTRACE_A_MINMAXBIN) |
1595 | (void) dt_aggregate_minmaxbin(dtp, B_TRUE); |
1596 | |
1597 | dt_free(dtp, sorted); |
1598 | return (rval); |
1599 | } |
1600 | |
1601 | int |
1602 | dtrace_aggregate_walk_sorted(dtrace_hdl_t *dtp, |
1603 | dtrace_aggregate_f *func, void *arg) |
1604 | { |
1605 | return (dt_aggregate_walk_sorted(dtp, func, arg, NULL)); |
1606 | } |
1607 | |
1608 | int |
1609 | dtrace_aggregate_walk_keysorted(dtrace_hdl_t *dtp, |
1610 | dtrace_aggregate_f *func, void *arg) |
1611 | { |
1612 | return (dt_aggregate_walk_sorted(dtp, func, |
1613 | arg, dt_aggregate_varkeycmp)); |
1614 | } |
1615 | |
1616 | int |
1617 | dtrace_aggregate_walk_valsorted(dtrace_hdl_t *dtp, |
1618 | dtrace_aggregate_f *func, void *arg) |
1619 | { |
1620 | return (dt_aggregate_walk_sorted(dtp, func, |
1621 | arg, dt_aggregate_varvalcmp)); |
1622 | } |
1623 | |
1624 | int |
1625 | dtrace_aggregate_walk_keyvarsorted(dtrace_hdl_t *dtp, |
1626 | dtrace_aggregate_f *func, void *arg) |
1627 | { |
1628 | return (dt_aggregate_walk_sorted(dtp, func, |
1629 | arg, dt_aggregate_keyvarcmp)); |
1630 | } |
1631 | |
1632 | int |
1633 | dtrace_aggregate_walk_valvarsorted(dtrace_hdl_t *dtp, |
1634 | dtrace_aggregate_f *func, void *arg) |
1635 | { |
1636 | return (dt_aggregate_walk_sorted(dtp, func, |
1637 | arg, dt_aggregate_valvarcmp)); |
1638 | } |
1639 | |
1640 | int |
1641 | dtrace_aggregate_walk_keyrevsorted(dtrace_hdl_t *dtp, |
1642 | dtrace_aggregate_f *func, void *arg) |
1643 | { |
1644 | return (dt_aggregate_walk_sorted(dtp, func, |
1645 | arg, dt_aggregate_varkeyrevcmp)); |
1646 | } |
1647 | |
1648 | int |
1649 | dtrace_aggregate_walk_valrevsorted(dtrace_hdl_t *dtp, |
1650 | dtrace_aggregate_f *func, void *arg) |
1651 | { |
1652 | return (dt_aggregate_walk_sorted(dtp, func, |
1653 | arg, dt_aggregate_varvalrevcmp)); |
1654 | } |
1655 | |
1656 | int |
1657 | dtrace_aggregate_walk_keyvarrevsorted(dtrace_hdl_t *dtp, |
1658 | dtrace_aggregate_f *func, void *arg) |
1659 | { |
1660 | return (dt_aggregate_walk_sorted(dtp, func, |
1661 | arg, dt_aggregate_keyvarrevcmp)); |
1662 | } |
1663 | |
1664 | int |
1665 | dtrace_aggregate_walk_valvarrevsorted(dtrace_hdl_t *dtp, |
1666 | dtrace_aggregate_f *func, void *arg) |
1667 | { |
1668 | return (dt_aggregate_walk_sorted(dtp, func, |
1669 | arg, dt_aggregate_valvarrevcmp)); |
1670 | } |
1671 | |
1672 | int |
1673 | dtrace_aggregate_walk_joined(dtrace_hdl_t *dtp, dtrace_aggvarid_t *aggvars, |
1674 | int naggvars, dtrace_aggregate_walk_joined_f *func, void *arg) |
1675 | { |
1676 | dt_aggregate_t *agp = &dtp->dt_aggregate; |
1677 | dt_ahashent_t *h, **sorted = NULL, ***bundle, **nbundle; |
1678 | const dtrace_aggdata_t **data; |
1679 | dt_ahashent_t *zaggdata = NULL; |
1680 | dt_ahash_t *hash = &agp->dtat_hash; |
1681 | size_t nentries = 0, nbundles = 0, start, zsize = 0, bundlesize; |
1682 | dtrace_aggvarid_t max = 0, aggvar; |
1683 | int rval = -1, *map, *remap = NULL; |
1684 | int i, j; |
1685 | dtrace_optval_t sortpos = dtp->dt_options[DTRACEOPT_AGGSORTPOS]; |
1686 | |
1687 | /* |
1688 | * If the sorting position is greater than the number of aggregation |
1689 | * variable IDs, we silently set it to 0. |
1690 | */ |
1691 | if (sortpos == DTRACEOPT_UNSET || sortpos >= naggvars) |
1692 | sortpos = 0; |
1693 | |
1694 | /* |
1695 | * First we need to translate the specified aggregation variable IDs |
1696 | * into a linear map that will allow us to translate an aggregation |
