| 1 | /*	$NetBSD: gencode.c,v 1.11 2018/09/03 15:26:43 christos Exp $	*/ | 
| 2 |  | 
| 3 | /*#define CHASE_CHAIN*/ | 
| 4 | /* | 
| 5 |  * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998 | 
| 6 |  *	The Regents of the University of California.  All rights reserved. | 
| 7 |  * | 
| 8 |  * Redistribution and use in source and binary forms, with or without | 
| 9 |  * modification, are permitted provided that: (1) source code distributions | 
| 10 |  * retain the above copyright notice and this paragraph in its entirety, (2) | 
| 11 |  * distributions including binary code include the above copyright notice and | 
| 12 |  * this paragraph in its entirety in the documentation or other materials | 
| 13 |  * provided with the distribution, and (3) all advertising materials mentioning | 
| 14 |  * features or use of this software display the following acknowledgement: | 
| 15 |  * ``This product includes software developed by the University of California, | 
| 16 |  * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of | 
| 17 |  * the University nor the names of its contributors may be used to endorse | 
| 18 |  * or promote products derived from this software without specific prior | 
| 19 |  * written permission. | 
| 20 |  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED | 
| 21 |  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF | 
| 22 |  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. | 
| 23 |  */ | 
| 24 |  | 
| 25 | #include <sys/cdefs.h> | 
| 26 | __RCSID("$NetBSD: gencode.c,v 1.11 2018/09/03 15:26:43 christos Exp $" ); | 
| 27 |  | 
| 28 | #ifdef HAVE_CONFIG_H | 
| 29 | #include <config.h> | 
| 30 | #endif | 
| 31 |  | 
| 32 | #include <pcap-types.h> | 
| 33 | #ifdef _WIN32 | 
| 34 |   #include <ws2tcpip.h> | 
| 35 | #else | 
| 36 |   #include <sys/socket.h> | 
| 37 |  | 
| 38 |   #ifdef __NetBSD__ | 
| 39 |     #include <sys/param.h> | 
| 40 |   #endif | 
| 41 |  | 
| 42 |   #include <netinet/in.h> | 
| 43 |   #include <arpa/inet.h> | 
| 44 | #endif /* _WIN32 */ | 
| 45 |  | 
| 46 | #include <stdlib.h> | 
| 47 | #include <string.h> | 
| 48 | #include <memory.h> | 
| 49 | #include <setjmp.h> | 
| 50 | #include <stdarg.h> | 
| 51 |  | 
| 52 | #ifdef MSDOS | 
| 53 | #include "pcap-dos.h" | 
| 54 | #endif | 
| 55 |  | 
| 56 | #include "pcap-int.h" | 
| 57 |  | 
| 58 | #include "ethertype.h" | 
| 59 | #include "nlpid.h" | 
| 60 | #include "llc.h" | 
| 61 | #include "gencode.h" | 
| 62 | #include "ieee80211.h" | 
| 63 | #include "atmuni31.h" | 
| 64 | #include "sunatmpos.h" | 
| 65 | #include "ppp.h" | 
| 66 | #include "pcap/sll.h" | 
| 67 | #include "pcap/ipnet.h" | 
| 68 | #include "arcnet.h" | 
| 69 |  | 
| 70 | #include "grammar.h" | 
| 71 | #include "scanner.h" | 
| 72 |  | 
| 73 | #if defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) | 
| 74 | #include <linux/types.h> | 
| 75 | #include <linux/if_packet.h> | 
| 76 | #include <linux/filter.h> | 
| 77 | #endif | 
| 78 |  | 
| 79 | #ifdef HAVE_NET_PFVAR_H | 
| 80 | #include <sys/socket.h> | 
| 81 | #include <net/if.h> | 
| 82 | #include <net/pfvar.h> | 
| 83 | #include <net/if_pflog.h> | 
| 84 | #endif | 
| 85 |  | 
| 86 | #ifndef offsetof | 
| 87 | #define offsetof(s, e) ((size_t)&((s *)0)->e) | 
| 88 | #endif | 
| 89 |  | 
| 90 | #ifdef _WIN32 | 
| 91 |   #ifdef INET6 | 
| 92 |     #if defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF) | 
| 93 | /* IPv6 address */ | 
| 94 | struct in6_addr | 
| 95 |   { | 
| 96 |     union | 
| 97 |       { | 
| 98 | 	uint8_t		u6_addr8[16]; | 
| 99 | 	uint16_t	u6_addr16[8]; | 
| 100 | 	uint32_t	u6_addr32[4]; | 
| 101 |       } in6_u; | 
| 102 | #define s6_addr			in6_u.u6_addr8 | 
| 103 | #define s6_addr16		in6_u.u6_addr16 | 
| 104 | #define s6_addr32		in6_u.u6_addr32 | 
| 105 | #define s6_addr64		in6_u.u6_addr64 | 
| 106 |   }; | 
| 107 |  | 
| 108 | typedef unsigned short	sa_family_t; | 
| 109 |  | 
| 110 | #define	__SOCKADDR_COMMON(sa_prefix) \ | 
| 111 |   sa_family_t sa_prefix##family | 
| 112 |  | 
| 113 | /* Ditto, for IPv6.  */ | 
| 114 | struct sockaddr_in6 | 
| 115 |   { | 
| 116 |     __SOCKADDR_COMMON (sin6_); | 
| 117 |     uint16_t sin6_port;		/* Transport layer port # */ | 
| 118 |     uint32_t sin6_flowinfo;	/* IPv6 flow information */ | 
| 119 |     struct in6_addr sin6_addr;	/* IPv6 address */ | 
| 120 |   }; | 
| 121 |  | 
| 122 |       #ifndef EAI_ADDRFAMILY | 
| 123 | struct addrinfo { | 
| 124 | 	int	ai_flags;	/* AI_PASSIVE, AI_CANONNAME */ | 
| 125 | 	int	ai_family;	/* PF_xxx */ | 
| 126 | 	int	ai_socktype;	/* SOCK_xxx */ | 
| 127 | 	int	ai_protocol;	/* 0 or IPPROTO_xxx for IPv4 and IPv6 */ | 
| 128 | 	size_t	ai_addrlen;	/* length of ai_addr */ | 
| 129 | 	char	*ai_canonname;	/* canonical name for hostname */ | 
| 130 | 	struct sockaddr *ai_addr;	/* binary address */ | 
| 131 | 	struct addrinfo *ai_next;	/* next structure in linked list */ | 
| 132 | }; | 
| 133 |       #endif /* EAI_ADDRFAMILY */ | 
| 134 |     #endif /* defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF) */ | 
| 135 |   #endif /* INET6 */ | 
| 136 | #else /* _WIN32 */ | 
| 137 |   #include <netdb.h>	/* for "struct addrinfo" */ | 
| 138 | #endif /* _WIN32 */ | 
| 139 | #include <pcap/namedb.h> | 
| 140 |  | 
| 141 | #include "nametoaddr.h" | 
| 142 |  | 
| 143 | #define ETHERMTU	1500 | 
| 144 |  | 
| 145 | #ifndef ETHERTYPE_TEB | 
| 146 | #define ETHERTYPE_TEB 0x6558 | 
| 147 | #endif | 
| 148 |  | 
| 149 | #ifndef IPPROTO_HOPOPTS | 
