| 1 | /* |
| 2 | * CDDL HEADER START |
| 3 | * |
| 4 | * The contents of this file are subject to the terms of the |
| 5 | * Common Development and Distribution License (the "License"). |
| 6 | * You may not use this file except in compliance with the License. |
| 7 | * |
| 8 | * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE |
| 9 | * or http://www.opensolaris.org/os/licensing. |
| 10 | * See the License for the specific language governing permissions |
| 11 | * and limitations under the License. |
| 12 | * |
| 13 | * When distributing Covered Code, include this CDDL HEADER in each |
| 14 | * file and include the License file at usr/src/OPENSOLARIS.LICENSE. |
| 15 | * If applicable, add the following below this CDDL HEADER, with the |
| 16 | * fields enclosed by brackets "[]" replaced with your own identifying |
| 17 | * information: Portions Copyright [yyyy] [name of copyright owner] |
| 18 | * |
| 19 | * CDDL HEADER END |
| 20 | */ |
| 21 | |
| 22 | /* |
| 23 | * Copyright 2008 Sun Microsystems, Inc. All rights reserved. |
| 24 | * Use is subject to license terms. |
| 25 | */ |
| 26 | |
| 27 | /* |
| 28 | * Copyright (c) 2013, Joyent, Inc. All rights reserved. |
| 29 | * Copyright (c) 2012 by Delphix. All rights reserved. |
| 30 | */ |
| 31 | |
| 32 | #include <stdlib.h> |
| 33 | #include <strings.h> |
| 34 | #include <errno.h> |
| 35 | #include <unistd.h> |
| 36 | #include <dt_impl.h> |
| 37 | #include <assert.h> |
| 38 | #ifdef illumos |
| 39 | #include <alloca.h> |
| 40 | #else |
| 41 | #include <sys/sysctl.h> |
| 42 | #include <libproc_compat.h> |
| 43 | #endif |
| 44 | #include <limits.h> |
| 45 | |
| 46 | #define DTRACE_AHASHSIZE 32779 /* big 'ol prime */ |
| 47 | |
| 48 | /* |
| 49 | * Because qsort(3C) does not allow an argument to be passed to a comparison |
| 50 | * function, the variables that affect comparison must regrettably be global; |
| 51 | * they are protected by a global static lock, dt_qsort_lock. |
| 52 | */ |
| 53 | static pthread_mutex_t dt_qsort_lock = PTHREAD_MUTEX_INITIALIZER; |
| 54 | |
| 55 | static int dt_revsort; |
| 56 | static int dt_keysort; |
| 57 | static int dt_keypos; |
| 58 | |
| 59 | #define DT_LESSTHAN (dt_revsort == 0 ? -1 : 1) |
| 60 | #define DT_GREATERTHAN (dt_revsort == 0 ? 1 : -1) |
| 61 | |
| 62 | static void |
| 63 | dt_aggregate_count(int64_t *existing, int64_t *new, size_t size) |
| 64 | { |
| 65 | uint_t i; |
| 66 | |
| 67 | for (i = 0; i < size / sizeof (int64_t); i++) |
| 68 | existing[i] = existing[i] + new[i]; |
| 69 | } |
| 70 | |
| 71 | static int |
| 72 | dt_aggregate_countcmp(int64_t *lhs, int64_t *rhs) |
| 73 | { |
| 74 | int64_t lvar = *lhs; |
| 75 | int64_t rvar = *rhs; |
| 76 | |
| 77 | if (lvar < rvar) |
| 78 | return (DT_LESSTHAN); |
| 79 | |
| 80 | if (lvar > rvar) |
| 81 | return (DT_GREATERTHAN); |
| 82 | |
| 83 | return (0); |
| 84 | } |
| 85 | |
| 86 | /*ARGSUSED*/ |
| 87 | static void |
| 88 | dt_aggregate_min(int64_t *existing, int64_t *new, size_t size) |
| 89 | { |
| 90 | if (*new < *existing) |
| 91 | *existing = *new; |
| 92 | } |
| 93 | |
| 94 | /*ARGSUSED*/ |
| 95 | static void |
| 96 | dt_aggregate_max(int64_t *existing, int64_t *new, size_t size) |
| 97 | { |
| 98 | if (*new > *existing) |
| 99 | *existing = *new; |
| 100 | } |
| 101 | |
| 102 | static int |
| 103 | dt_aggregate_averagecmp(int64_t *lhs, int64_t *rhs) |
| 104 | { |
| 105 | int64_t lavg = lhs[0] ? (lhs[1] / lhs[0]) : 0; |
| 106 | int64_t ravg = rhs[0] ? (rhs[1] / rhs[0]) : 0; |
| 107 | |
| 108 | if (lavg < ravg) |
| 109 | return (DT_LESSTHAN); |
| 110 | |
| 111 | if (lavg > ravg) |
| 112 | return (DT_GREATERTHAN); |
| 113 | |
| 114 | return (0); |
| 115 | } |
| 116 | |
| 117 | static int |
| 118 | dt_aggregate_stddevcmp(int64_t *lhs, int64_t *rhs) |
| 119 | { |
| 120 | uint64_t lsd = dt_stddev((uint64_t *)lhs, 1); |
| 121 | uint64_t rsd = dt_stddev((uint64_t *)rhs, 1); |
| 122 | |
| 123 | if (lsd < rsd) |
| 124 | return (DT_LESSTHAN); |
| 125 | |
| 126 | if (lsd > rsd) |
| 127 | return (DT_GREATERTHAN); |
| 128 | |
| 129 | return (0); |
| 130 | } |
| 131 | |
| 132 | /*ARGSUSED*/ |
| 133 | static void |
| 134 | dt_aggregate_lquantize(int64_t *existing, int64_t *new, size_t size) |
| 135 | { |
| 136 | int64_t arg = *existing++; |
| 137 | uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); |
| 138 | int i; |
| 139 | |
| 140 | for (i = 0; i <= levels + 1; i++) |
| 141 | existing[i] = existing[i] + new[i + 1]; |
| 142 | } |
| 143 | |
| 144 | static long double |
| 145 | dt_aggregate_lquantizedsum(int64_t *lquanta) |
| 146 | { |
| 147 | int64_t arg = *lquanta++; |
| 148 | int32_t base = DTRACE_LQUANTIZE_BASE(arg); |
| 149 | uint16_t step = DTRACE_LQUANTIZE_STEP(arg); |
| 150 | uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg), i; |
| 151 | long double total = (long double)lquanta[0] * (long double)(base - 1); |
| 152 | |
| 153 | for (i = 0; i < levels; base += step, i++) |
| 154 | total += (long double)lquanta[i + 1] * (long double)base; |
| 155 | |
| 156 | return (total + (long double)lquanta[levels + 1] * |
| 157 | (long double)(base + 1)); |
| 158 | } |
| 159 | |
| 160 | static int64_t |
| 161 | dt_aggregate_lquantizedzero(int64_t *lquanta) |
| 162 | { |
| 163 | int64_t arg = *lquanta++; |
| 164 | int32_t base = DTRACE_LQUANTIZE_BASE(arg); |
| 165 | uint16_t step = DTRACE_LQUANTIZE_STEP(arg); |
| 166 | uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg), i; |
| 167 | |
| 168 | if (base - 1 == 0) |
| 169 | return (lquanta[0]); |
| 170 | |
| 171 | for (i = 0; i < levels; base += step, i++) { |
| 172 | if (base != 0) |
| 173 | continue; |
| 174 | |
| 175 | return (lquanta[i + 1]); |
| 176 | } |
| 177 | |
| 178 | if (base + 1 == 0) |
| 179 | return (lquanta[levels + 1]); |
| 180 | |
| 181 | return (0); |
| 182 | } |
| 183 | |
| 184 | static int |
| 185 | dt_aggregate_lquantizedcmp(int64_t *lhs, int64_t *rhs) |
| 186 | { |
| 187 | long double lsum = dt_aggregate_lquantizedsum(lhs); |
| 188 | long double rsum = dt_aggregate_lquantizedsum(rhs); |
| 189 | int64_t lzero = 0, rzero = 0; |
| 190 | |
| 191 | if (lsum < rsum) |
| 192 | return (DT_LESSTHAN); |
| 193 | |
| 194 | if (lsum > rsum) |
| 195 | return (DT_GREATERTHAN); |
| 196 | |
| 197 | /* |
| 198 | * If they're both equal, then we will compare based on the weights at |
| 199 | * zero. If the weights at zero are equal (or if zero is not within |
| 200 | * the range of the linear quantization), then this will be judged a |
| 201 | * tie and will be resolved based on the key comparison. |
| 202 | */ |
| 203 | lzero = dt_aggregate_lquantizedzero(lhs); |
| 204 | rzero = dt_aggregate_lquantizedzero(rhs); |
| 205 | |
| 206 | if (lzero < rzero) |
| 207 | return (DT_LESSTHAN); |
| 208 | |
| 209 | if (lzero > rzero) |
| 210 | return (DT_GREATERTHAN); |
| 211 | |
| 212 | return (0); |
| 213 | } |
| 214 | |
| 215 | static void |
| 216 | dt_aggregate_llquantize(int64_t *existing, int64_t *new, size_t size) |
| 217 | { |
| 218 | int i; |
| 219 | |
| 220 | for (i = 1; i < size / sizeof (int64_t); i++) |
| 221 | existing[i] = existing[i] + new[i]; |
| 222 | } |
| 223 | |
| 224 | static long double |
| 225 | dt_aggregate_llquantizedsum(int64_t *llquanta) |
| 226 | { |
| 227 | int64_t arg = *llquanta++; |
| 228 | uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg); |
| 229 | uint16_t low = DTRACE_LLQUANTIZE_LOW(arg); |
| 230 | uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg); |
| 231 | uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); |
| 232 | int bin = 0, order; |
| 233 | int64_t value = 1, next, step; |
| 234 | long double total; |
| 235 | |
| 236 | assert(nsteps >= factor); |
| 237 | assert(nsteps % factor == 0); |
| 238 | |
| 239 | for (order = 0; order < low; order++) |
| 240 | value *= factor; |
| 241 | |
| 242 | total = (long double)llquanta[bin++] * (long double)(value - 1); |
| 243 | |
| 244 | next = value * factor; |
| 245 | step = next > nsteps ? next / nsteps : 1; |
| 246 | |
| 247 | while (order <= high) { |
| 248 | assert(value < next); |
| 249 | total += (long double)llquanta[bin++] * (long double)(value); |
| 250 | |
| 251 | if ((value += step) != next) |
| 252 | continue; |
| 253 | |
| 254 | next = value * factor; |
| 255 | step = next > nsteps ? next / nsteps : 1; |
| 256 | order++; |
| 257 | } |
| 258 | |
| 259 | return (total + (long double)llquanta[bin] * (long double)value); |
| 260 | } |
| 261 | |
| 262 | static int |
| 263 | dt_aggregate_llquantizedcmp(int64_t *lhs, int64_t *rhs) |
| 264 | { |
| 265 | long double lsum = dt_aggregate_llquantizedsum(lhs); |
| 266 | long double rsum = dt_aggregate_llquantizedsum(rhs); |
| 267 | int64_t lzero, rzero; |
| 268 | |
| 269 | if (lsum < rsum) |
| 270 | return (DT_LESSTHAN); |
| 271 | |
| 272 | if (lsum > rsum) |
| 273 | return (DT_GREATERTHAN); |
| 274 | |
| 275 | /* |
| 276 | * If they're both equal, then we will compare based on the weights at |
| 277 | * zero. If the weights at zero are equal, then this will be judged a |