1697 | * variable ID into its position in the specified aggvars. |
1698 | */ |
1699 | for (i = 0; i < naggvars; i++) { |
1700 | if (aggvars[i] == DTRACE_AGGVARIDNONE || aggvars[i] < 0) |
1701 | return (dt_set_errno(dtp, EDT_BADAGGVAR)); |
1702 | |
1703 | if (aggvars[i] > max) |
1704 | max = aggvars[i]; |
1705 | } |
1706 | |
1707 | if ((map = dt_zalloc(dtp, (max + 1) * sizeof (int))) == NULL) |
1708 | return (-1); |
1709 | |
1710 | zaggdata = dt_zalloc(dtp, naggvars * sizeof (dt_ahashent_t)); |
1711 | |
1712 | if (zaggdata == NULL) |
1713 | goto out; |
1714 | |
1715 | for (i = 0; i < naggvars; i++) { |
1716 | int ndx = i + sortpos; |
1717 | |
1718 | if (ndx >= naggvars) |
1719 | ndx -= naggvars; |
1720 | |
1721 | aggvar = aggvars[ndx]; |
1722 | assert(aggvar <= max); |
1723 | |
1724 | if (map[aggvar]) { |
1725 | /* |
1726 | * We have an aggregation variable that is present |
1727 | * more than once in the array of aggregation |
1728 | * variables. While it's unclear why one might want |
1729 | * to do this, it's legal. To support this construct, |
1730 | * we will allocate a remap that will indicate the |
1731 | * position from which this aggregation variable |
1732 | * should be pulled. (That is, where the remap will |
1733 | * map from one position to another.) |
1734 | */ |
1735 | if (remap == NULL) { |
1736 | remap = dt_zalloc(dtp, naggvars * sizeof (int)); |
1737 | |
1738 | if (remap == NULL) |
1739 | goto out; |
1740 | } |
1741 | |
1742 | /* |
1743 | * Given that the variable is already present, assert |
1744 | * that following through the mapping and adjusting |
1745 | * for the sort position yields the same aggregation |
1746 | * variable ID. |
1747 | */ |
1748 | assert(aggvars[(map[aggvar] - 1 + sortpos) % |
1749 | naggvars] == aggvars[ndx]); |
1750 | |
1751 | remap[i] = map[aggvar]; |
1752 | continue; |
1753 | } |
1754 | |
1755 | map[aggvar] = i + 1; |
1756 | } |
1757 | |
1758 | /* |
1759 | * We need to take two passes over the data to size our allocation, so |
1760 | * we'll use the first pass to also fill in the zero-filled data to be |
1761 | * used to properly format a zero-valued aggregation. |
1762 | */ |
1763 | for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) { |
1764 | dtrace_aggvarid_t id; |
1765 | int ndx; |
1766 | |
1767 | if ((id = dt_aggregate_aggvarid(h)) > max || !(ndx = map[id])) |
1768 | continue; |
1769 | |
1770 | if (zaggdata[ndx - 1].dtahe_size == 0) { |
1771 | zaggdata[ndx - 1].dtahe_size = h->dtahe_size; |
1772 | zaggdata[ndx - 1].dtahe_data = h->dtahe_data; |
1773 | } |
1774 | |
1775 | nentries++; |
1776 | } |
1777 | |
1778 | if (nentries == 0) { |
1779 | /* |
1780 | * We couldn't find any entries; there is nothing else to do. |
1781 | */ |
1782 | rval = 0; |
1783 | goto out; |
1784 | } |
1785 | |
1786 | /* |
1787 | * Before we sort the data, we're going to look for any holes in our |
1788 | * zero-filled data. This will occur if an aggregation variable that |
1789 | * we are being asked to print has not yet been assigned the result of |
1790 | * any aggregating action for _any_ tuple. The issue becomes that we |
1791 | * would like a zero value to be printed for all columns for this |
1792 | * aggregation, but without any record description, we don't know the |
1793 | * aggregating action that corresponds to the aggregation variable. To |