| 150 | #define IPPROTO_HOPOPTS 0 | 
| 151 | #endif | 
| 152 | #ifndef IPPROTO_ROUTING | 
| 153 | #define IPPROTO_ROUTING 43 | 
| 154 | #endif | 
| 155 | #ifndef IPPROTO_FRAGMENT | 
| 156 | #define IPPROTO_FRAGMENT 44 | 
| 157 | #endif | 
| 158 | #ifndef IPPROTO_DSTOPTS | 
| 159 | #define IPPROTO_DSTOPTS 60 | 
| 160 | #endif | 
| 161 | #ifndef IPPROTO_SCTP | 
| 162 | #define IPPROTO_SCTP 132 | 
| 163 | #endif | 
| 164 |  | 
| 165 | #define GENEVE_PORT 6081 | 
| 166 |  | 
| 167 | #ifdef HAVE_OS_PROTO_H | 
| 168 | #include "os-proto.h" | 
| 169 | #endif | 
| 170 |  | 
| 171 | #define JMP(c) ((c)|BPF_JMP|BPF_K) | 
| 172 |  | 
| 173 | /* | 
| 174 |  * "Push" the current value of the link-layer header type and link-layer | 
| 175 |  * header offset onto a "stack", and set a new value.  (It's not a | 
| 176 |  * full-blown stack; we keep only the top two items.) | 
| 177 |  */ | 
| 178 | #define PUSH_LINKHDR(cs, new_linktype, new_is_variable, new_constant_part, new_reg) \ | 
| 179 | { \ | 
| 180 | 	(cs)->prevlinktype = (cs)->linktype; \ | 
| 181 | 	(cs)->off_prevlinkhdr = (cs)->off_linkhdr; \ | 
| 182 | 	(cs)->linktype = (new_linktype); \ | 
| 183 | 	(cs)->off_linkhdr.is_variable = (new_is_variable); \ | 
| 184 | 	(cs)->off_linkhdr.constant_part = (new_constant_part); \ | 
| 185 | 	(cs)->off_linkhdr.reg = (new_reg); \ | 
| 186 | 	(cs)->is_geneve = 0; \ | 
| 187 | } | 
| 188 |  | 
| 189 | /* | 
| 190 |  * Offset "not set" value. | 
| 191 |  */ | 
| 192 | #define OFFSET_NOT_SET	0xffffffffU | 
| 193 |  | 
| 194 | /* | 
| 195 |  * Absolute offsets, which are offsets from the beginning of the raw | 
| 196 |  * packet data, are, in the general case, the sum of a variable value | 
| 197 |  * and a constant value; the variable value may be absent, in which | 
| 198 |  * case the offset is only the constant value, and the constant value | 
| 199 |  * may be zero, in which case the offset is only the variable value. | 
| 200 |  * | 
| 201 |  * bpf_abs_offset is a structure containing all that information: | 
| 202 |  * | 
| 203 |  *   is_variable is 1 if there's a variable part. | 
| 204 |  * | 
| 205 |  *   constant_part is the constant part of the value, possibly zero; | 
| 206 |  * | 
| 207 |  *   if is_variable is 1, reg is the register number for a register | 
| 208 |  *   containing the variable value if the register has been assigned, | 
| 209 |  *   and -1 otherwise. | 
| 210 |  */ | 
| 211 | typedef struct { | 
| 212 | 	int	is_variable; | 
| 213 | 	u_int	constant_part; | 
| 214 | 	int	reg; | 
| 215 | } bpf_abs_offset; | 
| 216 |  | 
| 217 | /* | 
| 218 |  * Value passed to gen_load_a() to indicate what the offset argument | 
| 219 |  * is relative to the beginning of. | 
| 220 |  */ | 
| 221 | enum e_offrel { | 
| 222 | 	OR_PACKET,		/* full packet data */ | 
| 223 | 	OR_LINKHDR,		/* link-layer header */ | 
| 224 | 	OR_PREVLINKHDR,		/* previous link-layer header */ | 
| 225 | 	OR_LLC,			/* 802.2 LLC header */ | 
| 226 | 	OR_PREVMPLSHDR,		/* previous MPLS header */ | 
| 227 | 	OR_LINKTYPE,		/* link-layer type */ | 
| 228 | 	OR_LINKPL,		/* link-layer payload */ | 
| 229 | 	OR_LINKPL_NOSNAP,	/* link-layer payload, with no SNAP header at the link layer */ | 
| 230 | 	OR_TRAN_IPV4,		/* transport-layer header, with IPv4 network layer */ | 
| 231 | 	OR_TRAN_IPV6		/* transport-layer header, with IPv6 network layer */ | 
| 232 | }; | 
| 233 |  | 
| 234 | /* | 
| 235 |  * We divy out chunks of memory rather than call malloc each time so | 
| 236 |  * we don't have to worry about leaking memory.  It's probably | 
| 237 |  * not a big deal if all this memory was wasted but if this ever | 
| 238 |  * goes into a library that would probably not be a good idea. | 
| 239 |  * | 
| 240 |  * XXX - this *is* in a library.... | 
| 241 |  */ | 
| 242 | #define NCHUNKS 16 | 
| 243 | #define CHUNK0SIZE 1024 | 
| 244 | struct chunk { | 
| 245 | 	size_t n_left; | 
| 246 | 	void *m; | 
| 247 | }; | 
| 248 |  | 
| 249 | /* Code generator state */ | 
| 250 |  | 
| 251 | struct _compiler_state { | 
| 252 | 	jmp_buf top_ctx; | 
| 253 | 	pcap_t *bpf_pcap; | 
| 254 |  | 
| 255 | 	struct icode ic; | 
| 256 |  | 
| 257 | 	int snaplen; | 
| 258 |  | 
| 259 | 	int linktype; | 
| 260 | 	int prevlinktype; | 
| 261 | 	int outermostlinktype; | 
| 262 |  | 
| 263 | 	bpf_u_int32 netmask; | 
| 264 | 	int no_optimize; | 
| 265 |  | 
| 266 | 	/* Hack for handling VLAN and MPLS stacks. */ | 
| 267 | 	u_int label_stack_depth; | 
| 268 | 	u_int vlan_stack_depth; | 
| 269 |  | 
| 270 | 	/* XXX */ | 
| 271 | 	u_int pcap_fddipad; | 
| 272 |  | 
| 273 | 	/* | 
| 274 | 	 * As errors are handled by a longjmp, anything allocated must | 
| 275 | 	 * be freed in the longjmp handler, so it must be reachable | 
| 276 | 	 * from that handler. | 
| 277 | 	 * | 
| 278 | 	 * One thing that's allocated is the result of pcap_nametoaddrinfo(); | 
| 279 | 	 * it must be freed with freeaddrinfo().  This variable points to | 
| 280 | 	 * any addrinfo structure that would need to be freed. | 
| 281 | 	 */ | 
| 282 | 	struct addrinfo *ai; | 
| 283 |  | 
| 284 | 	/* | 
| 285 | 	 * Various code constructs need to know the layout of the packet. | 
| 286 | 	 * These values give the necessary offsets from the beginning | 
| 287 | 	 * of the packet data. | 
| 288 | 	 */ | 
| 289 |  | 
| 290 | 	/* | 
| 291 | 	 * Absolute offset of the beginning of the link-layer header. | 
| 292 | 	 */ | 
| 293 | 	bpf_abs_offset off_linkhdr; | 
| 294 |  | 
| 295 | 	/* | 