| 278 | * tie and will be resolved based on the key comparison. |
| 279 | */ |
| 280 | lzero = lhs[1]; |
| 281 | rzero = rhs[1]; |
| 282 | |
| 283 | if (lzero < rzero) |
| 284 | return (DT_LESSTHAN); |
| 285 | |
| 286 | if (lzero > rzero) |
| 287 | return (DT_GREATERTHAN); |
| 288 | |
| 289 | return (0); |
| 290 | } |
| 291 | |
| 292 | static int |
| 293 | dt_aggregate_quantizedcmp(int64_t *lhs, int64_t *rhs) |
| 294 | { |
| 295 | int nbuckets = DTRACE_QUANTIZE_NBUCKETS; |
| 296 | long double ltotal = 0, rtotal = 0; |
| 297 | int64_t lzero = 0, rzero = 0; |
| 298 | uint_t i; |
| 299 | |
| 300 | for (i = 0; i < nbuckets; i++) { |
| 301 | int64_t bucketval = DTRACE_QUANTIZE_BUCKETVAL(i); |
| 302 | |
| 303 | if (bucketval == 0) { |
| 304 | lzero = lhs[i]; |
| 305 | rzero = rhs[i]; |
| 306 | } |
| 307 | |
| 308 | ltotal += (long double)bucketval * (long double)lhs[i]; |
| 309 | rtotal += (long double)bucketval * (long double)rhs[i]; |
| 310 | } |
| 311 | |
| 312 | if (ltotal < rtotal) |
| 313 | return (DT_LESSTHAN); |
| 314 | |
| 315 | if (ltotal > rtotal) |
| 316 | return (DT_GREATERTHAN); |
| 317 | |
| 318 | /* |
| 319 | * If they're both equal, then we will compare based on the weights at |
| 320 | * zero. If the weights at zero are equal, then this will be judged a |
| 321 | * tie and will be resolved based on the key comparison. |
| 322 | */ |
| 323 | if (lzero < rzero) |
| 324 | return (DT_LESSTHAN); |
| 325 | |
| 326 | if (lzero > rzero) |
| 327 | return (DT_GREATERTHAN); |
| 328 | |
| 329 | return (0); |
| 330 | } |
| 331 | |
| 332 | static void |
| 333 | dt_aggregate_usym(dtrace_hdl_t *dtp, uint64_t *data) |
| 334 | { |
| 335 | uint64_t pid = data[0]; |
| 336 | uint64_t *pc = &data[1]; |
| 337 | struct ps_prochandle *P; |
| 338 | GElf_Sym sym; |
| 339 | |
| 340 | if (dtp->dt_vector != NULL) |
| 341 | return; |
| 342 | |
| 343 | if ((P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0)) == NULL) |
| 344 | return; |
| 345 | |
| 346 | dt_proc_lock(dtp, P); |
| 347 | |
| 348 | if (Plookup_by_addr(P, *pc, NULL, 0, &sym) == 0) |
| 349 | *pc = sym.st_value; |
| 350 | |
| 351 | dt_proc_unlock(dtp, P); |
| 352 | dt_proc_release(dtp, P); |
| 353 | } |
| 354 | |
| 355 | static void |
| 356 | dt_aggregate_umod(dtrace_hdl_t *dtp, uint64_t *data) |
| 357 | { |
| 358 | uint64_t pid = data[0]; |
| 359 | uint64_t *pc = &data[1]; |
| 360 | struct ps_prochandle *P; |
| 361 | const prmap_t *map; |
| 362 | |
| 363 | if (dtp->dt_vector != NULL) |
| 364 | return; |
| 365 | |
| 366 | if ((P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0)) == NULL) |
| 367 | return; |
| 368 | |
| 369 | dt_proc_lock(dtp, P); |
| 370 | |
| 371 | if ((map = Paddr_to_map(P, *pc)) != NULL) |
| 372 | *pc = map->pr_vaddr; |
| 373 | |
| 374 | dt_proc_unlock(dtp, P); |
| 375 | dt_proc_release(dtp, P); |
| 376 | } |
| 377 | |
| 378 | static void |
| 379 | dt_aggregate_sym(dtrace_hdl_t *dtp, uint64_t *data) |
| 380 | { |
| 381 | GElf_Sym sym; |
| 382 | uint64_t *pc = data; |
| 383 | |
| 384 | if (dtrace_lookup_by_addr(dtp, *pc, &sym, NULL) == 0) |
| 385 | *pc = sym.st_value; |
| 386 | } |
| 387 | |
| 388 | static void |
| 389 | dt_aggregate_mod(dtrace_hdl_t *dtp, uint64_t *data) |
| 390 | { |
| 391 | uint64_t *pc = data; |
| 392 | dt_module_t *dmp; |
| 393 | |
| 394 | if (dtp->dt_vector != NULL) { |
| 395 | /* |
| 396 | * We don't have a way of just getting the module for a |
| 397 | * vectored open, and it doesn't seem to be worth defining |
| 398 | * one. This means that use of mod() won't get true |
| 399 | * aggregation in the postmortem case (some modules may |
| 400 | * appear more than once in aggregation output). It seems |
| 401 | * unlikely that anyone will ever notice or care... |
| 402 | */ |
| 403 | return; |
| 404 | } |
| 405 | |
| 406 | for (dmp = dt_list_next(&dtp->dt_modlist); dmp != NULL; |
| 407 | dmp = dt_list_next(dmp)) { |
| 408 | if (*pc - dmp->dm_text_va < dmp->dm_text_size) { |
| 409 | *pc = dmp->dm_text_va; |
| 410 | return; |
| 411 | } |
| 412 | } |
| 413 | } |
| 414 | |
| 415 | static dtrace_aggvarid_t |
| 416 | dt_aggregate_aggvarid(dt_ahashent_t *ent) |
| 417 | { |
| 418 | dtrace_aggdesc_t *agg = ent->dtahe_data.dtada_desc; |
| 419 | caddr_t data = ent->dtahe_data.dtada_data; |
| 420 | dtrace_recdesc_t *rec = agg->dtagd_rec; |
| 421 | |
| 422 | /* |
| 423 | * First, we'll check the variable ID in the aggdesc. If it's valid, |
| 424 | * we'll return it. If not, we'll use the compiler-generated ID |
| 425 | * present as the first record. |
| 426 | */ |
| 427 | if (agg->dtagd_varid != DTRACE_AGGVARIDNONE) |
| 428 | return (agg->dtagd_varid); |
| 429 | |
| 430 | agg->dtagd_varid = *((dtrace_aggvarid_t *)(uintptr_t)(data + |
| 431 | rec->dtrd_offset)); |
| 432 | |
| 433 | return (agg->dtagd_varid); |
| 434 | } |
| 435 | |
| 436 | |
| 437 | static int |
| 438 | dt_aggregate_snap_cpu(dtrace_hdl_t *dtp, processorid_t cpu) |
| 439 | { |
| 440 | dtrace_epid_t id; |
| 441 | uint64_t hashval; |
| 442 | size_t offs, roffs, size, ndx; |
| 443 | int i, j, rval; |
| 444 | caddr_t addr, data; |
| 445 | dtrace_recdesc_t *rec; |
| 446 | dt_aggregate_t *agp = &dtp->dt_aggregate; |
| 447 | dtrace_aggdesc_t *agg; |
| 448 | dt_ahash_t *hash = &agp->dtat_hash; |
| 449 | dt_ahashent_t *h; |
| 450 | dtrace_bufdesc_t b = agp->dtat_buf, *buf = &b; |
| 451 | dtrace_aggdata_t *aggdata; |
| 452 | int flags = agp->dtat_flags; |
| 453 | |
| 454 | buf->dtbd_cpu = cpu; |
| 455 | |
| 456 | #ifdef illumos |
| 457 | if (dt_ioctl(dtp, DTRACEIOC_AGGSNAP, buf) == -1) { |
| 458 | #else |
| 459 | if (dt_ioctl(dtp, DTRACEIOC_AGGSNAP, &buf) == -1) { |
| 460 | #endif |
| 461 | if (errno == ENOENT) { |
| 462 | /* |
| 463 | * If that failed with ENOENT, it may be because the |
| 464 | * CPU was unconfigured. This is okay; we'll just |
| 465 | * do nothing but return success. |
| 466 | */ |
| 467 | return (0); |
| 468 | } |
| 469 | |
| 470 | return (dt_set_errno(dtp, errno)); |
| 471 | } |
| 472 | |
| 473 | if (buf->dtbd_drops != 0) { |
| 474 | if (dt_handle_cpudrop(dtp, cpu, |
| 475 | DTRACEDROP_AGGREGATION, buf->dtbd_drops) == -1) |
| 476 | return (-1); |
| 477 | } |
| 478 | |
| 479 | if (buf->dtbd_size == 0) |
| 480 | return (0); |
| 481 | |
| 482 | if (hash->dtah_hash == NULL) { |
| 483 | size_t size; |
| 484 | |
| 485 | hash->dtah_size = DTRACE_AHASHSIZE; |
| 486 | size = hash->dtah_size * sizeof (dt_ahashent_t *); |
| 487 | |
| 488 | if ((hash->dtah_hash = malloc(size)) == NULL) |
| 489 | return (dt_set_errno(dtp, EDT_NOMEM)); |
| 490 | |
| 491 | bzero(hash->dtah_hash, size); |
| 492 | } |
| 493 | |
| 494 | for (offs = 0; offs < buf->dtbd_size; ) { |
| 495 | /* |
| 496 | * We're guaranteed to have an ID. |
| 497 | */ |
| 498 | id = *((dtrace_epid_t *)((uintptr_t)buf->dtbd_data + |
| 499 | (uintptr_t)offs)); |
| 500 | |
| 501 | if (id == DTRACE_AGGIDNONE) { |
| 502 | /* |
| 503 | * This is filler to assure proper alignment of the |
| 504 | * next record; we simply ignore it. |
| 505 | */ |
| 506 | offs += sizeof (id); |
| 507 | continue; |
| 508 | } |
| 509 | |
| 510 | if ((rval = dt_aggid_lookup(dtp, id, &agg)) != 0) |
| 511 | return (rval); |
| 512 | |
| 513 | addr = buf->dtbd_data + offs; |
| 514 | size = agg->dtagd_size; |
| 515 | hashval = 0; |
| 516 | |
| 517 | for (j = 0; j < agg->dtagd_nrecs - 1; j++) { |
| 518 | rec = &agg->dtagd_rec[j]; |
| 519 | roffs = rec->dtrd_offset; |
| 520 | |
| 521 | switch (rec->dtrd_action) { |
| 522 | case DTRACEACT_USYM: |
| 523 | dt_aggregate_usym(dtp, |
| 524 | /* LINTED - alignment */ |
| 525 | (uint64_t *)&addr[roffs]); |
| 526 | break; |
| 527 | |
| 528 | case DTRACEACT_UMOD: |
| 529 | dt_aggregate_umod(dtp, |
| 530 | /* LINTED - alignment */ |
| 531 | (uint64_t *)&addr[roffs]); |
| 532 | break; |
| 533 | |
| 534 | case DTRACEACT_SYM: |
| 535 | /* LINTED - alignment */ |
| 536 | dt_aggregate_sym(dtp, (uint64_t *)&addr[roffs]); |
| 537 | break; |
| 538 | |
| 539 | case DTRACEACT_MOD: |
| 540 | /* LINTED - alignment */ |
| 541 | dt_aggregate_mod(dtp, (uint64_t *)&addr[roffs]); |
| 542 | break; |
| 543 | |
| 544 | default: |
| 545 | break; |
| 546 | } |
| 547 | |
| 548 | for (i = 0; i < rec->dtrd_size; i++) |
| 549 | hashval += addr[roffs + i]; |
| 550 | } |
| 551 | |
| 552 | ndx = hashval % hash->dtah_size; |
| 553 | |
| 554 | for (h = hash->dtah_hash[ndx]; h != NULL; h = h->dtahe_next) { |
| 555 | if (h->dtahe_hashval != hashval) |
| 556 | continue; |
| 557 | |
| 558 | if (h->dtahe_size != size) |
| 559 | continue; |
| 560 | |
| 561 | aggdata = &h->dtahe_data; |
| 562 | data = aggdata->dtada_data; |
| 563 | |
| 564 | for (j = 0; j < agg->dtagd_nrecs - 1; j++) { |
| 565 | rec = &agg->dtagd_rec[j]; |
| 566 | roffs = rec->dtrd_offset; |
| 567 | |
| 568 | for (i = 0; i < rec->dtrd_size; i++) |
| 569 | if (addr[roffs + i] != data[roffs + i]) |
| 570 | goto hashnext; |
| 571 | } |
| 572 | |
| 573 | /* |
| 574 | * We found it. Now we need to apply the aggregating |
| 575 | * action on the data here. |
| 576 | */ |
| 577 | rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1]; |