1794 | * try to find a match, we're simply going to lookup aggregation IDs |
1795 | * (which are guaranteed to be contiguous and to start from 1), looking |
1796 | * for the specified aggregation variable ID. If we find a match, |
1797 | * we'll use that. If we iterate over all aggregation IDs and don't |
1798 | * find a match, then we must be an anonymous enabling. (Anonymous |
1799 | * enablings can't currently derive either aggregation variable IDs or |
1800 | * aggregation variable names given only an aggregation ID.) In this |
1801 | * obscure case (anonymous enabling, multiple aggregation printa() with |
1802 | * some aggregations not represented for any tuple), our defined |
1803 | * behavior is that the zero will be printed in the format of the first |
1804 | * aggregation variable that contains any non-zero value. |
1805 | */ |
1806 | for (i = 0; i < naggvars; i++) { |
1807 | if (zaggdata[i].dtahe_size == 0) { |
1808 | dtrace_aggvarid_t aggvar; |
1809 | |
1810 | aggvar = aggvars[(i - sortpos + naggvars) % naggvars]; |
1811 | assert(zaggdata[i].dtahe_data.dtada_data == NULL); |
1812 | |
1813 | for (j = DTRACE_AGGIDNONE + 1; ; j++) { |
1814 | dtrace_aggdesc_t *agg; |
1815 | dtrace_aggdata_t *aggdata; |
1816 | |
1817 | if (dt_aggid_lookup(dtp, j, &agg) != 0) |
1818 | break; |
1819 | |
1820 | if (agg->dtagd_varid != aggvar) |
1821 | continue; |
1822 | |
1823 | /* |
1824 | * We have our description -- now we need to |
1825 | * cons up the zaggdata entry for it. |
1826 | */ |
1827 | aggdata = &zaggdata[i].dtahe_data; |
1828 | aggdata->dtada_size = agg->dtagd_size; |
1829 | aggdata->dtada_desc = agg; |
1830 | aggdata->dtada_handle = dtp; |
1831 | (void) dt_epid_lookup(dtp, agg->dtagd_epid, |
1832 | &aggdata->dtada_edesc, |
1833 | &aggdata->dtada_pdesc); |
1834 | aggdata->dtada_normal = 1; |
1835 | zaggdata[i].dtahe_hashval = 0; |
1836 | zaggdata[i].dtahe_size = agg->dtagd_size; |
1837 | break; |
1838 | } |
1839 | |
1840 | if (zaggdata[i].dtahe_size == 0) { |
1841 | caddr_t data; |
1842 | |
1843 | /* |
1844 | * We couldn't find this aggregation, meaning |
1845 | * that we have never seen it before for any |
1846 | * tuple _and_ this is an anonymous enabling. |
1847 | * That is, we're in the obscure case outlined |
1848 | * above. In this case, our defined behavior |
1849 | * is to format the data in the format of the |
1850 | * first non-zero aggregation -- of which, of |
1851 | * course, we know there to be at least one |
1852 | * (or nentries would have been zero). |
1853 | */ |
1854 | for (j = 0; j < naggvars; j++) { |
1855 | if (zaggdata[j].dtahe_size != 0) |
1856 | break; |
1857 | } |
1858 | |
1859 | assert(j < naggvars); |
1860 | zaggdata[i] = zaggdata[j]; |
1861 | |
1862 | data = zaggdata[i].dtahe_data.dtada_data; |
1863 | assert(data != NULL); |
1864 | } |
1865 | } |
1866 | } |
1867 | |
1868 | /* |
1869 | * Now we need to allocate our zero-filled data for use for |
1870 | * aggregations that don't have a value corresponding to a given key. |
1871 | */ |
1872 | for (i = 0; i < naggvars; i++) { |
1873 | dtrace_aggdata_t *aggdata = &zaggdata[i].dtahe_data; |
1874 | dtrace_aggdesc_t *aggdesc = aggdata->dtada_desc; |
1875 | dtrace_recdesc_t *rec; |
1876 | uint64_t larg; |
1877 | caddr_t zdata; |
1878 | |
1879 | zsize = zaggdata[i].dtahe_size; |
1880 | assert(zsize != 0); |
1881 | |
1882 | if ((zdata = dt_zalloc(dtp, zsize)) == NULL) { |
1883 | /* |
1884 | * If we failed to allocated some zero-filled data, we |