| 296 | 	 * If we're checking a link-layer header for a packet encapsulated | 
| 297 | 	 * in another protocol layer, this is the equivalent information | 
| 298 | 	 * for the previous layers' link-layer header from the beginning | 
| 299 | 	 * of the raw packet data. | 
| 300 | 	 */ | 
| 301 | 	bpf_abs_offset off_prevlinkhdr; | 
| 302 |  | 
| 303 | 	/* | 
| 304 | 	 * This is the equivalent information for the outermost layers' | 
| 305 | 	 * link-layer header. | 
| 306 | 	 */ | 
| 307 | 	bpf_abs_offset off_outermostlinkhdr; | 
| 308 |  | 
| 309 | 	/* | 
| 310 | 	 * Absolute offset of the beginning of the link-layer payload. | 
| 311 | 	 */ | 
| 312 | 	bpf_abs_offset off_linkpl; | 
| 313 |  | 
| 314 | 	/* | 
| 315 | 	 * "off_linktype" is the offset to information in the link-layer | 
| 316 | 	 * header giving the packet type. This is an absolute offset | 
| 317 | 	 * from the beginning of the packet. | 
| 318 | 	 * | 
| 319 | 	 * For Ethernet, it's the offset of the Ethernet type field; this | 
| 320 | 	 * means that it must have a value that skips VLAN tags. | 
| 321 | 	 * | 
| 322 | 	 * For link-layer types that always use 802.2 headers, it's the | 
| 323 | 	 * offset of the LLC header; this means that it must have a value | 
| 324 | 	 * that skips VLAN tags. | 
| 325 | 	 * | 
| 326 | 	 * For PPP, it's the offset of the PPP type field. | 
| 327 | 	 * | 
| 328 | 	 * For Cisco HDLC, it's the offset of the CHDLC type field. | 
| 329 | 	 * | 
| 330 | 	 * For BSD loopback, it's the offset of the AF_ value. | 
| 331 | 	 * | 
| 332 | 	 * For Linux cooked sockets, it's the offset of the type field. | 
| 333 | 	 * | 
| 334 | 	 * off_linktype.constant_part is set to OFFSET_NOT_SET for no | 
| 335 | 	 * encapsulation, in which case, IP is assumed. | 
| 336 | 	 */ | 
| 337 | 	bpf_abs_offset off_linktype; | 
| 338 |  | 
| 339 | 	/* | 
| 340 | 	 * TRUE if the link layer includes an ATM pseudo-header. | 
| 341 | 	 */ | 
| 342 | 	int is_atm; | 
| 343 |  | 
| 344 | 	/* | 
| 345 | 	 * TRUE if "geneve" appeared in the filter; it causes us to | 
| 346 | 	 * generate code that checks for a Geneve header and assume | 
| 347 | 	 * that later filters apply to the encapsulated payload. | 
| 348 | 	 */ | 
| 349 | 	int is_geneve; | 
| 350 |  | 
| 351 | 	/* | 
| 352 | 	 * TRUE if we need variable length part of VLAN offset | 
| 353 | 	 */ | 
| 354 | 	int is_vlan_vloffset; | 
| 355 |  | 
| 356 | 	/* | 
| 357 | 	 * These are offsets for the ATM pseudo-header. | 
| 358 | 	 */ | 
| 359 | 	u_int off_vpi; | 
| 360 | 	u_int off_vci; | 
| 361 | 	u_int off_proto; | 
| 362 |  | 
| 363 | 	/* | 
| 364 | 	 * These are offsets for the MTP2 fields. | 
| 365 | 	 */ | 
| 366 | 	u_int off_li; | 
| 367 | 	u_int off_li_hsl; | 
| 368 |  | 
| 369 | 	/* | 
| 370 | 	 * These are offsets for the MTP3 fields. | 
| 371 | 	 */ | 
| 372 | 	u_int off_sio; | 
| 373 | 	u_int off_opc; | 
| 374 | 	u_int off_dpc; | 
| 375 | 	u_int off_sls; | 
| 376 |  | 
| 377 | 	/* | 
| 378 | 	 * This is the offset of the first byte after the ATM pseudo_header, | 
| 379 | 	 * or -1 if there is no ATM pseudo-header. | 
| 380 | 	 */ | 
| 381 | 	u_int off_payload; | 
| 382 |  | 
| 383 | 	/* | 
| 384 | 	 * These are offsets to the beginning of the network-layer header. | 
| 385 | 	 * They are relative to the beginning of the link-layer payload | 
| 386 | 	 * (i.e., they don't include off_linkhdr.constant_part or | 
| 387 | 	 * off_linkpl.constant_part). | 
| 388 | 	 * | 
| 389 | 	 * If the link layer never uses 802.2 LLC: | 
| 390 | 	 * | 
| 391 | 	 *	"off_nl" and "off_nl_nosnap" are the same. | 
| 392 | 	 * | 
| 393 | 	 * If the link layer always uses 802.2 LLC: | 
| 394 | 	 * | 
| 395 | 	 *	"off_nl" is the offset if there's a SNAP header following | 
| 396 | 	 *	the 802.2 header; | 
| 397 | 	 * | 
| 398 | 	 *	"off_nl_nosnap" is the offset if there's no SNAP header. | 
| 399 | 	 * | 
| 400 | 	 * If the link layer is Ethernet: | 
| 401 | 	 * | 
| 402 | 	 *	"off_nl" is the offset if the packet is an Ethernet II packet | 
| 403 | 	 *	(we assume no 802.3+802.2+SNAP); | 
| 404 | 	 * | 
| 405 | 	 *	"off_nl_nosnap" is the offset if the packet is an 802.3 packet | 
| 406 | 	 *	with an 802.2 header following it. | 
| 407 | 	 */ | 
| 408 | 	u_int off_nl; | 
| 409 | 	u_int off_nl_nosnap; | 
| 410 |  | 
| 411 | 	/* | 
| 412 | 	 * Here we handle simple allocation of the scratch registers. | 
| 413 | 	 * If too many registers are alloc'd, the allocator punts. | 
| 414 | 	 */ | 
| 415 | 	int regused[BPF_MEMWORDS]; | 
| 416 | 	int curreg; | 
| 417 |  | 
| 418 | 	/* | 
| 419 | 	 * Memory chunks. | 
| 420 | 	 */ | 
| 421 | 	struct chunk chunks[NCHUNKS]; | 
| 422 | 	int cur_chunk; | 
| 423 | }; | 
| 424 |  | 
| 425 | void PCAP_NORETURN | 
| 426 | bpf_syntax_error(compiler_state_t *cstate, const char *msg) | 
| 427 | { | 
| 428 | 	bpf_error(cstate, "syntax error in filter expression: %s" , msg); | 
| 429 | 	/* NOTREACHED */ | 
| 430 | } | 
| 431 |  | 
| 432 | /* VARARGS */ | 
| 433 | void PCAP_NORETURN | 
| 434 | bpf_error(compiler_state_t *cstate, const char *fmt, ...) | 
| 435 | { | 
| 436 | 	va_list ap; | 
| 437 |  | 
| 438 | 	va_start(ap, fmt); | 
| 439 | 	if (cstate->bpf_pcap != NULL) | 
| 440 | 		(void)pcap_vsnprintf(pcap_geterr(cstate->bpf_pcap), | 
| 441 | 		    PCAP_ERRBUF_SIZE, fmt, ap); | 
| 442 | 	va_end(ap); | 
| 443 | 	longjmp(cstate->top_ctx, 1); | 
| 444 | 	/* NOTREACHED */ | 
| 445 | } | 
| 446 |  | 
| 447 | static void init_linktype(compiler_state_t *, pcap_t *); | 