| 578 | roffs = rec->dtrd_offset; |
| 579 | /* LINTED - alignment */ |
| 580 | h->dtahe_aggregate((int64_t *)&data[roffs], |
| 581 | /* LINTED - alignment */ |
| 582 | (int64_t *)&addr[roffs], rec->dtrd_size); |
| 583 | |
| 584 | /* |
| 585 | * If we're keeping per CPU data, apply the aggregating |
| 586 | * action there as well. |
| 587 | */ |
| 588 | if (aggdata->dtada_percpu != NULL) { |
| 589 | data = aggdata->dtada_percpu[cpu]; |
| 590 | |
| 591 | /* LINTED - alignment */ |
| 592 | h->dtahe_aggregate((int64_t *)data, |
| 593 | /* LINTED - alignment */ |
| 594 | (int64_t *)&addr[roffs], rec->dtrd_size); |
| 595 | } |
| 596 | |
| 597 | goto bufnext; |
| 598 | hashnext: |
| 599 | continue; |
| 600 | } |
| 601 | |
| 602 | /* |
| 603 | * If we're here, we couldn't find an entry for this record. |
| 604 | */ |
| 605 | if ((h = malloc(sizeof (dt_ahashent_t))) == NULL) |
| 606 | return (dt_set_errno(dtp, EDT_NOMEM)); |
| 607 | bzero(h, sizeof (dt_ahashent_t)); |
| 608 | aggdata = &h->dtahe_data; |
| 609 | |
| 610 | if ((aggdata->dtada_data = malloc(size)) == NULL) { |
| 611 | free(h); |
| 612 | return (dt_set_errno(dtp, EDT_NOMEM)); |
| 613 | } |
| 614 | |
| 615 | bcopy(addr, aggdata->dtada_data, size); |
| 616 | aggdata->dtada_size = size; |
| 617 | aggdata->dtada_desc = agg; |
| 618 | aggdata->dtada_handle = dtp; |
| 619 | (void) dt_epid_lookup(dtp, agg->dtagd_epid, |
| 620 | &aggdata->dtada_edesc, &aggdata->dtada_pdesc); |
| 621 | aggdata->dtada_normal = 1; |
| 622 | |
| 623 | h->dtahe_hashval = hashval; |
| 624 | h->dtahe_size = size; |
| 625 | (void) dt_aggregate_aggvarid(h); |
| 626 | |
| 627 | rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1]; |
| 628 | |
| 629 | if (flags & DTRACE_A_PERCPU) { |
| 630 | int max_cpus = agp->dtat_maxcpu; |
| 631 | caddr_t *percpu = malloc(max_cpus * sizeof (caddr_t)); |
| 632 | |
| 633 | if (percpu == NULL) { |
| 634 | free(aggdata->dtada_data); |
| 635 | free(h); |
| 636 | return (dt_set_errno(dtp, EDT_NOMEM)); |
| 637 | } |
| 638 | |
| 639 | for (j = 0; j < max_cpus; j++) { |
| 640 | percpu[j] = malloc(rec->dtrd_size); |
| 641 | |
| 642 | if (percpu[j] == NULL) { |
| 643 | while (--j >= 0) |
| 644 | free(percpu[j]); |
| 645 | |
| 646 | free(aggdata->dtada_data); |
| 647 | free(h); |
| 648 | return (dt_set_errno(dtp, EDT_NOMEM)); |
| 649 | } |
| 650 | |
| 651 | if (j == cpu) { |
| 652 | bcopy(&addr[rec->dtrd_offset], |
| 653 | percpu[j], rec->dtrd_size); |
| 654 | } else { |
| 655 | bzero(percpu[j], rec->dtrd_size); |
| 656 | } |
| 657 | } |
| 658 | |
| 659 | aggdata->dtada_percpu = percpu; |
| 660 | } |
| 661 | |
| 662 | switch (rec->dtrd_action) { |
| 663 | case DTRACEAGG_MIN: |
| 664 | h->dtahe_aggregate = dt_aggregate_min; |
| 665 | break; |
| 666 | |
| 667 | case DTRACEAGG_MAX: |
| 668 | h->dtahe_aggregate = dt_aggregate_max; |
| 669 | break; |
| 670 | |
| 671 | case DTRACEAGG_LQUANTIZE: |
| 672 | h->dtahe_aggregate = dt_aggregate_lquantize; |
| 673 | break; |
| 674 | |
| 675 | case DTRACEAGG_LLQUANTIZE: |
| 676 | h->dtahe_aggregate = dt_aggregate_llquantize; |
| 677 | break; |
| 678 | |
| 679 | case DTRACEAGG_COUNT: |
| 680 | case DTRACEAGG_SUM: |
| 681 | case DTRACEAGG_AVG: |
| 682 | case DTRACEAGG_STDDEV: |
| 683 | case DTRACEAGG_QUANTIZE: |
| 684 | h->dtahe_aggregate = dt_aggregate_count; |
| 685 | break; |
| 686 | |
| 687 | default: |
| 688 | return (dt_set_errno(dtp, EDT_BADAGG)); |
| 689 | } |
| 690 | |
| 691 | if (hash->dtah_hash[ndx] != NULL) |
| 692 | hash->dtah_hash[ndx]->dtahe_prev = h; |
| 693 | |
| 694 | h->dtahe_next = hash->dtah_hash[ndx]; |
| 695 | hash->dtah_hash[ndx] = h; |
| 696 | |
| 697 | if (hash->dtah_all != NULL) |
| 698 | hash->dtah_all->dtahe_prevall = h; |
| 699 | |
| 700 | h->dtahe_nextall = hash->dtah_all; |
| 701 | hash->dtah_all = h; |
| 702 | bufnext: |
| 703 | offs += agg->dtagd_size; |
| 704 | } |
| 705 | |
| 706 | return (0); |
| 707 | } |
| 708 | |
| 709 | int |
| 710 | dtrace_aggregate_snap(dtrace_hdl_t *dtp) |
| 711 | { |
| 712 | int i, rval; |
| 713 | dt_aggregate_t *agp = &dtp->dt_aggregate; |
| 714 | hrtime_t now = gethrtime(); |
| 715 | dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_AGGRATE]; |
| 716 | |
| 717 | if (dtp->dt_lastagg != 0) { |
| 718 | if (now - dtp->dt_lastagg < interval) |
| 719 | return (0); |
| 720 | |
| 721 | dtp->dt_lastagg += interval; |
| 722 | } else { |
| 723 | dtp->dt_lastagg = now; |
| 724 | } |
| 725 | |
| 726 | if (!dtp->dt_active) |
| 727 | return (dt_set_errno(dtp, EINVAL)); |
| 728 | |
| 729 | if (agp->dtat_buf.dtbd_size == 0) |
| 730 | return (0); |
| 731 | |
| 732 | for (i = 0; i < agp->dtat_ncpus; i++) { |
| 733 | if ((rval = dt_aggregate_snap_cpu(dtp, agp->dtat_cpus[i]))) |
| 734 | return (rval); |
| 735 | } |
| 736 | |
| 737 | return (0); |
| 738 | } |
| 739 | |
| 740 | static int |
| 741 | dt_aggregate_hashcmp(const void *lhs, const void *rhs) |
| 742 | { |
| 743 | dt_ahashent_t *lh = *((dt_ahashent_t **)lhs); |
| 744 | dt_ahashent_t *rh = *((dt_ahashent_t **)rhs); |
| 745 | dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc; |
| 746 | dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc; |
| 747 | |
| 748 | if (lagg->dtagd_nrecs < ragg->dtagd_nrecs) |
| 749 | return (DT_LESSTHAN); |
| 750 | |
| 751 | if (lagg->dtagd_nrecs > ragg->dtagd_nrecs) |
| 752 | return (DT_GREATERTHAN); |
| 753 | |
| 754 | return (0); |
| 755 | } |
| 756 | |
| 757 | static int |
| 758 | dt_aggregate_varcmp(const void *lhs, const void *rhs) |
| 759 | { |
| 760 | dt_ahashent_t *lh = *((dt_ahashent_t **)lhs); |
| 761 | dt_ahashent_t *rh = *((dt_ahashent_t **)rhs); |
| 762 | dtrace_aggvarid_t lid, rid; |
| 763 | |
| 764 | lid = dt_aggregate_aggvarid(lh); |
| 765 | rid = dt_aggregate_aggvarid(rh); |
| 766 | |
| 767 | if (lid < rid) |
| 768 | return (DT_LESSTHAN); |
| 769 | |
| 770 | if (lid > rid) |
| 771 | return (DT_GREATERTHAN); |
| 772 | |
| 773 | return (0); |
| 774 | } |
| 775 | |
| 776 | static int |
| 777 | dt_aggregate_keycmp(const void *lhs, const void *rhs) |
| 778 | { |
| 779 | dt_ahashent_t *lh = *((dt_ahashent_t **)lhs); |
| 780 | dt_ahashent_t *rh = *((dt_ahashent_t **)rhs); |
| 781 | dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc; |
| 782 | dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc; |
| 783 | dtrace_recdesc_t *lrec, *rrec; |
| 784 | char *ldata, *rdata; |
| 785 | int rval, i, j, keypos, nrecs; |
| 786 | |
| 787 | if ((rval = dt_aggregate_hashcmp(lhs, rhs)) != 0) |
| 788 | return (rval); |
| 789 | |
| 790 | nrecs = lagg->dtagd_nrecs - 1; |
| 791 | assert(nrecs == ragg->dtagd_nrecs - 1); |
| 792 | |
| 793 | keypos = dt_keypos + 1 >= nrecs ? 0 : dt_keypos; |
| 794 | |
| 795 | for (i = 1; i < nrecs; i++) { |
| 796 | uint64_t lval, rval; |
| 797 | int ndx = i + keypos; |
| 798 | |
| 799 | if (ndx >= nrecs) |
| 800 | ndx = ndx - nrecs + 1; |
| 801 | |
| 802 | lrec = &lagg->dtagd_rec[ndx]; |
| 803 | rrec = &ragg->dtagd_rec[ndx]; |
| 804 | |
| 805 | ldata = lh->dtahe_data.dtada_data + lrec->dtrd_offset; |
| 806 | rdata = rh->dtahe_data.dtada_data + rrec->dtrd_offset; |
| 807 | |
| 808 | if (lrec->dtrd_size < rrec->dtrd_size) |
| 809 | return (DT_LESSTHAN); |
| 810 | |
| 811 | if (lrec->dtrd_size > rrec->dtrd_size) |
| 812 | return (DT_GREATERTHAN); |
| 813 | |
| 814 | switch (lrec->dtrd_size) { |
| 815 | case sizeof (uint64_t): |
| 816 | /* LINTED - alignment */ |
| 817 | lval = *((uint64_t *)ldata); |
| 818 | /* LINTED - alignment */ |
| 819 | rval = *((uint64_t *)rdata); |
| 820 | break; |
| 821 | |
| 822 | case sizeof (uint32_t): |
| 823 | /* LINTED - alignment */ |
| 824 | lval = *((uint32_t *)ldata); |
| 825 | /* LINTED - alignment */ |
| 826 | rval = *((uint32_t *)rdata); |
| 827 | break; |
| 828 | |
| 829 | case sizeof (uint16_t): |
| 830 | /* LINTED - alignment */ |
| 831 | lval = *((uint16_t *)ldata); |
| 832 | /* LINTED - alignment */ |
| 833 | rval = *((uint16_t *)rdata); |
| 834 | break; |
| 835 | |
| 836 | case sizeof (uint8_t): |
| 837 | lval = *((uint8_t *)ldata); |
| 838 | rval = *((uint8_t *)rdata); |
| 839 | break; |
| 840 | |
| 841 | default: |
| 842 | switch (lrec->dtrd_action) { |
| 843 | case DTRACEACT_UMOD: |
| 844 | case DTRACEACT_UADDR: |
| 845 | case DTRACEACT_USYM: |
| 846 | for (j = 0; j < 2; j++) { |
| 847 | /* LINTED - alignment */ |
| 848 | lval = ((uint64_t *)ldata)[j]; |
| 849 | /* LINTED - alignment */ |
| 850 | rval = ((uint64_t *)rdata)[j]; |
| 851 | |
| 852 | if (lval < rval) |
| 853 | return (DT_LESSTHAN); |
| 854 | |
| 855 | if (lval > rval) |
| 856 | return (DT_GREATERTHAN); |
| 857 | } |
| 858 | |
| 859 | break; |
| 860 | |
| 861 | default: |
| 862 | for (j = 0; j < lrec->dtrd_size; j++) { |
| 863 | lval = ((uint8_t *)ldata)[j]; |
| 864 | rval = ((uint8_t *)rdata)[j]; |
| 865 | |
| 866 | if (lval < rval) |
| 867 | return (DT_LESSTHAN); |
| 868 | |
| 869 | if (lval > rval) |
| 870 | return (DT_GREATERTHAN); |
| 871 | } |
| 872 | } |
| 873 | |
| 874 | continue; |
| 875 | } |
| 876 | |
| 877 | if (lval < rval) |
| 878 | return (DT_LESSTHAN); |