1885 | * need to zero out the remaining dtada_data pointers |
1886 | * to prevent the wrong data from being freed below. |
1887 | */ |
1888 | for (j = i; j < naggvars; j++) |
1889 | zaggdata[j].dtahe_data.dtada_data = NULL; |
1890 | goto out; |
1891 | } |
1892 | |
1893 | aggvar = aggvars[(i - sortpos + naggvars) % naggvars]; |
1894 | |
1895 | /* |
1896 | * First, the easy bit. To maintain compatibility with |
1897 | * consumers that pull the compiler-generated ID out of the |
1898 | * data, we put that ID at the top of the zero-filled data. |
1899 | */ |
1900 | rec = &aggdesc->dtagd_rec[0]; |
1901 | /* LINTED - alignment */ |
1902 | *((dtrace_aggvarid_t *)(zdata + rec->dtrd_offset)) = aggvar; |
1903 | |
1904 | rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1]; |
1905 | |
1906 | /* |
1907 | * Now for the more complicated part. If (and only if) this |
1908 | * is an lquantize() aggregating action, zero-filled data is |
1909 | * not equivalent to an empty record: we must also get the |
1910 | * parameters for the lquantize(). |
1911 | */ |
1912 | if (rec->dtrd_action == DTRACEAGG_LQUANTIZE) { |
1913 | if (aggdata->dtada_data != NULL) { |
1914 | /* |
1915 | * The easier case here is if we actually have |
1916 | * some prototype data -- in which case we |
1917 | * manually dig it out of the aggregation |
1918 | * record. |
1919 | */ |
1920 | /* LINTED - alignment */ |
1921 | larg = *((uint64_t *)(aggdata->dtada_data + |
1922 | rec->dtrd_offset)); |
1923 | } else { |
1924 | /* |
1925 | * We don't have any prototype data. As a |
1926 | * result, we know that we _do_ have the |
1927 | * compiler-generated information. (If this |
1928 | * were an anonymous enabling, all of our |
1929 | * zero-filled data would have prototype data |
1930 | * -- either directly or indirectly.) So as |
1931 | * gross as it is, we'll grovel around in the |
1932 | * compiler-generated information to find the |
1933 | * lquantize() parameters. |
1934 | */ |
1935 | dtrace_stmtdesc_t *sdp; |
1936 | dt_ident_t *aid; |
1937 | dt_idsig_t *isp; |
1938 | |
1939 | sdp = (dtrace_stmtdesc_t *)(uintptr_t) |
1940 | aggdesc->dtagd_rec[0].dtrd_uarg; |
1941 | aid = sdp->dtsd_aggdata; |
1942 | isp = (dt_idsig_t *)aid->di_data; |
1943 | assert(isp->dis_auxinfo != 0); |
1944 | larg = isp->dis_auxinfo; |
1945 | } |
1946 | |
1947 | /* LINTED - alignment */ |
1948 | *((uint64_t *)(zdata + rec->dtrd_offset)) = larg; |
1949 | } |
1950 | |
1951 | aggdata->dtada_data = zdata; |
1952 | } |
1953 | |
1954 | /* |
1955 | * Now that we've dealt with setting up our zero-filled data, we can |
1956 | * allocate our sorted array, and take another pass over the data to |
1957 | * fill it. |
1958 | */ |
1959 | sorted = dt_alloc(dtp, nentries * sizeof (dt_ahashent_t *)); |
1960 | |
1961 | if (sorted == NULL) |
1962 | goto out; |
1963 | |
1964 | for (h = hash->dtah_all, i = 0; h != NULL; h = h->dtahe_nextall) { |
1965 | dtrace_aggvarid_t id; |
1966 | |
1967 | if ((id = dt_aggregate_aggvarid(h)) > max || !map[id]) |
1968 | continue; |
1969 | |
1970 | sorted[i++] = h; |
1971 | } |
1972 | |
1973 | assert(i == nentries); |
1974 | |
1975 | /* |
1976 | * We've loaded our array; now we need to sort by value to allow us |
1977 | * to create bundles of like value. We're going to acquire the |
1978 | * dt_qsort_lock here, and hold it across all of our subsequent |
1979 | * comparison and sorting. |