| 448 |  | 
| 449 | static void init_regs(compiler_state_t *); | 
| 450 | static int alloc_reg(compiler_state_t *); | 
| 451 | static void free_reg(compiler_state_t *, int); | 
| 452 |  | 
| 453 | static void initchunks(compiler_state_t *cstate); | 
| 454 | static void *newchunk(compiler_state_t *cstate, size_t); | 
| 455 | static void freechunks(compiler_state_t *cstate); | 
| 456 | static inline struct block *new_block(compiler_state_t *cstate, int); | 
| 457 | static inline struct slist *new_stmt(compiler_state_t *cstate, int); | 
| 458 | static struct block *gen_retblk(compiler_state_t *cstate, int); | 
| 459 | static inline void syntax(compiler_state_t *cstate); | 
| 460 |  | 
| 461 | static void backpatch(struct block *, struct block *); | 
| 462 | static void merge(struct block *, struct block *); | 
| 463 | static struct block *gen_cmp(compiler_state_t *, enum e_offrel, u_int, | 
| 464 |     u_int, bpf_int32); | 
| 465 | static struct block *gen_cmp_gt(compiler_state_t *, enum e_offrel, u_int, | 
| 466 |     u_int, bpf_int32); | 
| 467 | static struct block *gen_cmp_ge(compiler_state_t *, enum e_offrel, u_int, | 
| 468 |     u_int, bpf_int32); | 
| 469 | static struct block *gen_cmp_lt(compiler_state_t *, enum e_offrel, u_int, | 
| 470 |     u_int, bpf_int32); | 
| 471 | static struct block *gen_cmp_le(compiler_state_t *, enum e_offrel, u_int, | 
| 472 |     u_int, bpf_int32); | 
| 473 | static struct block *gen_mcmp(compiler_state_t *, enum e_offrel, u_int, | 
| 474 |     u_int, bpf_int32, bpf_u_int32); | 
| 475 | static struct block *gen_bcmp(compiler_state_t *, enum e_offrel, u_int, | 
| 476 |     u_int, const u_char *); | 
| 477 | static struct block *gen_ncmp(compiler_state_t *, enum e_offrel, bpf_u_int32, | 
| 478 |     bpf_u_int32, bpf_u_int32, bpf_u_int32, int, bpf_int32); | 
| 479 | static struct slist *gen_load_absoffsetrel(compiler_state_t *, bpf_abs_offset *, | 
| 480 |     u_int, u_int); | 
| 481 | static struct slist *gen_load_a(compiler_state_t *, enum e_offrel, u_int, | 
| 482 |     u_int); | 
| 483 | static struct slist *gen_loadx_iphdrlen(compiler_state_t *); | 
| 484 | static struct block *gen_uncond(compiler_state_t *, int); | 
| 485 | static inline struct block *gen_true(compiler_state_t *); | 
| 486 | static inline struct block *gen_false(compiler_state_t *); | 
| 487 | static struct block *gen_ether_linktype(compiler_state_t *, int); | 
| 488 | static struct block *gen_ipnet_linktype(compiler_state_t *, int); | 
| 489 | static struct block *gen_linux_sll_linktype(compiler_state_t *, int); | 
| 490 | static struct slist *gen_load_prism_llprefixlen(compiler_state_t *); | 
| 491 | static struct slist *gen_load_avs_llprefixlen(compiler_state_t *); | 
| 492 | static struct slist *gen_load_radiotap_llprefixlen(compiler_state_t *); | 
| 493 | static struct slist *gen_load_ppi_llprefixlen(compiler_state_t *); | 
| 494 | static void insert_compute_vloffsets(compiler_state_t *, struct block *); | 
| 495 | static struct slist *gen_abs_offset_varpart(compiler_state_t *, | 
| 496 |     bpf_abs_offset *); | 
| 497 | static int ethertype_to_ppptype(int); | 
| 498 | static struct block *gen_linktype(compiler_state_t *, int); | 
| 499 | static struct block *gen_snap(compiler_state_t *, bpf_u_int32, bpf_u_int32); | 
| 500 | static struct block *gen_llc_linktype(compiler_state_t *, int); | 
| 501 | static struct block *gen_hostop(compiler_state_t *, bpf_u_int32, bpf_u_int32, | 
| 502 |     int, int, u_int, u_int); | 
| 503 | #ifdef INET6 | 
| 504 | static struct block *gen_hostop6(compiler_state_t *, struct in6_addr *, | 
| 505 |     struct in6_addr *, int, int, u_int, u_int); | 
| 506 | #endif | 
| 507 | static struct block *gen_ahostop(compiler_state_t *, const u_char *, int); | 
| 508 | static struct block *gen_ehostop(compiler_state_t *, const u_char *, int); | 
| 509 | static struct block *gen_fhostop(compiler_state_t *, const u_char *, int); | 
| 510 | static struct block *gen_thostop(compiler_state_t *, const u_char *, int); | 
| 511 | static struct block *gen_wlanhostop(compiler_state_t *, const u_char *, int); | 
| 512 | static struct block *gen_ipfchostop(compiler_state_t *, const u_char *, int); | 
| 513 | static struct block *gen_dnhostop(compiler_state_t *, bpf_u_int32, int); | 
| 514 | static struct block *gen_mpls_linktype(compiler_state_t *, int); | 
| 515 | static struct block *gen_host(compiler_state_t *, bpf_u_int32, bpf_u_int32, | 
| 516 |     int, int, int); | 
| 517 | #ifdef INET6 | 
| 518 | static struct block *gen_host6(compiler_state_t *, struct in6_addr *, | 
| 519 |     struct in6_addr *, int, int, int); | 
| 520 | #endif | 
| 521 | #ifndef INET6 | 
| 522 | static struct block *gen_gateway(compiler_state_t *, const u_char *, | 
| 523 |     struct addrinfo *, int, int); | 
| 524 | #endif | 
| 525 | static struct block *gen_ipfrag(compiler_state_t *); | 
| 526 | static struct block *gen_portatom(compiler_state_t *, int, bpf_int32); | 
| 527 | static struct block *gen_portrangeatom(compiler_state_t *, int, bpf_int32, | 
| 528 |     bpf_int32); | 
| 529 | static struct block *gen_portatom6(compiler_state_t *, int, bpf_int32); | 
| 530 | static struct block *gen_portrangeatom6(compiler_state_t *, int, bpf_int32, | 
| 531 |     bpf_int32); | 
| 532 | struct block *gen_portop(compiler_state_t *, int, int, int); | 
| 533 | static struct block *gen_port(compiler_state_t *, int, int, int); | 