| 879 | |
| 880 | if (lval > rval) |
| 881 | return (DT_GREATERTHAN); |
| 882 | } |
| 883 | |
| 884 | return (0); |
| 885 | } |
| 886 | |
| 887 | static int |
| 888 | dt_aggregate_valcmp(const void *lhs, const void *rhs) |
| 889 | { |
| 890 | dt_ahashent_t *lh = *((dt_ahashent_t **)lhs); |
| 891 | dt_ahashent_t *rh = *((dt_ahashent_t **)rhs); |
| 892 | dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc; |
| 893 | dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc; |
| 894 | caddr_t ldata = lh->dtahe_data.dtada_data; |
| 895 | caddr_t rdata = rh->dtahe_data.dtada_data; |
| 896 | dtrace_recdesc_t *lrec, *rrec; |
| 897 | int64_t *laddr, *raddr; |
| 898 | int rval; |
| 899 | |
| 900 | assert(lagg->dtagd_nrecs == ragg->dtagd_nrecs); |
| 901 | |
| 902 | lrec = &lagg->dtagd_rec[lagg->dtagd_nrecs - 1]; |
| 903 | rrec = &ragg->dtagd_rec[ragg->dtagd_nrecs - 1]; |
| 904 | |
| 905 | assert(lrec->dtrd_action == rrec->dtrd_action); |
| 906 | |
| 907 | laddr = (int64_t *)(uintptr_t)(ldata + lrec->dtrd_offset); |
| 908 | raddr = (int64_t *)(uintptr_t)(rdata + rrec->dtrd_offset); |
| 909 | |
| 910 | switch (lrec->dtrd_action) { |
| 911 | case DTRACEAGG_AVG: |
| 912 | rval = dt_aggregate_averagecmp(laddr, raddr); |
| 913 | break; |
| 914 | |
| 915 | case DTRACEAGG_STDDEV: |
| 916 | rval = dt_aggregate_stddevcmp(laddr, raddr); |
| 917 | break; |
| 918 | |
| 919 | case DTRACEAGG_QUANTIZE: |
| 920 | rval = dt_aggregate_quantizedcmp(laddr, raddr); |
| 921 | break; |
| 922 | |
| 923 | case DTRACEAGG_LQUANTIZE: |
| 924 | rval = dt_aggregate_lquantizedcmp(laddr, raddr); |
| 925 | break; |
| 926 | |
| 927 | case DTRACEAGG_LLQUANTIZE: |
| 928 | rval = dt_aggregate_llquantizedcmp(laddr, raddr); |
| 929 | break; |
| 930 | |
| 931 | case DTRACEAGG_COUNT: |
| 932 | case DTRACEAGG_SUM: |
| 933 | case DTRACEAGG_MIN: |
| 934 | case DTRACEAGG_MAX: |
| 935 | rval = dt_aggregate_countcmp(laddr, raddr); |
| 936 | break; |
| 937 | |
| 938 | default: |
| 939 | assert(0); |
| 940 | } |
| 941 | |
| 942 | return (rval); |
| 943 | } |
| 944 | |
| 945 | static int |
| 946 | dt_aggregate_valkeycmp(const void *lhs, const void *rhs) |
| 947 | { |
| 948 | int rval; |
| 949 | |
| 950 | if ((rval = dt_aggregate_valcmp(lhs, rhs)) != 0) |
| 951 | return (rval); |
| 952 | |
| 953 | /* |
| 954 | * If we're here, the values for the two aggregation elements are |
| 955 | * equal. We already know that the key layout is the same for the two |
| 956 | * elements; we must now compare the keys themselves as a tie-breaker. |
| 957 | */ |
| 958 | return (dt_aggregate_keycmp(lhs, rhs)); |
| 959 | } |
| 960 | |
| 961 | static int |
| 962 | dt_aggregate_keyvarcmp(const void *lhs, const void *rhs) |
| 963 | { |
| 964 | int rval; |
| 965 | |
| 966 | if ((rval = dt_aggregate_keycmp(lhs, rhs)) != 0) |
| 967 | return (rval); |
| 968 | |
| 969 | return (dt_aggregate_varcmp(lhs, rhs)); |
| 970 | } |
| 971 | |
| 972 | static int |
| 973 | dt_aggregate_varkeycmp(const void *lhs, const void *rhs) |
| 974 | { |
| 975 | int rval; |
| 976 | |
| 977 | if ((rval = dt_aggregate_varcmp(lhs, rhs)) != 0) |
| 978 | return (rval); |
| 979 | |
| 980 | return (dt_aggregate_keycmp(lhs, rhs)); |
| 981 | } |
| 982 | |
| 983 | static int |
| 984 | dt_aggregate_valvarcmp(const void *lhs, const void *rhs) |
| 985 | { |
| 986 | int rval; |
| 987 | |
| 988 | if ((rval = dt_aggregate_valkeycmp(lhs, rhs)) != 0) |
| 989 | return (rval); |
| 990 | |
| 991 | return (dt_aggregate_varcmp(lhs, rhs)); |
| 992 | } |
| 993 | |
| 994 | static int |
| 995 | dt_aggregate_varvalcmp(const void *lhs, const void *rhs) |
| 996 | { |
| 997 | int rval; |
| 998 | |
| 999 | if ((rval = dt_aggregate_varcmp(lhs, rhs)) != 0) |
| 1000 | return (rval); |
| 1001 | |
| 1002 | return (dt_aggregate_valkeycmp(lhs, rhs)); |
| 1003 | } |
| 1004 | |
| 1005 | static int |
| 1006 | dt_aggregate_keyvarrevcmp(const void *lhs, const void *rhs) |
| 1007 | { |
| 1008 | return (dt_aggregate_keyvarcmp(rhs, lhs)); |
| 1009 | } |
| 1010 | |
| 1011 | static int |
| 1012 | dt_aggregate_varkeyrevcmp(const void *lhs, const void *rhs) |
| 1013 | { |
| 1014 | return (dt_aggregate_varkeycmp(rhs, lhs)); |
| 1015 | } |
| 1016 | |
| 1017 | static int |
| 1018 | dt_aggregate_valvarrevcmp(const void *lhs, const void *rhs) |
| 1019 | { |
| 1020 | return (dt_aggregate_valvarcmp(rhs, lhs)); |
| 1021 | } |
| 1022 | |
| 1023 | static int |
| 1024 | dt_aggregate_varvalrevcmp(const void *lhs, const void *rhs) |
| 1025 | { |
| 1026 | return (dt_aggregate_varvalcmp(rhs, lhs)); |
| 1027 | } |
| 1028 | |
| 1029 | static int |
| 1030 | dt_aggregate_bundlecmp(const void *lhs, const void *rhs) |
| 1031 | { |
| 1032 | dt_ahashent_t **lh = *((dt_ahashent_t ***)lhs); |
| 1033 | dt_ahashent_t **rh = *((dt_ahashent_t ***)rhs); |
| 1034 | int i, rval; |
| 1035 | |
| 1036 | if (dt_keysort) { |
| 1037 | /* |
| 1038 | * If we're sorting on keys, we need to scan until we find the |
| 1039 | * last entry -- that's the representative key. (The order of |
| 1040 | * the bundle is values followed by key to accommodate the |
| 1041 | * default behavior of sorting by value.) If the keys are |
| 1042 | * equal, we'll fall into the value comparison loop, below. |
| 1043 | */ |
| 1044 | for (i = 0; lh[i + 1] != NULL; i++) |
| 1045 | continue; |
| 1046 | |
| 1047 | assert(i != 0); |
| 1048 | assert(rh[i + 1] == NULL); |
| 1049 | |
| 1050 | if ((rval = dt_aggregate_keycmp(&lh[i], &rh[i])) != 0) |
| 1051 | return (rval); |
| 1052 | } |
| 1053 | |
| 1054 | for (i = 0; ; i++) { |
| 1055 | if (lh[i + 1] == NULL) { |
| 1056 | /* |
| 1057 | * All of the values are equal; if we're sorting on |
| 1058 | * keys, then we're only here because the keys were |
| 1059 | * found to be equal and these records are therefore |
| 1060 | * equal. If we're not sorting on keys, we'll use the |
| 1061 | * key comparison from the representative key as the |
| 1062 | * tie-breaker. |
| 1063 | */ |
| 1064 | if (dt_keysort) |
| 1065 | return (0); |
| 1066 | |
| 1067 | assert(i != 0); |
| 1068 | assert(rh[i + 1] == NULL); |
| 1069 | return (dt_aggregate_keycmp(&lh[i], &rh[i])); |
| 1070 | } else { |
| 1071 | if ((rval = dt_aggregate_valcmp(&lh[i], &rh[i])) != 0) |
| 1072 | return (rval); |
| 1073 | } |
| 1074 | } |
| 1075 | } |
| 1076 | |
| 1077 | int |
| 1078 | dt_aggregate_go(dtrace_hdl_t *dtp) |
| 1079 | { |
| 1080 | dt_aggregate_t *agp = &dtp->dt_aggregate; |
| 1081 | dtrace_optval_t size, cpu; |
| 1082 | dtrace_bufdesc_t *buf = &agp->dtat_buf; |
| 1083 | int rval, i; |
| 1084 | |
| 1085 | assert(agp->dtat_maxcpu == 0); |
| 1086 | assert(agp->dtat_ncpu == 0); |
| 1087 | assert(agp->dtat_cpus == NULL); |
| 1088 | |
| 1089 | agp->dtat_maxcpu = dt_sysconf(dtp, _SC_CPUID_MAX) + 1; |
| 1090 | agp->dtat_ncpu = dt_sysconf(dtp, _SC_NPROCESSORS_MAX); |
| 1091 | agp->dtat_cpus = malloc(agp->dtat_ncpu * sizeof (processorid_t)); |
| 1092 | |
| 1093 | if (agp->dtat_cpus == NULL) |
| 1094 | return (dt_set_errno(dtp, EDT_NOMEM)); |
| 1095 | |
| 1096 | /* |
| 1097 | * Use the aggregation buffer size as reloaded from the kernel. |
| 1098 | */ |
| 1099 | size = dtp->dt_options[DTRACEOPT_AGGSIZE]; |
| 1100 | |
| 1101 | rval = dtrace_getopt(dtp, "aggsize" , &size); |
| 1102 | assert(rval == 0); |
| 1103 | |
| 1104 | if (size == 0 || size == DTRACEOPT_UNSET) |
| 1105 | return (0); |
| 1106 | |
| 1107 | buf = &agp->dtat_buf; |
| 1108 | buf->dtbd_size = size; |
| 1109 | |
| 1110 | if ((buf->dtbd_data = malloc(buf->dtbd_size)) == NULL) |
| 1111 | return (dt_set_errno(dtp, EDT_NOMEM)); |
| 1112 | |
| 1113 | /* |
| 1114 | * Now query for the CPUs enabled. |
| 1115 | */ |
| 1116 | rval = dtrace_getopt(dtp, "cpu" , &cpu); |
| 1117 | assert(rval == 0 && cpu != DTRACEOPT_UNSET); |
| 1118 | |
| 1119 | if (cpu != DTRACE_CPUALL) { |
| 1120 | assert(cpu < agp->dtat_ncpu); |
| 1121 | agp->dtat_cpus[agp->dtat_ncpus++] = (processorid_t)cpu; |
| 1122 | |
| 1123 | return (0); |
| 1124 | } |
| 1125 | |
| 1126 | agp->dtat_ncpus = 0; |
| 1127 | for (i = 0; i < agp->dtat_maxcpu; i++) { |
| 1128 | if (dt_status(dtp, i) == -1) |
| 1129 | continue; |
| 1130 | |
| 1131 | agp->dtat_cpus[agp->dtat_ncpus++] = i; |
| 1132 | } |
| 1133 | |
| 1134 | return (0); |
| 1135 | } |
| 1136 | |
| 1137 | static int |
| 1138 | dt_aggwalk_rval(dtrace_hdl_t *dtp, dt_ahashent_t *h, int rval) |
| 1139 | { |
| 1140 | dt_aggregate_t *agp = &dtp->dt_aggregate; |
| 1141 | dtrace_aggdata_t *data; |
| 1142 | dtrace_aggdesc_t *aggdesc; |
| 1143 | dtrace_recdesc_t *rec; |
| 1144 | int i; |
| 1145 | |
| 1146 | switch (rval) { |
| 1147 | case DTRACE_AGGWALK_NEXT: |
| 1148 | break; |
| 1149 | |
| 1150 | case DTRACE_AGGWALK_CLEAR: { |
| 1151 | uint32_t size, offs = 0; |
| 1152 | |
| 1153 | aggdesc = h->dtahe_data.dtada_desc; |
| 1154 | rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1]; |
| 1155 | size = rec->dtrd_size; |
| 1156 | data = &h->dtahe_data; |
| 1157 | |
| 1158 | if (rec->dtrd_action == DTRACEAGG_LQUANTIZE) { |
| 1159 | offs = sizeof (uint64_t); |
| 1160 | size -= sizeof (uint64_t); |