1980 | */ |
1981 | (void) pthread_mutex_lock(&dt_qsort_lock); |
1982 | |
1983 | qsort(sorted, nentries, sizeof (dt_ahashent_t *), |
1984 | dt_aggregate_keyvarcmp); |
1985 | |
1986 | /* |
1987 | * Now we need to go through and create bundles. Because the number |
1988 | * of bundles is bounded by the size of the sorted array, we're going |
1989 | * to reuse the underlying storage. And note that "bundle" is an |
1990 | * array of pointers to arrays of pointers to dt_ahashent_t -- making |
1991 | * its type (regrettably) "dt_ahashent_t ***". (Regrettable because |
1992 | * '*' -- like '_' and 'X' -- should never appear in triplicate in |
1993 | * an ideal world.) |
1994 | */ |
1995 | bundle = (dt_ahashent_t ***)sorted; |
1996 | |
1997 | for (i = 1, start = 0; i <= nentries; i++) { |
1998 | if (i < nentries && |
1999 | dt_aggregate_keycmp(&sorted[i], &sorted[i - 1]) == 0) |
2000 | continue; |
2001 | |
2002 | /* |
2003 | * We have a bundle boundary. Everything from start to |
2004 | * (i - 1) belongs in one bundle. |
2005 | */ |
2006 | assert(i - start <= naggvars); |
2007 | bundlesize = (naggvars + 2) * sizeof (dt_ahashent_t *); |
2008 | |
2009 | if ((nbundle = dt_zalloc(dtp, bundlesize)) == NULL) { |
2010 | (void) pthread_mutex_unlock(&dt_qsort_lock); |
2011 | goto out; |
2012 | } |
2013 | |
2014 | for (j = start; j < i; j++) { |
2015 | dtrace_aggvarid_t id = dt_aggregate_aggvarid(sorted[j]); |
2016 | |
2017 | assert(id <= max); |
2018 | assert(map[id] != 0); |
2019 | assert(map[id] - 1 < naggvars); |
2020 | assert(nbundle[map[id] - 1] == NULL); |
2021 | nbundle[map[id] - 1] = sorted[j]; |
2022 | |
2023 | if (nbundle[naggvars] == NULL) |
2024 | nbundle[naggvars] = sorted[j]; |
2025 | } |
2026 | |
2027 | for (j = 0; j < naggvars; j++) { |
2028 | if (nbundle[j] != NULL) |
2029 | continue; |
2030 | |
2031 | /* |
2032 | * Before we assume that this aggregation variable |
2033 | * isn't present (and fall back to using the |
2034 | * zero-filled data allocated earlier), check the |
2035 | * remap. If we have a remapping, we'll drop it in |
2036 | * here. Note that we might be remapping an |
2037 | * aggregation variable that isn't present for this |
2038 | * key; in this case, the aggregation data that we |
2039 | * copy will point to the zeroed data. |
2040 | */ |
2041 | if (remap != NULL && remap[j]) { |
2042 | assert(remap[j] - 1 < j); |
2043 | assert(nbundle[remap[j] - 1] != NULL); |
2044 | nbundle[j] = nbundle[remap[j] - 1]; |
2045 | } else { |
2046 | nbundle[j] = &zaggdata[j]; |
2047 | } |
2048 | } |
2049 | |
2050 | bundle[nbundles++] = nbundle; |
2051 | start = i; |
2052 | } |
2053 | |
2054 | /* |
2055 | * Now we need to re-sort based on the first value. |
2056 | */ |
2057 | dt_aggregate_qsort(dtp, bundle, nbundles, sizeof (dt_ahashent_t **), |
2058 | dt_aggregate_bundlecmp); |
2059 | |
2060 | (void) pthread_mutex_unlock(&dt_qsort_lock); |
2061 | |
2062 | /* |
2063 | * We're done! Now we just need to go back over the sorted bundles, |
2064 | * calling the function. |
2065 | */ |
2066 | data = alloca((naggvars + 1) * sizeof (dtrace_aggdata_t *)); |
2067 | |
2068 | for (i = 0; i < nbundles; i++) { |
2069 | for (j = 0; j < naggvars; j++) |
2070 | data[j + 1] = NULL; |
2071 | |
2072 | for (j = 0; j < naggvars; j++) { |
2073 | int ndx = j - sortpos; |
2074 | |
2075 | if (ndx < 0) |
2076 | ndx += naggvars; |
2077 | |
2078 | assert(bundle[i][ndx] != NULL); |