| 534 | struct block *gen_portrangeop(compiler_state_t *, int, int, int, int); | 
| 535 | static struct block *gen_portrange(compiler_state_t *, int, int, int, int); | 
| 536 | struct block *gen_portop6(compiler_state_t *, int, int, int); | 
| 537 | static struct block *gen_port6(compiler_state_t *, int, int, int); | 
| 538 | struct block *gen_portrangeop6(compiler_state_t *, int, int, int, int); | 
| 539 | static struct block *gen_portrange6(compiler_state_t *, int, int, int, int); | 
| 540 | static int lookup_proto(compiler_state_t *, const char *, int); | 
| 541 | static struct block *gen_protochain(compiler_state_t *, int, int, int); | 
| 542 | static struct block *gen_proto(compiler_state_t *, int, int, int); | 
| 543 | static struct slist *xfer_to_x(compiler_state_t *, struct arth *); | 
| 544 | static struct slist *xfer_to_a(compiler_state_t *, struct arth *); | 
| 545 | static struct block *gen_mac_multicast(compiler_state_t *, int); | 
| 546 | static struct block *gen_len(compiler_state_t *, int, int); | 
| 547 | static struct block *gen_check_802_11_data_frame(compiler_state_t *); | 
| 548 | static struct block *gen_geneve_ll_check(compiler_state_t *cstate); | 
| 549 |  | 
| 550 | static struct block *gen_ppi_dlt_check(compiler_state_t *); | 
| 551 | static struct block *gen_msg_abbrev(compiler_state_t *, int type); | 
| 552 |  | 
| 553 | static void | 
| 554 | initchunks(compiler_state_t *cstate) | 
| 555 | { | 
| 556 | 	int i; | 
| 557 |  | 
| 558 | 	for (i = 0; i < NCHUNKS; i++) { | 
| 559 | 		cstate->chunks[i].n_left = 0; | 
| 560 | 		cstate->chunks[i].m = NULL; | 
| 561 | 	} | 
| 562 | 	cstate->cur_chunk = 0; | 
| 563 | } | 
| 564 |  | 
| 565 | static void * | 
| 566 | newchunk(compiler_state_t *cstate, size_t n) | 
| 567 | { | 
| 568 | 	struct chunk *cp; | 
| 569 | 	int k; | 
| 570 | 	size_t size; | 
| 571 |  | 
| 572 | #ifndef __NetBSD__ | 
| 573 | 	/* XXX Round up to nearest long. */ | 
| 574 | 	n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1); | 
| 575 | #else | 
| 576 | 	/* XXX Round up to structure boundary. */ | 
| 577 | 	n = ALIGN(n); | 
| 578 | #endif | 
| 579 |  | 
| 580 | 	cp = &cstate->chunks[cstate->cur_chunk]; | 
| 581 | 	if (n > cp->n_left) { | 
| 582 | 		++cp; | 
| 583 | 		k = ++cstate->cur_chunk; | 
| 584 | 		if (k >= NCHUNKS) | 
| 585 | 			bpf_error(cstate, "out of memory" ); | 
| 586 | 		size = CHUNK0SIZE << k; | 
| 587 | 		cp->m = (void *)malloc(size); | 
| 588 | 		if (cp->m == NULL) | 
| 589 | 			bpf_error(cstate, "out of memory" ); | 
| 590 | 		memset((char *)cp->m, 0, size); | 
| 591 | 		cp->n_left = size; | 
| 592 | 		if (n > size) | 
| 593 | 			bpf_error(cstate, "out of memory" ); | 
| 594 | 	} | 
| 595 | 	cp->n_left -= n; | 
| 596 | 	return (void *)((char *)cp->m + cp->n_left); | 
| 597 | } | 
| 598 |  | 
| 599 | static void | 
| 600 | freechunks(compiler_state_t *cstate) | 
| 601 | { | 
| 602 | 	int i; | 
| 603 |  | 
| 604 | 	for (i = 0; i < NCHUNKS; ++i) | 
| 605 | 		if (cstate->chunks[i].m != NULL) | 
| 606 | 			free(cstate->chunks[i].m); | 
| 607 | } | 
| 608 |  | 
| 609 | /* | 
| 610 |  * A strdup whose allocations are freed after code generation is over. | 
| 611 |  */ | 
| 612 | char * | 
| 613 | sdup(compiler_state_t *cstate, const char *s) | 
| 614 | { | 
| 615 | 	size_t n = strlen(s) + 1; | 
| 616 | 	char *cp = newchunk(cstate, n); | 
| 617 |  | 
| 618 | 	strlcpy(cp, s, n); | 
| 619 | 	return (cp); | 
| 620 | } | 
| 621 |  | 
| 622 | static inline struct block * | 
| 623 | new_block(compiler_state_t *cstate, int code) | 
| 624 | { | 
| 625 | 	struct block *p; | 
| 626 |  | 
| 627 | 	p = (struct block *)newchunk(cstate, sizeof(*p)); | 
| 628 | 	p->s.code = code; | 
| 629 | 	p->head = p; | 
| 630 |  | 
| 631 | 	return p; | 
| 632 | } | 
| 633 |  | 
| 634 | static inline struct slist * | 
| 635 | new_stmt(compiler_state_t *cstate, int code) | 
| 636 | { | 
| 637 | 	struct slist *p; | 
| 638 |  | 
| 639 | 	p = (struct slist *)newchunk(cstate, sizeof(*p)); | 
| 640 | 	p->s.code = code; | 
| 641 |  | 
| 642 | 	return p; | 
| 643 | } | 
| 644 |  | 
| 645 | static struct block * | 
| 646 | gen_retblk(compiler_state_t *cstate, int v) | 
| 647 | { | 
| 648 | 	struct block *b = new_block(cstate, BPF_RET|BPF_K); | 
| 649 |  | 
| 650 | 	b->s.k = v; | 
| 651 | 	return b; | 
| 652 | } | 
| 653 |  | 
| 654 | static inline PCAP_NORETURN_DEF void | 
| 655 | syntax(compiler_state_t *cstate) | 
| 656 | { | 
| 657 | 	bpf_error(cstate, "syntax error in filter expression" ); | 
| 658 | } | 
| 659 |  | 
| 660 | int | 
| 661 | pcap_compile(pcap_t *p, struct bpf_program *program, | 
| 662 | 	     const char *buf, int optimize, bpf_u_int32 mask) | 
| 663 | { | 
| 664 | #ifdef _WIN32 | 
| 665 | 	static int done = 0; | 
| 666 | #endif | 
| 667 | 	compiler_state_t cstate; | 
| 668 | 	const char * volatile xbuf = buf; | 
| 669 | 	yyscan_t scanner = NULL; | 
| 670 | 	volatile YY_BUFFER_STATE in_buffer = NULL; | 
| 671 | 	u_int len; | 
| 672 | 	int  rc; | 
| 673 |  | 
| 674 | 	/* | 
| 675 | 	 * If this pcap_t hasn't been activated, it doesn't have a | 
| 676 | 	 * link-layer type, so we can't use it. | 
| 677 | 	 */ | 
| 678 | 	if (!p->activated) { | 
| 679 | 		pcap_snprintf(p->errbuf, PCAP_ERRBUF_SIZE, | 
| 680 | 		    "not-yet-activated pcap_t passed to pcap_compile" ); | 
| 681 | 		return (-1); | 
| 682 | 	} | 
| 683 |  | 
| 684 | #ifdef _WIN32 | 
| 685 | 	if (!done) | 
| 686 | 		pcap_wsockinit(); | 
| 687 | 	done = 1; | 
| 688 | #endif | 
| 689 |  | 
| 690 | #ifdef ENABLE_REMOTE | 