| 1161 | } |
| 1162 | |
| 1163 | bzero(&data->dtada_data[rec->dtrd_offset] + offs, size); |
| 1164 | |
| 1165 | if (data->dtada_percpu == NULL) |
| 1166 | break; |
| 1167 | |
| 1168 | for (i = 0; i < dtp->dt_aggregate.dtat_maxcpu; i++) |
| 1169 | bzero(data->dtada_percpu[i] + offs, size); |
| 1170 | break; |
| 1171 | } |
| 1172 | |
| 1173 | case DTRACE_AGGWALK_ERROR: |
| 1174 | /* |
| 1175 | * We assume that errno is already set in this case. |
| 1176 | */ |
| 1177 | return (dt_set_errno(dtp, errno)); |
| 1178 | |
| 1179 | case DTRACE_AGGWALK_ABORT: |
| 1180 | return (dt_set_errno(dtp, EDT_DIRABORT)); |
| 1181 | |
| 1182 | case DTRACE_AGGWALK_DENORMALIZE: |
| 1183 | h->dtahe_data.dtada_normal = 1; |
| 1184 | return (0); |
| 1185 | |
| 1186 | case DTRACE_AGGWALK_NORMALIZE: |
| 1187 | if (h->dtahe_data.dtada_normal == 0) { |
| 1188 | h->dtahe_data.dtada_normal = 1; |
| 1189 | return (dt_set_errno(dtp, EDT_BADRVAL)); |
| 1190 | } |
| 1191 | |
| 1192 | return (0); |
| 1193 | |
| 1194 | case DTRACE_AGGWALK_REMOVE: { |
| 1195 | dtrace_aggdata_t *aggdata = &h->dtahe_data; |
| 1196 | int max_cpus = agp->dtat_maxcpu; |
| 1197 | |
| 1198 | /* |
| 1199 | * First, remove this hash entry from its hash chain. |
| 1200 | */ |
| 1201 | if (h->dtahe_prev != NULL) { |
| 1202 | h->dtahe_prev->dtahe_next = h->dtahe_next; |
| 1203 | } else { |
| 1204 | dt_ahash_t *hash = &agp->dtat_hash; |
| 1205 | size_t ndx = h->dtahe_hashval % hash->dtah_size; |
| 1206 | |
| 1207 | assert(hash->dtah_hash[ndx] == h); |
| 1208 | hash->dtah_hash[ndx] = h->dtahe_next; |
| 1209 | } |
| 1210 | |
| 1211 | if (h->dtahe_next != NULL) |
| 1212 | h->dtahe_next->dtahe_prev = h->dtahe_prev; |
| 1213 | |
| 1214 | /* |
| 1215 | * Now remove it from the list of all hash entries. |
| 1216 | */ |
| 1217 | if (h->dtahe_prevall != NULL) { |
| 1218 | h->dtahe_prevall->dtahe_nextall = h->dtahe_nextall; |
| 1219 | } else { |
| 1220 | dt_ahash_t *hash = &agp->dtat_hash; |
| 1221 | |
| 1222 | assert(hash->dtah_all == h); |
| 1223 | hash->dtah_all = h->dtahe_nextall; |
| 1224 | } |
| 1225 | |
| 1226 | if (h->dtahe_nextall != NULL) |
| 1227 | h->dtahe_nextall->dtahe_prevall = h->dtahe_prevall; |
| 1228 | |
| 1229 | /* |
| 1230 | * We're unlinked. We can safely destroy the data. |
| 1231 | */ |
| 1232 | if (aggdata->dtada_percpu != NULL) { |
| 1233 | for (i = 0; i < max_cpus; i++) |
| 1234 | free(aggdata->dtada_percpu[i]); |
| 1235 | free(aggdata->dtada_percpu); |
| 1236 | } |
| 1237 | |
| 1238 | free(aggdata->dtada_data); |
| 1239 | free(h); |
| 1240 | |
| 1241 | return (0); |
| 1242 | } |
| 1243 | |
| 1244 | default: |
| 1245 | return (dt_set_errno(dtp, EDT_BADRVAL)); |
| 1246 | } |
| 1247 | |
| 1248 | return (0); |
| 1249 | } |
| 1250 | |
| 1251 | static void |
| 1252 | dt_aggregate_qsort(dtrace_hdl_t *dtp, void *base, size_t nel, size_t width, |
| 1253 | int (*compar)(const void *, const void *)) |
| 1254 | { |
| 1255 | int rev = dt_revsort, key = dt_keysort, keypos = dt_keypos; |
| 1256 | dtrace_optval_t keyposopt = dtp->dt_options[DTRACEOPT_AGGSORTKEYPOS]; |
| 1257 | |
| 1258 | dt_revsort = (dtp->dt_options[DTRACEOPT_AGGSORTREV] != DTRACEOPT_UNSET); |
| 1259 | dt_keysort = (dtp->dt_options[DTRACEOPT_AGGSORTKEY] != DTRACEOPT_UNSET); |
| 1260 | |
| 1261 | if (keyposopt != DTRACEOPT_UNSET && keyposopt <= INT_MAX) { |
| 1262 | dt_keypos = (int)keyposopt; |
| 1263 | } else { |
| 1264 | dt_keypos = 0; |
| 1265 | } |
| 1266 | |
| 1267 | if (compar == NULL) { |
| 1268 | if (!dt_keysort) { |
| 1269 | compar = dt_aggregate_varvalcmp; |
| 1270 | } else { |
| 1271 | compar = dt_aggregate_varkeycmp; |
| 1272 | } |
| 1273 | } |
| 1274 | |
| 1275 | qsort(base, nel, width, compar); |
| 1276 | |
| 1277 | dt_revsort = rev; |
| 1278 | dt_keysort = key; |
| 1279 | dt_keypos = keypos; |
| 1280 | } |
| 1281 | |
| 1282 | int |
| 1283 | dtrace_aggregate_walk(dtrace_hdl_t *dtp, dtrace_aggregate_f *func, void *arg) |
| 1284 | { |
| 1285 | dt_ahashent_t *h, *next; |
| 1286 | dt_ahash_t *hash = &dtp->dt_aggregate.dtat_hash; |
| 1287 | |
| 1288 | for (h = hash->dtah_all; h != NULL; h = next) { |
| 1289 | /* |
| 1290 | * dt_aggwalk_rval() can potentially remove the current hash |
| 1291 | * entry; we need to load the next hash entry before calling |
| 1292 | * into it. |
| 1293 | */ |
| 1294 | next = h->dtahe_nextall; |
| 1295 | |
| 1296 | if (dt_aggwalk_rval(dtp, h, func(&h->dtahe_data, arg)) == -1) |
| 1297 | return (-1); |
| 1298 | } |
| 1299 | |
| 1300 | return (0); |
| 1301 | } |
| 1302 | |
| 1303 | static int |
| 1304 | dt_aggregate_total(dtrace_hdl_t *dtp, boolean_t clear) |
| 1305 | { |
| 1306 | dt_ahashent_t *h; |
| 1307 | dtrace_aggdata_t **total; |
| 1308 | dtrace_aggid_t max = DTRACE_AGGVARIDNONE, id; |
| 1309 | dt_aggregate_t *agp = &dtp->dt_aggregate; |
| 1310 | dt_ahash_t *hash = &agp->dtat_hash; |
| 1311 | uint32_t tflags; |
| 1312 | |
| 1313 | tflags = DTRACE_A_TOTAL | DTRACE_A_HASNEGATIVES | DTRACE_A_HASPOSITIVES; |
| 1314 | |
| 1315 | /* |
| 1316 | * If we need to deliver per-aggregation totals, we're going to take |
| 1317 | * three passes over the aggregate: one to clear everything out and |
| 1318 | * determine our maximum aggregation ID, one to actually total |
| 1319 | * everything up, and a final pass to assign the totals to the |
| 1320 | * individual elements. |
| 1321 | */ |
| 1322 | for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) { |
| 1323 | dtrace_aggdata_t *aggdata = &h->dtahe_data; |
| 1324 | |
| 1325 | if ((id = dt_aggregate_aggvarid(h)) > max) |
| 1326 | max = id; |
| 1327 | |
| 1328 | aggdata->dtada_total = 0; |
| 1329 | aggdata->dtada_flags &= ~tflags; |
| 1330 | } |
| 1331 | |
| 1332 | if (clear || max == DTRACE_AGGVARIDNONE) |
| 1333 | return (0); |
| 1334 | |
| 1335 | total = dt_zalloc(dtp, (max + 1) * sizeof (dtrace_aggdata_t *)); |
| 1336 | |
| 1337 | if (total == NULL) |
| 1338 | return (-1); |
| 1339 | |
| 1340 | for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) { |
| 1341 | dtrace_aggdata_t *aggdata = &h->dtahe_data; |
| 1342 | dtrace_aggdesc_t *agg = aggdata->dtada_desc; |
| 1343 | dtrace_recdesc_t *rec; |
| 1344 | caddr_t data; |
| 1345 | int64_t val, *addr; |
| 1346 | |
| 1347 | rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1]; |
| 1348 | data = aggdata->dtada_data; |
| 1349 | addr = (int64_t *)(uintptr_t)(data + rec->dtrd_offset); |
| 1350 | |
| 1351 | switch (rec->dtrd_action) { |
| 1352 | case DTRACEAGG_STDDEV: |
| 1353 | val = dt_stddev((uint64_t *)addr, 1); |
| 1354 | break; |
| 1355 | |
| 1356 | case DTRACEAGG_SUM: |
| 1357 | case DTRACEAGG_COUNT: |
| 1358 | val = *addr; |
| 1359 | break; |
| 1360 | |
| 1361 | case DTRACEAGG_AVG: |
| 1362 | val = addr[0] ? (addr[1] / addr[0]) : 0; |
| 1363 | break; |
| 1364 | |
| 1365 | default: |
| 1366 | continue; |
| 1367 | } |
| 1368 | |
| 1369 | if (total[agg->dtagd_varid] == NULL) { |
| 1370 | total[agg->dtagd_varid] = aggdata; |
| 1371 | aggdata->dtada_flags |= DTRACE_A_TOTAL; |
| 1372 | } else { |
| 1373 | aggdata = total[agg->dtagd_varid]; |
| 1374 | } |
| 1375 | |
| 1376 | if (val > 0) |
| 1377 | aggdata->dtada_flags |= DTRACE_A_HASPOSITIVES; |
| 1378 | |
| 1379 | if (val < 0) { |
| 1380 | aggdata->dtada_flags |= DTRACE_A_HASNEGATIVES; |
| 1381 | val = -val; |
| 1382 | } |
| 1383 | |
| 1384 | if (dtp->dt_options[DTRACEOPT_AGGZOOM] != DTRACEOPT_UNSET) { |
| 1385 | val = (int64_t)((long double)val * |
| 1386 | (1 / DTRACE_AGGZOOM_MAX)); |
| 1387 | |
| 1388 | if (val > aggdata->dtada_total) |
| 1389 | aggdata->dtada_total = val; |
| 1390 | } else { |
| 1391 | aggdata->dtada_total += val; |
| 1392 | } |
| 1393 | } |
| 1394 | |
| 1395 | /* |
| 1396 | * And now one final pass to set everyone's total. |
| 1397 | */ |
| 1398 | for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) { |
| 1399 | dtrace_aggdata_t *aggdata = &h->dtahe_data, *t; |
| 1400 | dtrace_aggdesc_t *agg = aggdata->dtada_desc; |
| 1401 | |
| 1402 | if ((t = total[agg->dtagd_varid]) == NULL || aggdata == t) |
| 1403 | continue; |
| 1404 | |
| 1405 | aggdata->dtada_total = t->dtada_total; |
| 1406 | aggdata->dtada_flags |= (t->dtada_flags & tflags); |
| 1407 | } |
| 1408 | |
| 1409 | dt_free(dtp, total); |
| 1410 | |
| 1411 | return (0); |
| 1412 | } |
| 1413 | |
| 1414 | static int |
| 1415 | dt_aggregate_minmaxbin(dtrace_hdl_t *dtp, boolean_t clear) |
| 1416 | { |
| 1417 | dt_ahashent_t *h; |
| 1418 | dtrace_aggdata_t **minmax; |
| 1419 | dtrace_aggid_t max = DTRACE_AGGVARIDNONE, id; |
| 1420 | dt_aggregate_t *agp = &dtp->dt_aggregate; |
| 1421 | dt_ahash_t *hash = &agp->dtat_hash; |
| 1422 | |
| 1423 | for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) { |
| 1424 | dtrace_aggdata_t *aggdata = &h->dtahe_data; |
| 1425 | |
| 1426 | if ((id = dt_aggregate_aggvarid(h)) > max) |
| 1427 | max = id; |
| 1428 | |
| 1429 | aggdata->dtada_minbin = 0; |
| 1430 | aggdata->dtada_maxbin = 0; |
| 1431 | aggdata->dtada_flags &= ~DTRACE_A_MINMAXBIN; |
| 1432 | } |
| 1433 | |
| 1434 | if (clear || max == DTRACE_AGGVARIDNONE) |