2079 | data[j + 1] = &bundle[i][ndx]->dtahe_data; |
2080 | } |
2081 | |
2082 | for (j = 0; j < naggvars; j++) |
2083 | assert(data[j + 1] != NULL); |
2084 | |
2085 | /* |
2086 | * The representative key is the last element in the bundle. |
2087 | * Assert that we have one, and then set it to be the first |
2088 | * element of data. |
2089 | */ |
2090 | assert(bundle[i][j] != NULL); |
2091 | data[0] = &bundle[i][j]->dtahe_data; |
2092 | |
2093 | if ((rval = func(data, naggvars + 1, arg)) == -1) |
2094 | goto out; |
2095 | } |
2096 | |
2097 | rval = 0; |
2098 | out: |
2099 | for (i = 0; i < nbundles; i++) |
2100 | dt_free(dtp, bundle[i]); |
2101 | |
2102 | if (zaggdata != NULL) { |
2103 | for (i = 0; i < naggvars; i++) |
2104 | dt_free(dtp, zaggdata[i].dtahe_data.dtada_data); |
2105 | } |
2106 | |
2107 | dt_free(dtp, zaggdata); |
2108 | dt_free(dtp, sorted); |
2109 | dt_free(dtp, remap); |
2110 | dt_free(dtp, map); |
2111 | |
2112 | return (rval); |
2113 | } |
2114 | |
2115 | int |
2116 | dtrace_aggregate_print(dtrace_hdl_t *dtp, FILE *fp, |
2117 | dtrace_aggregate_walk_f *func) |
2118 | { |
2119 | dt_print_aggdata_t pd; |
2120 | |
2121 | bzero(&pd, sizeof (pd)); |
2122 | |
2123 | pd.dtpa_dtp = dtp; |
2124 | pd.dtpa_fp = fp; |
2125 | pd.dtpa_allunprint = 1; |
2126 | |
2127 | if (func == NULL) |
2128 | func = dtrace_aggregate_walk_sorted; |
2129 | |
2130 | if ((*func)(dtp, dt_print_agg, &pd) == -1) |
2131 | return (dt_set_errno(dtp, dtp->dt_errno)); |
2132 | |
2133 | return (0); |
2134 | } |
2135 | |
2136 | void |
2137 | dtrace_aggregate_clear(dtrace_hdl_t *dtp) |
2138 | { |
2139 | dt_aggregate_t *agp = &dtp->dt_aggregate; |
2140 | dt_ahash_t *hash = &agp->dtat_hash; |
2141 | dt_ahashent_t *h; |
2142 | dtrace_aggdata_t *data; |
2143 | dtrace_aggdesc_t *aggdesc; |
2144 | dtrace_recdesc_t *rec; |
2145 | int i, max_cpus = agp->dtat_maxcpu; |
2146 | |
2147 | for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) { |
2148 | aggdesc = h->dtahe_data.dtada_desc; |
2149 | rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1]; |
2150 | data = &h->dtahe_data; |
2151 | |
2152 | bzero(&data->dtada_data[rec->dtrd_offset], rec->dtrd_size); |
2153 | |
2154 | if (data->dtada_percpu == NULL) |
2155 | continue; |
2156 | |
2157 | for (i = 0; i < max_cpus; i++) |
2158 | bzero(data->dtada_percpu[i], rec->dtrd_size); |
2159 | } |
2160 | } |
2161 | |
2162 | void |
2163 | dt_aggregate_destroy(dtrace_hdl_t *dtp) |
2164 | { |
2165 | dt_aggregate_t *agp = &dtp->dt_aggregate; |
2166 | dt_ahash_t *hash = &agp->dtat_hash; |
2167 | dt_ahashent_t *h, *next; |
2168 | dtrace_aggdata_t *aggdata; |
2169 | int i, max_cpus = agp->dtat_maxcpu; |
2170 | |
2171 | if (hash->dtah_hash == NULL) { |
2172 | assert(hash->dtah_all == NULL); |
2173 | } else { |
2174 | free(hash->dtah_hash); |
2175 | |
2176 | for (h = hash->dtah_all; h != NULL; h = next) { |
2177 | next = h->dtahe_nextall; |
2178 | |
2179 | aggdata = &h->dtahe_data; |
2180 | |
2181 | if (aggdata->dtada_percpu != NULL) { |
2182 | for (i = 0; i < max_cpus; i++) |
2183 | free(aggdata->dtada_percpu[i]); |
2184 | free(aggdata->dtada_percpu); |
2185 | } |
2186 | |
2187 | free(aggdata->dtada_data); |
2188 | free(h); |
2189 | } |
2190 | |
2191 | hash->dtah_hash = NULL; |
2192 | hash->dtah_all = NULL; |
2193 | hash->dtah_size = 0; |
2194 | } |
2195 | |
2196 | free(agp->dtat_buf.dtbd_data); |
2197 | free(agp->dtat_cpus); |
2198 | } |
2199 | |