| 691 | 	/* | 
| 692 | 	 * If the device on which we're capturing need to be notified | 
| 693 | 	 * that a new filter is being compiled, do so. | 
| 694 | 	 * | 
| 695 | 	 * This allows them to save a copy of it, in case, for example, | 
| 696 | 	 * they're implementing a form of remote packet capture, and | 
| 697 | 	 * want the remote machine to filter out the packets in which | 
| 698 | 	 * it's sending the packets it's captured. | 
| 699 | 	 * | 
| 700 | 	 * XXX - the fact that we happen to be compiling a filter | 
| 701 | 	 * doesn't necessarily mean we'll be installing it as the | 
| 702 | 	 * filter for this pcap_t; we might be running it from userland | 
| 703 | 	 * on captured packets to do packet classification.  We really | 
| 704 | 	 * need a better way of handling this, but this is all that | 
| 705 | 	 * the WinPcap code did. | 
| 706 | 	 */ | 
| 707 | 	if (p->save_current_filter_op != NULL) | 
| 708 | 		(p->save_current_filter_op)(p, buf); | 
| 709 | #endif | 
| 710 |  | 
| 711 | 	initchunks(&cstate); | 
| 712 | 	cstate.no_optimize = 0; | 
| 713 | #ifdef INET6 | 
| 714 | 	cstate.ai = NULL; | 
| 715 | #endif | 
| 716 | 	cstate.ic.root = NULL; | 
| 717 | 	cstate.ic.cur_mark = 0; | 
| 718 | 	cstate.bpf_pcap = p; | 
| 719 | 	init_regs(&cstate); | 
| 720 |  | 
| 721 | 	if (setjmp(cstate.top_ctx)) { | 
| 722 | #ifdef INET6 | 
| 723 | 		if (cstate.ai != NULL) | 
| 724 | 			freeaddrinfo(cstate.ai); | 
| 725 | #endif | 
| 726 | 		rc = -1; | 
| 727 | 		goto quit; | 
| 728 | 	} | 
| 729 |  | 
| 730 | 	cstate.netmask = mask; | 
| 731 |  | 
| 732 | 	cstate.snaplen = pcap_snapshot(p); | 
| 733 | 	if (cstate.snaplen == 0) { | 
| 734 | 		pcap_snprintf(p->errbuf, PCAP_ERRBUF_SIZE, | 
| 735 | 			 "snaplen of 0 rejects all packets" ); | 
| 736 | 		rc = -1; | 
| 737 | 		goto quit; | 
| 738 | 	} | 
| 739 |  | 
| 740 | 	if (pcap_lex_init(&scanner) != 0) | 
| 741 | 		pcap_fmt_errmsg_for_errno(p->errbuf, PCAP_ERRBUF_SIZE, | 
| 742 | 		    errno, "can't initialize scanner" ); | 
| 743 | 	in_buffer = pcap__scan_string(xbuf ? xbuf : "" , scanner); | 
| 744 |  | 
| 745 | 	/* | 
| 746 | 	 * Associate the compiler state with the lexical analyzer | 
| 747 | 	 * state. | 
| 748 | 	 */ | 
| 749 | 	pcap_set_extra(&cstate, scanner); | 
| 750 |  | 
| 751 | 	init_linktype(&cstate, p); | 
| 752 | 	(void)pcap_parse(scanner, &cstate); | 
| 753 |  | 
| 754 | 	if (cstate.ic.root == NULL) | 
| 755 | 		cstate.ic.root = gen_retblk(&cstate, cstate.snaplen); | 
| 756 |  | 
| 757 | 	if (optimize && !cstate.no_optimize) { | 
| 758 | 		bpf_optimize(&cstate, &cstate.ic); | 
| 759 | 		if (cstate.ic.root == NULL || | 
| 760 | 		    (cstate.ic.root->s.code == (BPF_RET|BPF_K) && cstate.ic.root->s.k == 0)) | 
| 761 | 			bpf_error(&cstate, "expression rejects all packets" ); | 
| 762 | 	} | 
| 763 | 	program->bf_insns = icode_to_fcode(&cstate, &cstate.ic, cstate.ic.root, &len); | 
| 764 | 	program->bf_len = len; | 
| 765 |  | 
| 766 | 	rc = 0;  /* We're all okay */ | 
| 767 |  | 
| 768 | quit: | 
| 769 | 	/* | 
| 770 | 	 * Clean up everything for the lexical analyzer. | 
| 771 | 	 */ | 
| 772 | 	if (in_buffer != NULL) | 
| 773 | 		pcap__delete_buffer(in_buffer, scanner); | 
| 774 | 	if (scanner != NULL) | 
| 775 | 		pcap_lex_destroy(scanner); | 
| 776 |  | 
| 777 | 	/* | 
| 778 | 	 * Clean up our own allocated memory. | 
| 779 | 	 */ | 
| 780 | 	freechunks(&cstate); | 
| 781 |  | 
| 782 | 	return (rc); | 
| 783 | } | 
| 784 |  | 
| 785 | /* | 
| 786 |  * entry point for using the compiler with no pcap open | 
| 787 |  * pass in all the stuff that is needed explicitly instead. | 
| 788 |  */ | 
| 789 | int | 
| 790 | pcap_compile_nopcap(int snaplen_arg, int linktype_arg, | 
| 791 | 		    struct bpf_program *program, | 
| 792 | 	     const char *buf, int optimize, bpf_u_int32 mask) | 
| 793 | { | 
| 794 | 	pcap_t *p; | 
| 795 | 	int ret; | 
| 796 |  | 
| 797 | 	p = pcap_open_dead(linktype_arg, snaplen_arg); | 
| 798 | 	if (p == NULL) | 
| 799 | 		return (-1); | 
| 800 | 	ret = pcap_compile(p, program, buf, optimize, mask); | 
| 801 | 	pcap_close(p); | 
| 802 | 	return (ret); | 
| 803 | } | 
| 804 |  | 
| 805 | /* | 
| 806 |  * Clean up a "struct bpf_program" by freeing all the memory allocated | 
| 807 |  * in it. | 
| 808 |  */ | 
| 809 | void | 
| 810 | pcap_freecode(struct bpf_program *program) | 
| 811 | { | 
| 812 | 	program->bf_len = 0; | 
| 813 | 	if (program->bf_insns != NULL) { | 
| 814 | 		free((char *)program->bf_insns); | 
| 815 | 		program->bf_insns = NULL; | 
| 816 | 	} | 
| 817 | } | 
| 818 |  | 
| 819 | /* | 
| 820 |  * Backpatch the blocks in 'list' to 'target'.  The 'sense' field indicates | 
| 821 |  * which of the jt and jf fields has been resolved and which is a pointer | 
| 822 |  * back to another unresolved block (or nil).  At least one of the fields | 
| 823 |  * in each block is already resolved. | 
| 824 |  */ | 
| 825 | static void | 
| 826 | backpatch(struct block *list, struct block *target) | 
| 827 | { | 
| 828 | 	struct block *next; | 
| 829 |  | 
| 830 | 	while (list) { | 
| 831 | 		if (!list->sense) { | 
| 832 | 			next = JT(list); | 
| 833 | 			JT(list) = target; | 
| 834 | 		} else { | 
| 835 | 			next = JF(list); | 
| 836 | 			JF(list) = target; | 
| 837 | 		} | 
| 838 | 		list = next; | 
| 839 | 	} | 
| 840 | } | 
| 841 |  | 
| 842 | /* | 
| 843 |  * Merge the lists in b0 and b1, using the 'sense' field to indicate | 
| 844 |  * which of jt and jf is the link. | 
| 845 |  */ | 