| 1435 | return (0); |
| 1436 | |
| 1437 | minmax = dt_zalloc(dtp, (max + 1) * sizeof (dtrace_aggdata_t *)); |
| 1438 | |
| 1439 | if (minmax == NULL) |
| 1440 | return (-1); |
| 1441 | |
| 1442 | for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) { |
| 1443 | dtrace_aggdata_t *aggdata = &h->dtahe_data; |
| 1444 | dtrace_aggdesc_t *agg = aggdata->dtada_desc; |
| 1445 | dtrace_recdesc_t *rec; |
| 1446 | caddr_t data; |
| 1447 | int64_t *addr; |
| 1448 | int minbin = -1, maxbin = -1, i; |
| 1449 | int start = 0, size; |
| 1450 | |
| 1451 | rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1]; |
| 1452 | size = rec->dtrd_size / sizeof (int64_t); |
| 1453 | data = aggdata->dtada_data; |
| 1454 | addr = (int64_t *)(uintptr_t)(data + rec->dtrd_offset); |
| 1455 | |
| 1456 | switch (rec->dtrd_action) { |
| 1457 | case DTRACEAGG_LQUANTIZE: |
| 1458 | /* |
| 1459 | * For lquantize(), we always display the entire range |
| 1460 | * of the aggregation when aggpack is set. |
| 1461 | */ |
| 1462 | start = 1; |
| 1463 | minbin = start; |
| 1464 | maxbin = size - 1 - start; |
| 1465 | break; |
| 1466 | |
| 1467 | case DTRACEAGG_QUANTIZE: |
| 1468 | for (i = start; i < size; i++) { |
| 1469 | if (!addr[i]) |
| 1470 | continue; |
| 1471 | |
| 1472 | if (minbin == -1) |
| 1473 | minbin = i - start; |
| 1474 | |
| 1475 | maxbin = i - start; |
| 1476 | } |
| 1477 | |
| 1478 | if (minbin == -1) { |
| 1479 | /* |
| 1480 | * If we have no data (e.g., due to a clear() |
| 1481 | * or negative increments), we'll use the |
| 1482 | * zero bucket as both our min and max. |
| 1483 | */ |
| 1484 | minbin = maxbin = DTRACE_QUANTIZE_ZEROBUCKET; |
| 1485 | } |
| 1486 | |
| 1487 | break; |
| 1488 | |
| 1489 | default: |
| 1490 | continue; |
| 1491 | } |
| 1492 | |
| 1493 | if (minmax[agg->dtagd_varid] == NULL) { |
| 1494 | minmax[agg->dtagd_varid] = aggdata; |
| 1495 | aggdata->dtada_flags |= DTRACE_A_MINMAXBIN; |
| 1496 | aggdata->dtada_minbin = minbin; |
| 1497 | aggdata->dtada_maxbin = maxbin; |
| 1498 | continue; |
| 1499 | } |
| 1500 | |
| 1501 | if (minbin < minmax[agg->dtagd_varid]->dtada_minbin) |
| 1502 | minmax[agg->dtagd_varid]->dtada_minbin = minbin; |
| 1503 | |
| 1504 | if (maxbin > minmax[agg->dtagd_varid]->dtada_maxbin) |
| 1505 | minmax[agg->dtagd_varid]->dtada_maxbin = maxbin; |
| 1506 | } |
| 1507 | |
| 1508 | /* |
| 1509 | * And now one final pass to set everyone's minbin and maxbin. |
| 1510 | */ |
| 1511 | for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) { |
| 1512 | dtrace_aggdata_t *aggdata = &h->dtahe_data, *mm; |
| 1513 | dtrace_aggdesc_t *agg = aggdata->dtada_desc; |
| 1514 | |
| 1515 | if ((mm = minmax[agg->dtagd_varid]) == NULL || aggdata == mm) |
| 1516 | continue; |
| 1517 | |
| 1518 | aggdata->dtada_minbin = mm->dtada_minbin; |
| 1519 | aggdata->dtada_maxbin = mm->dtada_maxbin; |
| 1520 | aggdata->dtada_flags |= DTRACE_A_MINMAXBIN; |
| 1521 | } |
| 1522 | |
| 1523 | dt_free(dtp, minmax); |
| 1524 | |
| 1525 | return (0); |
| 1526 | } |
| 1527 | |
| 1528 | static int |
| 1529 | dt_aggregate_walk_sorted(dtrace_hdl_t *dtp, |
| 1530 | dtrace_aggregate_f *func, void *arg, |
| 1531 | int (*sfunc)(const void *, const void *)) |
| 1532 | { |
| 1533 | dt_aggregate_t *agp = &dtp->dt_aggregate; |
| 1534 | dt_ahashent_t *h, **sorted; |
| 1535 | dt_ahash_t *hash = &agp->dtat_hash; |
| 1536 | size_t i, nentries = 0; |
| 1537 | int rval = -1; |
| 1538 | |
| 1539 | agp->dtat_flags &= ~(DTRACE_A_TOTAL | DTRACE_A_MINMAXBIN); |
| 1540 | |
| 1541 | if (dtp->dt_options[DTRACEOPT_AGGHIST] != DTRACEOPT_UNSET) { |
| 1542 | agp->dtat_flags |= DTRACE_A_TOTAL; |
| 1543 | |
| 1544 | if (dt_aggregate_total(dtp, B_FALSE) != 0) |
| 1545 | return (-1); |
| 1546 | } |
| 1547 | |
| 1548 | if (dtp->dt_options[DTRACEOPT_AGGPACK] != DTRACEOPT_UNSET) { |
| 1549 | agp->dtat_flags |= DTRACE_A_MINMAXBIN; |
| 1550 | |
| 1551 | if (dt_aggregate_minmaxbin(dtp, B_FALSE) != 0) |
| 1552 | return (-1); |
| 1553 | } |
| 1554 | |
| 1555 | for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) |
| 1556 | nentries++; |
| 1557 | |
| 1558 | sorted = dt_alloc(dtp, nentries * sizeof (dt_ahashent_t *)); |
| 1559 | |
| 1560 | if (sorted == NULL) |
| 1561 | goto out; |
| 1562 | |
| 1563 | for (h = hash->dtah_all, i = 0; h != NULL; h = h->dtahe_nextall) |
| 1564 | sorted[i++] = h; |
| 1565 | |
| 1566 | (void) pthread_mutex_lock(&dt_qsort_lock); |
| 1567 | |
| 1568 | if (sfunc == NULL) { |
| 1569 | dt_aggregate_qsort(dtp, sorted, nentries, |
| 1570 | sizeof (dt_ahashent_t *), NULL); |
| 1571 | } else { |
| 1572 | /* |
| 1573 | * If we've been explicitly passed a sorting function, |
| 1574 | * we'll use that -- ignoring the values of the "aggsortrev", |
| 1575 | * "aggsortkey" and "aggsortkeypos" options. |
| 1576 | */ |
| 1577 | qsort(sorted, nentries, sizeof (dt_ahashent_t *), sfunc); |
| 1578 | } |
| 1579 | |
| 1580 | (void) pthread_mutex_unlock(&dt_qsort_lock); |
| 1581 | |
| 1582 | for (i = 0; i < nentries; i++) { |
| 1583 | h = sorted[i]; |
| 1584 | |
| 1585 | if (dt_aggwalk_rval(dtp, h, func(&h->dtahe_data, arg)) == -1) |
| 1586 | goto out; |
| 1587 | } |
| 1588 | |
| 1589 | rval = 0; |
| 1590 | out: |
| 1591 | if (agp->dtat_flags & DTRACE_A_TOTAL) |
| 1592 | (void) dt_aggregate_total(dtp, B_TRUE); |
| 1593 | |
| 1594 | if (agp->dtat_flags & DTRACE_A_MINMAXBIN) |
| 1595 | (void) dt_aggregate_minmaxbin(dtp, B_TRUE); |
| 1596 | |
| 1597 | dt_free(dtp, sorted); |
| 1598 | return (rval); |
| 1599 | } |
| 1600 | |
| 1601 | int |
| 1602 | dtrace_aggregate_walk_sorted(dtrace_hdl_t *dtp, |
| 1603 | dtrace_aggregate_f *func, void *arg) |
| 1604 | { |
| 1605 | return (dt_aggregate_walk_sorted(dtp, func, arg, NULL)); |
| 1606 | } |
| 1607 | |
| 1608 | int |
| 1609 | dtrace_aggregate_walk_keysorted(dtrace_hdl_t *dtp, |
| 1610 | dtrace_aggregate_f *func, void *arg) |
| 1611 | { |
| 1612 | return (dt_aggregate_walk_sorted(dtp, func, |
| 1613 | arg, dt_aggregate_varkeycmp)); |
| 1614 | } |
| 1615 | |
| 1616 | int |
| 1617 | dtrace_aggregate_walk_valsorted(dtrace_hdl_t *dtp, |
| 1618 | dtrace_aggregate_f *func, void *arg) |
| 1619 | { |
| 1620 | return (dt_aggregate_walk_sorted(dtp, func, |
| 1621 | arg, dt_aggregate_varvalcmp)); |
| 1622 | } |
| 1623 | |
| 1624 | int |
| 1625 | dtrace_aggregate_walk_keyvarsorted(dtrace_hdl_t *dtp, |
| 1626 | dtrace_aggregate_f *func, void *arg) |
| 1627 | { |
| 1628 | return (dt_aggregate_walk_sorted(dtp, func, |
| 1629 | arg, dt_aggregate_keyvarcmp)); |
| 1630 | } |
| 1631 | |
| 1632 | int |
| 1633 | dtrace_aggregate_walk_valvarsorted(dtrace_hdl_t *dtp, |
| 1634 | dtrace_aggregate_f *func, void *arg) |
| 1635 | { |
| 1636 | return (dt_aggregate_walk_sorted(dtp, func, |
| 1637 | arg, dt_aggregate_valvarcmp)); |
| 1638 | } |
| 1639 | |
| 1640 | int |
| 1641 | dtrace_aggregate_walk_keyrevsorted(dtrace_hdl_t *dtp, |
| 1642 | dtrace_aggregate_f *func, void *arg) |
| 1643 | { |
| 1644 | return (dt_aggregate_walk_sorted(dtp, func, |
| 1645 | arg, dt_aggregate_varkeyrevcmp)); |
| 1646 | } |
| 1647 | |
| 1648 | int |
| 1649 | dtrace_aggregate_walk_valrevsorted(dtrace_hdl_t *dtp, |
| 1650 | dtrace_aggregate_f *func, void *arg) |
| 1651 | { |
| 1652 | return (dt_aggregate_walk_sorted(dtp, func, |
| 1653 | arg, dt_aggregate_varvalrevcmp)); |
| 1654 | } |
| 1655 | |
| 1656 | int |
| 1657 | dtrace_aggregate_walk_keyvarrevsorted(dtrace_hdl_t *dtp, |
| 1658 | dtrace_aggregate_f *func, void *arg) |
| 1659 | { |
| 1660 | return (dt_aggregate_walk_sorted(dtp, func, |
| 1661 | arg, dt_aggregate_keyvarrevcmp)); |
| 1662 | } |
| 1663 | |
| 1664 | int |
| 1665 | dtrace_aggregate_walk_valvarrevsorted(dtrace_hdl_t *dtp, |
| 1666 | dtrace_aggregate_f *func, void *arg) |
| 1667 | { |
| 1668 | return (dt_aggregate_walk_sorted(dtp, func, |
| 1669 | arg, dt_aggregate_valvarrevcmp)); |
| 1670 | } |
| 1671 | |
| 1672 | int |
| 1673 | dtrace_aggregate_walk_joined(dtrace_hdl_t *dtp, dtrace_aggvarid_t *aggvars, |
| 1674 | int naggvars, dtrace_aggregate_walk_joined_f *func, void *arg) |
| 1675 | { |
| 1676 | dt_aggregate_t *agp = &dtp->dt_aggregate; |
| 1677 | dt_ahashent_t *h, **sorted = NULL, ***bundle, **nbundle; |
| 1678 | const dtrace_aggdata_t **data; |
| 1679 | dt_ahashent_t *zaggdata = NULL; |
| 1680 | dt_ahash_t *hash = &agp->dtat_hash; |
| 1681 | size_t nentries = 0, nbundles = 0, start, zsize = 0, bundlesize; |
| 1682 | dtrace_aggvarid_t max = 0, aggvar; |
| 1683 | int rval = -1, *map, *remap = NULL; |
| 1684 | int i, j; |
| 1685 | dtrace_optval_t sortpos = dtp->dt_options[DTRACEOPT_AGGSORTPOS]; |
| 1686 | |
| 1687 | /* |
| 1688 | * If the sorting position is greater than the number of aggregation |
| 1689 | * variable IDs, we silently set it to 0. |
| 1690 | */ |
| 1691 | if (sortpos == DTRACEOPT_UNSET || sortpos >= naggvars) |
| 1692 | sortpos = 0; |
| 1693 | |
| 1694 | /* |
| 1695 | * First we need to translate the specified aggregation variable IDs |
| 1696 | * into a linear map that will allow us to translate an aggregation |
| 1697 | * variable ID into its position in the specified aggvars. |
| 1698 | */ |
| 1699 | for (i = 0; i < naggvars; i++) { |
| 1700 | if (aggvars[i] == DTRACE_AGGVARIDNONE || aggvars[i] < 0) |
| 1701 | return (dt_set_errno(dtp, EDT_BADAGGVAR)); |
| 1702 | |
| 1703 | if (aggvars[i] > max) |
| 1704 | max = aggvars[i]; |
| 1705 | } |
| 1706 | |
| 1707 | if ((map = dt_zalloc(dtp, (max + 1) * sizeof (int))) == NULL) |
| 1708 | return (-1); |
| 1709 | |
| 1710 | zaggdata = dt_zalloc(dtp, naggvars * sizeof (dt_ahashent_t)); |
| 1711 | |
| 1712 | if (zaggdata == NULL) |
| 1713 | goto out; |
| 1714 | |
| 1715 | for (i = 0; i < naggvars; i++) { |
| 1716 | int ndx = i + sortpos; |
| 1717 | |
| 1718 | if (ndx >= naggvars) |
| 1719 | ndx -= naggvars; |
| 1720 | |
| 1721 | aggvar = aggvars[ndx]; |
| 1722 | assert(aggvar <= max); |
| 1723 | |
| 1724 | if (map[aggvar]) { |
| 1725 | /* |
| 1726 | * We have an aggregation variable that is present |
| 1727 | * more than once in the array of aggregation |
| 1728 | * variables. While it's unclear why one might want |
| 1729 | * to do this, it's legal. To support this construct, |
| 1730 | * we will allocate a remap that will indicate the |
| 1731 | * position from which this aggregation variable |
| 1732 | * should be pulled. (That is, where the remap will |
| 1733 | * map from one position to another.) |
| 1734 | */ |
| 1735 | if (remap == NULL) { |
| 1736 | remap = dt_zalloc(dtp, naggvars * sizeof (int)); |
| 1737 | |
| 1738 | if (remap == NULL) |
| 1739 | goto out; |
| 1740 | } |
| 1741 | |
| 1742 | /* |
| 1743 | * Given that the variable is already present, assert |
| 1744 | * that following through the mapping and adjusting |
| 1745 | * for the sort position yields the same aggregation |
| 1746 | * variable ID. |
| 1747 | */ |
| 1748 | assert(aggvars[(map[aggvar] - 1 + sortpos) % |
| 1749 | naggvars] == aggvars[ndx]); |
| 1750 | |
| 1751 | remap[i] = map[aggvar]; |
| 1752 | continue; |
| 1753 | } |
| 1754 | |
| 1755 | map[aggvar] = i + 1; |
| 1756 | } |
| 1757 | |
| 1758 | /* |
| 1759 | * We need to take two passes over the data to size our allocation, so |
| 1760 | * we'll use the first pass to also fill in the zero-filled data to be |
| 1761 | * used to properly format a zero-valued aggregation. |
| 1762 | */ |
| 1763 | for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) { |
| 1764 | dtrace_aggvarid_t id; |
| 1765 | int ndx; |
| 1766 | |
| 1767 | if ((id = dt_aggregate_aggvarid(h)) > max || !(ndx = map[id])) |
| 1768 | continue; |
| 1769 | |
| 1770 | if (zaggdata[ndx - 1].dtahe_size == 0) { |
| 1771 | zaggdata[ndx - 1].dtahe_size = h->dtahe_size; |
| 1772 | zaggdata[ndx - 1].dtahe_data = h->dtahe_data; |
| 1773 | } |
| 1774 | |
| 1775 | nentries++; |
| 1776 | } |
| 1777 | |
| 1778 | if (nentries == 0) { |
| 1779 | /* |
| 1780 | * We couldn't find any entries; there is nothing else to do. |
| 1781 | */ |
| 1782 | rval = 0; |
| 1783 | goto out; |
| 1784 | } |
| 1785 | |
| 1786 | /* |
| 1787 | * Before we sort the data, we're going to look for any holes in our |
| 1788 | * zero-filled data. This will occur if an aggregation variable that |
| 1789 | * we are being asked to print has not yet been assigned the result of |
| 1790 | * any aggregating action for _any_ tuple. The issue becomes that we |
| 1791 | * would like a zero value to be printed for all columns for this |
| 1792 | * aggregation, but without any record description, we don't know the |
| 1793 | * aggregating action that corresponds to the aggregation variable. To |
| 1794 | * try to find a match, we're simply going to lookup aggregation IDs |
| 1795 | * (which are guaranteed to be contiguous and to start from 1), looking |
| 1796 | * for the specified aggregation variable ID. If we find a match, |
| 1797 | * we'll use that. If we iterate over all aggregation IDs and don't |
| 1798 | * find a match, then we must be an anonymous enabling. (Anonymous |
| 1799 | * enablings can't currently derive either aggregation variable IDs or |
| 1800 | * aggregation variable names given only an aggregation ID.) In this |
| 1801 | * obscure case (anonymous enabling, multiple aggregation printa() with |
| 1802 | * some aggregations not represented for any tuple), our defined |
| 1803 | * behavior is that the zero will be printed in the format of the first |
| 1804 | * aggregation variable that contains any non-zero value. |
| 1805 | */ |
| 1806 | for (i = 0; i < naggvars; i++) { |
| 1807 | if (zaggdata[i].dtahe_size == 0) { |
| 1808 | dtrace_aggvarid_t aggvar; |
| 1809 | |
| 1810 | aggvar = aggvars[(i - sortpos + naggvars) % naggvars]; |
| 1811 | assert(zaggdata[i].dtahe_data.dtada_data == NULL); |
| 1812 | |
| 1813 | for (j = DTRACE_AGGIDNONE + 1; ; j++) { |
| 1814 | dtrace_aggdesc_t *agg; |
| 1815 | dtrace_aggdata_t *aggdata; |
| 1816 | |
| 1817 | if (dt_aggid_lookup(dtp, j, &agg) != 0) |
| 1818 | break; |
| 1819 | |
| 1820 | if (agg->dtagd_varid != aggvar) |
| 1821 | continue; |
| 1822 | |
| 1823 | /* |
| 1824 | * We have our description -- now we need to |
| 1825 | * cons up the zaggdata entry for it. |
| 1826 | */ |
| 1827 | aggdata = &zaggdata[i].dtahe_data; |
| 1828 | aggdata->dtada_size = agg->dtagd_size; |
| 1829 | aggdata->dtada_desc = agg; |
| 1830 | aggdata->dtada_handle = dtp; |
| 1831 | (void) dt_epid_lookup(dtp, agg->dtagd_epid, |
| 1832 | &aggdata->dtada_edesc, |
| 1833 | &aggdata->dtada_pdesc); |
| 1834 | aggdata->dtada_normal = 1; |
| 1835 | zaggdata[i].dtahe_hashval = 0; |
| 1836 | zaggdata[i].dtahe_size = agg->dtagd_size; |
| 1837 | break; |
| 1838 | } |
| 1839 | |
| 1840 | if (zaggdata[i].dtahe_size == 0) { |
| 1841 | caddr_t data; |
| 1842 | |
| 1843 | /* |
| 1844 | * We couldn't find this aggregation, meaning |
| 1845 | * that we have never seen it before for any |
| 1846 | * tuple _and_ this is an anonymous enabling. |
| 1847 | * That is, we're in the obscure case outlined |
| 1848 | * above. In this case, our defined behavior |
| 1849 | * is to format the data in the format of the |
| 1850 | * first non-zero aggregation -- of which, of |
| 1851 | * course, we know there to be at least one |
| 1852 | * (or nentries would have been zero). |
| 1853 | */ |
| 1854 | for (j = 0; j < naggvars; j++) { |
| 1855 | if (zaggdata[j].dtahe_size != 0) |
| 1856 | break; |
| 1857 | } |
| 1858 | |
| 1859 | assert(j < naggvars); |
| 1860 | zaggdata[i] = zaggdata[j]; |
| 1861 | |
| 1862 | data = zaggdata[i].dtahe_data.dtada_data; |
| 1863 | assert(data != NULL); |
| 1864 | } |
| 1865 | } |
| 1866 | } |
| 1867 | |
| 1868 | /* |
| 1869 | * Now we need to allocate our zero-filled data for use for |
| 1870 | * aggregations that don't have a value corresponding to a given key. |
| 1871 | */ |
| 1872 | for (i = 0; i < naggvars; i++) { |
| 1873 | dtrace_aggdata_t *aggdata = &zaggdata[i].dtahe_data; |
| 1874 | dtrace_aggdesc_t *aggdesc = aggdata->dtada_desc; |
| 1875 | dtrace_recdesc_t *rec; |
| 1876 | uint64_t larg; |
| 1877 | caddr_t zdata; |
| 1878 | |
| 1879 | zsize = zaggdata[i].dtahe_size; |
| 1880 | assert(zsize != 0); |
| 1881 | |
| 1882 | if ((zdata = dt_zalloc(dtp, zsize)) == NULL) { |
| 1883 | /* |
| 1884 | * If we failed to allocated some zero-filled data, we |
| 1885 | * need to zero out the remaining dtada_data pointers |
| 1886 | * to prevent the wrong data from being freed below. |
| 1887 | */ |
| 1888 | for (j = i; j < naggvars; j++) |
| 1889 | zaggdata[j].dtahe_data.dtada_data = NULL; |
| 1890 | goto out; |
| 1891 | } |
| 1892 | |
| 1893 | aggvar = aggvars[(i - sortpos + naggvars) % naggvars]; |
| 1894 | |
| 1895 | /* |
| 1896 | * First, the easy bit. To maintain compatibility with |
| 1897 | * consumers that pull the compiler-generated ID out of the |
| 1898 | * data, we put that ID at the top of the zero-filled data. |
| 1899 | */ |
| 1900 | rec = &aggdesc->dtagd_rec[0]; |
| 1901 | /* LINTED - alignment */ |
| 1902 | *((dtrace_aggvarid_t *)(zdata + rec->dtrd_offset)) = aggvar; |
| 1903 | |
| 1904 | rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1]; |
| 1905 | |
| 1906 | /* |
| 1907 | * Now for the more complicated part. If (and only if) this |
| 1908 | * is an lquantize() aggregating action, zero-filled data is |
| 1909 | * not equivalent to an empty record: we must also get the |
| 1910 | * parameters for the lquantize(). |
| 1911 | */ |
| 1912 | if (rec->dtrd_action == DTRACEAGG_LQUANTIZE) { |
| 1913 | if (aggdata->dtada_data != NULL) { |
| 1914 | /* |
| 1915 | * The easier case here is if we actually have |
| 1916 | * some prototype data -- in which case we |
| 1917 | * manually dig it out of the aggregation |
| 1918 | * record. |
| 1919 | */ |
| 1920 | /* LINTED - alignment */ |
| 1921 | larg = *((uint64_t *)(aggdata->dtada_data + |
| 1922 | rec->dtrd_offset)); |
| 1923 | } else { |
| 1924 | /* |
| 1925 | * We don't have any prototype data. As a |
| 1926 | * result, we know that we _do_ have the |
| 1927 | * compiler-generated information. (If this |
| 1928 | * were an anonymous enabling, all of our |
| 1929 | * zero-filled data would have prototype data |