| 846 | static void | 
| 847 | merge(struct block *b0, struct block *b1) | 
| 848 | { | 
| 849 | 	register struct block **p = &b0; | 
| 850 |  | 
| 851 | 	/* Find end of list. */ | 
| 852 | 	while (*p) | 
| 853 | 		p = !((*p)->sense) ? &JT(*p) : &JF(*p); | 
| 854 |  | 
| 855 | 	/* Concatenate the lists. */ | 
| 856 | 	*p = b1; | 
| 857 | } | 
| 858 |  | 
| 859 | void | 
| 860 | finish_parse(compiler_state_t *cstate, struct block *p) | 
| 861 | { | 
| 862 | 	struct block *ppi_dlt_check; | 
| 863 |  | 
| 864 | 	/* | 
| 865 | 	 * Insert before the statements of the first (root) block any | 
| 866 | 	 * statements needed to load the lengths of any variable-length | 
| 867 | 	 * headers into registers. | 
| 868 | 	 * | 
| 869 | 	 * XXX - a fancier strategy would be to insert those before the | 
| 870 | 	 * statements of all blocks that use those lengths and that | 
| 871 | 	 * have no predecessors that use them, so that we only compute | 
| 872 | 	 * the lengths if we need them.  There might be even better | 
| 873 | 	 * approaches than that. | 
| 874 | 	 * | 
| 875 | 	 * However, those strategies would be more complicated, and | 
| 876 | 	 * as we don't generate code to compute a length if the | 
| 877 | 	 * program has no tests that use the length, and as most | 
| 878 | 	 * tests will probably use those lengths, we would just | 
| 879 | 	 * postpone computing the lengths so that it's not done | 
| 880 | 	 * for tests that fail early, and it's not clear that's | 
| 881 | 	 * worth the effort. | 
| 882 | 	 */ | 
| 883 | 	insert_compute_vloffsets(cstate, p->head); | 
| 884 |  | 
| 885 | 	/* | 
| 886 | 	 * For DLT_PPI captures, generate a check of the per-packet | 
| 887 | 	 * DLT value to make sure it's DLT_IEEE802_11. | 
| 888 | 	 * | 
| 889 | 	 * XXX - TurboCap cards use DLT_PPI for Ethernet. | 
| 890 | 	 * Can we just define some DLT_ETHERNET_WITH_PHDR pseudo-header | 
| 891 | 	 * with appropriate Ethernet information and use that rather | 
| 892 | 	 * than using something such as DLT_PPI where you don't know | 
| 893 | 	 * the link-layer header type until runtime, which, in the | 
| 894 | 	 * general case, would force us to generate both Ethernet *and* | 
| 895 | 	 * 802.11 code (*and* anything else for which PPI is used) | 
| 896 | 	 * and choose between them early in the BPF program? | 
| 897 | 	 */ | 
| 898 | 	ppi_dlt_check = gen_ppi_dlt_check(cstate); | 
| 899 | 	if (ppi_dlt_check != NULL) | 
| 900 | 		gen_and(ppi_dlt_check, p); | 
| 901 |  | 
| 902 | 	backpatch(p, gen_retblk(cstate, cstate->snaplen)); | 
| 903 | 	p->sense = !p->sense; | 
| 904 | 	backpatch(p, gen_retblk(cstate, 0)); | 
| 905 | 	cstate->ic.root = p->head; | 
| 906 | } | 
| 907 |  | 
| 908 | void | 
| 909 | gen_and(struct block *b0, struct block *b1) | 
| 910 | { | 
| 911 | 	backpatch(b0, b1->head); | 
| 912 | 	b0->sense = !b0->sense; | 
| 913 | 	b1->sense = !b1->sense; | 
| 914 | 	merge(b1, b0); | 
| 915 | 	b1->sense = !b1->sense; | 
| 916 | 	b1->head = b0->head; | 
| 917 | } | 
| 918 |  | 
| 919 | void | 
| 920 | gen_or(struct block *b0, struct block *b1) | 
| 921 | { | 
| 922 | 	b0->sense = !b0->sense; | 
| 923 | 	backpatch(b0, b1->head); | 
| 924 | 	b0->sense = !b0->sense; | 
| 925 | 	merge(b1, b0); | 
| 926 | 	b1->head = b0->head; | 
| 927 | } | 
| 928 |  | 
| 929 | void | 
| 930 | gen_not(struct block *b) | 
| 931 | { | 
| 932 | 	b->sense = !b->sense; | 
| 933 | } | 
| 934 |  | 
| 935 | static struct block * | 
| 936 | gen_cmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset, | 
| 937 |     u_int size, bpf_int32 v) | 
| 938 | { | 
| 939 | 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v); | 
| 940 | } | 
| 941 |  | 
| 942 | static struct block * | 
| 943 | gen_cmp_gt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset, | 
| 944 |     u_int size, bpf_int32 v) | 
| 945 | { | 
| 946 | 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 0, v); | 
| 947 | } | 
| 948 |  | 
| 949 | static struct block * | 
| 950 | gen_cmp_ge(compiler_state_t *cstate, enum e_offrel offrel, u_int offset, | 
| 951 |     u_int size, bpf_int32 v) | 
| 952 | { | 
| 953 | 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 0, v); | 
| 954 | } | 
| 955 |  | 
| 956 | static struct block * | 
| 957 | gen_cmp_lt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset, | 
| 958 |     u_int size, bpf_int32 v) | 
| 959 | { | 
| 960 | 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 1, v); | 
| 961 | } | 
| 962 |  | 
| 963 | static struct block * | 
| 964 | gen_cmp_le(compiler_state_t *cstate, enum e_offrel offrel, u_int offset, | 
| 965 |     u_int size, bpf_int32 v) | 
| 966 | { | 
| 967 | 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 1, v); | 
| 968 | } | 
| 969 |  | 
| 970 | static struct block * | 
| 971 | gen_mcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset, | 
| 972 |     u_int size, bpf_int32 v, bpf_u_int32 mask) | 
| 973 | { | 
| 974 | 	return gen_ncmp(cstate, offrel, offset, size, mask, BPF_JEQ, 0, v); | 
| 975 | } | 
| 976 |  | 
| 977 | static struct block * | 
| 978 | gen_bcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset, | 
| 979 |     u_int size, const u_char *v) | 
| 980 | { | 
| 981 | 	register struct block *b, *tmp; | 
| 982 |  | 
| 983 | 	b = NULL; | 
| 984 | 	while (size >= 4) { | 
| 985 | 		register const u_char *p = &v[size - 4]; | 
| 986 | 		bpf_int32 w = ((bpf_int32)p[0] << 24) | | 
| 987 | 		    ((bpf_int32)p[1] << 16) | ((bpf_int32)p[2] << 8) | p[3]; | 