| 1930 | * -- either directly or indirectly.) So as |
| 1931 | * gross as it is, we'll grovel around in the |
| 1932 | * compiler-generated information to find the |
| 1933 | * lquantize() parameters. |
| 1934 | */ |
| 1935 | dtrace_stmtdesc_t *sdp; |
| 1936 | dt_ident_t *aid; |
| 1937 | dt_idsig_t *isp; |
| 1938 | |
| 1939 | sdp = (dtrace_stmtdesc_t *)(uintptr_t) |
| 1940 | aggdesc->dtagd_rec[0].dtrd_uarg; |
| 1941 | aid = sdp->dtsd_aggdata; |
| 1942 | isp = (dt_idsig_t *)aid->di_data; |
| 1943 | assert(isp->dis_auxinfo != 0); |
| 1944 | larg = isp->dis_auxinfo; |
| 1945 | } |
| 1946 | |
| 1947 | /* LINTED - alignment */ |
| 1948 | *((uint64_t *)(zdata + rec->dtrd_offset)) = larg; |
| 1949 | } |
| 1950 | |
| 1951 | aggdata->dtada_data = zdata; |
| 1952 | } |
| 1953 | |
| 1954 | /* |
| 1955 | * Now that we've dealt with setting up our zero-filled data, we can |
| 1956 | * allocate our sorted array, and take another pass over the data to |
| 1957 | * fill it. |
| 1958 | */ |
| 1959 | sorted = dt_alloc(dtp, nentries * sizeof (dt_ahashent_t *)); |
| 1960 | |
| 1961 | if (sorted == NULL) |
| 1962 | goto out; |
| 1963 | |
| 1964 | for (h = hash->dtah_all, i = 0; h != NULL; h = h->dtahe_nextall) { |
| 1965 | dtrace_aggvarid_t id; |
| 1966 | |
| 1967 | if ((id = dt_aggregate_aggvarid(h)) > max || !map[id]) |
| 1968 | continue; |
| 1969 | |
| 1970 | sorted[i++] = h; |
| 1971 | } |
| 1972 | |
| 1973 | assert(i == nentries); |
| 1974 | |
| 1975 | /* |
| 1976 | * We've loaded our array; now we need to sort by value to allow us |
| 1977 | * to create bundles of like value. We're going to acquire the |
| 1978 | * dt_qsort_lock here, and hold it across all of our subsequent |
| 1979 | * comparison and sorting. |
| 1980 | */ |
| 1981 | (void) pthread_mutex_lock(&dt_qsort_lock); |
| 1982 | |
| 1983 | qsort(sorted, nentries, sizeof (dt_ahashent_t *), |
| 1984 | dt_aggregate_keyvarcmp); |
| 1985 | |
| 1986 | /* |
| 1987 | * Now we need to go through and create bundles. Because the number |
| 1988 | * of bundles is bounded by the size of the sorted array, we're going |
| 1989 | * to reuse the underlying storage. And note that "bundle" is an |
| 1990 | * array of pointers to arrays of pointers to dt_ahashent_t -- making |
| 1991 | * its type (regrettably) "dt_ahashent_t ***". (Regrettable because |
| 1992 | * '*' -- like '_' and 'X' -- should never appear in triplicate in |
| 1993 | * an ideal world.) |
| 1994 | */ |
| 1995 | bundle = (dt_ahashent_t ***)sorted; |
| 1996 | |
| 1997 | for (i = 1, start = 0; i <= nentries; i++) { |
| 1998 | if (i < nentries && |
| 1999 | dt_aggregate_keycmp(&sorted[i], &sorted[i - 1]) == 0) |
| 2000 | continue; |
| 2001 | |
| 2002 | /* |
| 2003 | * We have a bundle boundary. Everything from start to |
| 2004 | * (i - 1) belongs in one bundle. |
| 2005 | */ |
| 2006 | assert(i - start <= naggvars); |
| 2007 | bundlesize = (naggvars + 2) * sizeof (dt_ahashent_t *); |
| 2008 | |
| 2009 | if ((nbundle = dt_zalloc(dtp, bundlesize)) == NULL) { |
| 2010 | (void) pthread_mutex_unlock(&dt_qsort_lock); |
| 2011 | goto out; |
| 2012 | } |
| 2013 | |
| 2014 | for (j = start; j < i; j++) { |
| 2015 | dtrace_aggvarid_t id = dt_aggregate_aggvarid(sorted[j]); |
| 2016 | |
| 2017 | assert(id <= max); |
| 2018 | assert(map[id] != 0); |
| 2019 | assert(map[id] - 1 < naggvars); |
| 2020 | assert(nbundle[map[id] - 1] == NULL); |
| 2021 | nbundle[map[id] - 1] = sorted[j]; |
| 2022 | |
| 2023 | if (nbundle[naggvars] == NULL) |
| 2024 | nbundle[naggvars] = sorted[j]; |
| 2025 | } |
| 2026 | |
| 2027 | for (j = 0; j < naggvars; j++) { |
| 2028 | if (nbundle[j] != NULL) |
| 2029 | continue; |
| 2030 | |
| 2031 | /* |
| 2032 | * Before we assume that this aggregation variable |
| 2033 | * isn't present (and fall back to using the |
| 2034 | * zero-filled data allocated earlier), check the |
| 2035 | * remap. If we have a remapping, we'll drop it in |
| 2036 | * here. Note that we might be remapping an |
| 2037 | * aggregation variable that isn't present for this |
| 2038 | * key; in this case, the aggregation data that we |
| 2039 | * copy will point to the zeroed data. |
| 2040 | */ |
| 2041 | if (remap != NULL && remap[j]) { |
| 2042 | assert(remap[j] - 1 < j); |
| 2043 | assert(nbundle[remap[j] - 1] != NULL); |
| 2044 | nbundle[j] = nbundle[remap[j] - 1]; |
| 2045 | } else { |
| 2046 | nbundle[j] = &zaggdata[j]; |
| 2047 | } |
| 2048 | } |
| 2049 | |
| 2050 | bundle[nbundles++] = nbundle; |
| 2051 | start = i; |
| 2052 | } |
| 2053 | |
| 2054 | /* |
| 2055 | * Now we need to re-sort based on the first value. |
| 2056 | */ |
| 2057 | dt_aggregate_qsort(dtp, bundle, nbundles, sizeof (dt_ahashent_t **), |
| 2058 | dt_aggregate_bundlecmp); |
| 2059 | |
| 2060 | (void) pthread_mutex_unlock(&dt_qsort_lock); |
| 2061 | |
| 2062 | /* |
| 2063 | * We're done! Now we just need to go back over the sorted bundles, |
| 2064 | * calling the function. |
| 2065 | */ |
| 2066 | data = alloca((naggvars + 1) * sizeof (dtrace_aggdata_t *)); |
| 2067 | |
| 2068 | for (i = 0; i < nbundles; i++) { |
| 2069 | for (j = 0; j < naggvars; j++) |
| 2070 | data[j + 1] = NULL; |
| 2071 | |
| 2072 | for (j = 0; j < naggvars; j++) { |
| 2073 | int ndx = j - sortpos; |
| 2074 | |
| 2075 | if (ndx < 0) |
| 2076 | ndx += naggvars; |
| 2077 | |
| 2078 | assert(bundle[i][ndx] != NULL); |
| 2079 | data[j + 1] = &bundle[i][ndx]->dtahe_data; |
| 2080 | } |
| 2081 | |
| 2082 | for (j = 0; j < naggvars; j++) |
| 2083 | assert(data[j + 1] != NULL); |
| 2084 | |
| 2085 | /* |
| 2086 | * The representative key is the last element in the bundle. |
| 2087 | * Assert that we have one, and then set it to be the first |
| 2088 | * element of data. |
| 2089 | */ |
| 2090 | assert(bundle[i][j] != NULL); |
| 2091 | data[0] = &bundle[i][j]->dtahe_data; |
| 2092 | |
| 2093 | if ((rval = func(data, naggvars + 1, arg)) == -1) |
| 2094 | goto out; |
| 2095 | } |
| 2096 | |
| 2097 | rval = 0; |
| 2098 | out: |
| 2099 | for (i = 0; i < nbundles; i++) |
| 2100 | dt_free(dtp, bundle[i]); |
| 2101 | |
| 2102 | if (zaggdata != NULL) { |
| 2103 | for (i = 0; i < naggvars; i++) |
| 2104 | dt_free(dtp, zaggdata[i].dtahe_data.dtada_data); |
| 2105 | } |
| 2106 | |
| 2107 | dt_free(dtp, zaggdata); |
| 2108 | dt_free(dtp, sorted); |
| 2109 | dt_free(dtp, remap); |
| 2110 | dt_free(dtp, map); |
| 2111 | |
| 2112 | return (rval); |
| 2113 | } |
| 2114 | |
| 2115 | int |
| 2116 | dtrace_aggregate_print(dtrace_hdl_t *dtp, FILE *fp, |
| 2117 | dtrace_aggregate_walk_f *func) |
| 2118 | { |
| 2119 | dt_print_aggdata_t pd; |
| 2120 | |
| 2121 | bzero(&pd, sizeof (pd)); |
| 2122 | |
| 2123 | pd.dtpa_dtp = dtp; |
| 2124 | pd.dtpa_fp = fp; |
| 2125 | pd.dtpa_allunprint = 1; |
| 2126 | |
| 2127 | if (func == NULL) |
| 2128 | func = dtrace_aggregate_walk_sorted; |
| 2129 | |
| 2130 | if ((*func)(dtp, dt_print_agg, &pd) == -1) |
| 2131 | return (dt_set_errno(dtp, dtp->dt_errno)); |
| 2132 | |
| 2133 | return (0); |
| 2134 | } |
| 2135 | |
| 2136 | void |
| 2137 | dtrace_aggregate_clear(dtrace_hdl_t *dtp) |
| 2138 | { |
| 2139 | dt_aggregate_t *agp = &dtp->dt_aggregate; |
| 2140 | dt_ahash_t *hash = &agp->dtat_hash; |
| 2141 | dt_ahashent_t *h; |
| 2142 | dtrace_aggdata_t *data; |
| 2143 | dtrace_aggdesc_t *aggdesc; |
| 2144 | dtrace_recdesc_t *rec; |
| 2145 | int i, max_cpus = agp->dtat_maxcpu; |
| 2146 | |
| 2147 | for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) { |
| 2148 | aggdesc = h->dtahe_data.dtada_desc; |
| 2149 | rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1]; |
| 2150 | data = &h->dtahe_data; |
| 2151 | |
| 2152 | bzero(&data->dtada_data[rec->dtrd_offset], rec->dtrd_size); |
| 2153 | |
| 2154 | if (data->dtada_percpu == NULL) |
| 2155 | continue; |
| 2156 | |
| 2157 | for (i = 0; i < max_cpus; i++) |
| 2158 | bzero(data->dtada_percpu[i], rec->dtrd_size); |
| 2159 | } |
| 2160 | } |
| 2161 | |
| 2162 | void |
| 2163 | dt_aggregate_destroy(dtrace_hdl_t *dtp) |
| 2164 | { |
| 2165 | dt_aggregate_t *agp = &dtp->dt_aggregate; |
| 2166 | dt_ahash_t *hash = &agp->dtat_hash; |
| 2167 | dt_ahashent_t *h, *next; |
| 2168 | dtrace_aggdata_t *aggdata; |
| 2169 | int i, max_cpus = agp->dtat_maxcpu; |
| 2170 | |
| 2171 | if (hash->dtah_hash == NULL) { |
| 2172 | assert(hash->dtah_all == NULL); |
| 2173 | } else { |
| 2174 | free(hash->dtah_hash); |
| 2175 | |
| 2176 | for (h = hash->dtah_all; h != NULL; h = next) { |
| 2177 | next = h->dtahe_nextall; |
| 2178 | |
| 2179 | aggdata = &h->dtahe_data; |
| 2180 | |
| 2181 | if (aggdata->dtada_percpu != NULL) { |
| 2182 | for (i = 0; i < max_cpus; i++) |
| 2183 | free(aggdata->dtada_percpu[i]); |
| 2184 | free(aggdata->dtada_percpu); |
| 2185 | } |
| 2186 | |
| 2187 | free(aggdata->dtada_data); |
| 2188 | free(h); |
| 2189 | } |
| 2190 | |
| 2191 | hash->dtah_hash = NULL; |
| 2192 | hash->dtah_all = NULL; |
| 2193 | hash->dtah_size = 0; |
| 2194 | } |
| 2195 | |
| 2196 | free(agp->dtat_buf.dtbd_data); |
| 2197 | free(agp->dtat_cpus); |
| 2198 | } |
| 2199 | |