| 988 |  | 
| 989 | 		tmp = gen_cmp(cstate, offrel, offset + size - 4, BPF_W, w); | 
| 990 | 		if (b != NULL) | 
| 991 | 			gen_and(b, tmp); | 
| 992 | 		b = tmp; | 
| 993 | 		size -= 4; | 
| 994 | 	} | 
| 995 | 	while (size >= 2) { | 
| 996 | 		register const u_char *p = &v[size - 2]; | 
| 997 | 		bpf_int32 w = ((bpf_int32)p[0] << 8) | p[1]; | 
| 998 |  | 
| 999 | 		tmp = gen_cmp(cstate, offrel, offset + size - 2, BPF_H, w); | 
| 1000 | 		if (b != NULL) | 
| 1001 | 			gen_and(b, tmp); | 
| 1002 | 		b = tmp; | 
| 1003 | 		size -= 2; | 
| 1004 | 	} | 
| 1005 | 	if (size > 0) { | 
| 1006 | 		tmp = gen_cmp(cstate, offrel, offset, BPF_B, (bpf_int32)v[0]); | 
| 1007 | 		if (b != NULL) | 
| 1008 | 			gen_and(b, tmp); | 
| 1009 | 		b = tmp; | 
| 1010 | 	} | 
| 1011 | 	return b; | 
| 1012 | } | 
| 1013 |  | 
| 1014 | /* | 
| 1015 |  * AND the field of size "size" at offset "offset" relative to the header | 
| 1016 |  * specified by "offrel" with "mask", and compare it with the value "v" | 
| 1017 |  * with the test specified by "jtype"; if "reverse" is true, the test | 
| 1018 |  * should test the opposite of "jtype". | 
| 1019 |  */ | 
| 1020 | static struct block * | 
| 1021 | gen_ncmp(compiler_state_t *cstate, enum e_offrel offrel, bpf_u_int32 offset, | 
| 1022 |     bpf_u_int32 size, bpf_u_int32 mask, bpf_u_int32 jtype, int reverse, | 
| 1023 |     bpf_int32 v) | 
| 1024 | { | 
| 1025 | 	struct slist *s, *s2; | 
| 1026 | 	struct block *b; | 
| 1027 |  | 
| 1028 | 	s = gen_load_a(cstate, offrel, offset, size); | 
| 1029 |  | 
| 1030 | 	if (mask != 0xffffffff) { | 
| 1031 | 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K); | 
| 1032 | 		s2->s.k = mask; | 
| 1033 | 		sappend(s, s2); | 
| 1034 | 	} | 
| 1035 |  | 
| 1036 | 	b = new_block(cstate, JMP(jtype)); | 
| 1037 | 	b->stmts = s; | 
| 1038 | 	b->s.k = v; | 
| 1039 | 	if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE)) | 
| 1040 | 		gen_not(b); | 
| 1041 | 	return b; | 
| 1042 | } | 
| 1043 |  | 
| 1044 | static void | 
| 1045 | init_linktype(compiler_state_t *cstate, pcap_t *p) | 
| 1046 | { | 
| 1047 | 	cstate->pcap_fddipad = p->fddipad; | 
| 1048 |  | 
| 1049 | 	/* | 
| 1050 | 	 * We start out with only one link-layer header. | 
| 1051 | 	 */ | 
| 1052 | 	cstate->outermostlinktype = pcap_datalink(p); | 
| 1053 | 	cstate->off_outermostlinkhdr.constant_part = 0; | 
| 1054 | 	cstate->off_outermostlinkhdr.is_variable = 0; | 
| 1055 | 	cstate->off_outermostlinkhdr.reg = -1; | 
| 1056 |  | 
| 1057 | 	cstate->prevlinktype = cstate->outermostlinktype; | 
| 1058 | 	cstate->off_prevlinkhdr.constant_part = 0; | 
| 1059 | 	cstate->off_prevlinkhdr.is_variable = 0; | 
| 1060 | 	cstate->off_prevlinkhdr.reg = -1; | 
| 1061 |  | 
| 1062 | 	cstate->linktype = cstate->outermostlinktype; | 
| 1063 | 	cstate->off_linkhdr.constant_part = 0; | 
| 1064 | 	cstate->off_linkhdr.is_variable = 0; | 
| 1065 | 	cstate->off_linkhdr.reg = -1; | 
| 1066 |  | 
| 1067 | 	/* | 
| 1068 | 	 * XXX | 
| 1069 | 	 */ | 
| 1070 | 	cstate->off_linkpl.constant_part = 0; | 
| 1071 | 	cstate->off_linkpl.is_variable = 0; | 
| 1072 | 	cstate->off_linkpl.reg = -1; | 
| 1073 |  | 
| 1074 | 	cstate->off_linktype.constant_part = 0; | 
| 1075 | 	cstate->off_linktype.is_variable = 0; | 
| 1076 | 	cstate->off_linktype.reg = -1; | 
| 1077 |  | 
| 1078 | 	/* | 
| 1079 | 	 * Assume it's not raw ATM with a pseudo-header, for now. | 
| 1080 | 	 */ | 
| 1081 | 	cstate->is_atm = 0; | 
| 1082 | 	cstate->off_vpi = OFFSET_NOT_SET; | 
| 1083 | 	cstate->off_vci = OFFSET_NOT_SET; | 
| 1084 | 	cstate->off_proto = OFFSET_NOT_SET; | 
| 1085 | 	cstate->off_payload = OFFSET_NOT_SET; | 
| 1086 |  | 
| 1087 | 	/* | 
| 1088 | 	 * And not Geneve. | 
| 1089 | 	 */ | 
| 1090 | 	cstate->is_geneve = 0; | 
| 1091 |  | 
| 1092 | 	/* | 
| 1093 | 	 * No variable length VLAN offset by default | 
| 1094 | 	 */ | 
| 1095 | 	cstate->is_vlan_vloffset = 0; | 
| 1096 |  | 
| 1097 | 	/* | 
| 1098 | 	 * And assume we're not doing SS7. | 
| 1099 | 	 */ | 
| 1100 | 	cstate->off_li = OFFSET_NOT_SET; | 
| 1101 | 	cstate->off_li_hsl = OFFSET_NOT_SET; | 
| 1102 | 	cstate->off_sio = OFFSET_NOT_SET; | 
| 1103 | 	cstate->off_opc = OFFSET_NOT_SET; | 
| 1104 | 	cstate->off_dpc = OFFSET_NOT_SET; | 
| 1105 | 	cstate->off_sls = OFFSET_NOT_SET; | 
| 1106 |  | 
| 1107 | 	cstate->label_stack_depth = 0; | 
| 1108 | 	cstate->vlan_stack_depth = 0; | 
| 1109 |  | 
| 1110 | 	switch (cstate->linktype) { | 
| 1111 |  | 
| 1112 | 	case DLT_ARCNET: | 
| 1113 | 		cstate->off_linktype.constant_part = 2; | 
| 1114 | 		cstate->off_linkpl.constant_part = 6; | 
| 1115 | 		cstate->off_nl = 0;		/* XXX in reality, variable! */ | 
| 1116 | 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */ | 
| 1117 | 		break; | 
| 1118 |  | 
| 1119 | 	case DLT_ARCNET_LINUX: | 
| 1120 | 		cstate->off_linktype.constant_part = 4; | 
| 1121 | 		cstate->off_linkpl.constant_part = 8; | 
| 1122 | 		cstate->off_nl = 0;		/* XXX in reality, variable! */ | 
| 1123 | 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */ | 
| 1124 | 		break; | 
| 1125 |  | 
| 1126 | 	case DLT_EN10MB: | 
| 1127 | 		cstate->off_linktype.constant_part = 12; | 
| 1128 | 		cstate->off_linkpl.constant_part = 14;	/* Ethernet header length */ | 
| 1129 | 		cstate->off_nl = 0;		/* Ethernet II */ | 
| 1130 | 		cstate->off_nl_nosnap = 3;	/* 802.3+802.2 */ | 
| 1131 | 		break; | 
| 1132 |  | 
| 1133 | 	case DLT_SLIP: | 
| 1134 | 		/* | 
| 1135 | 		 * SLIP doesn't have a link level type.  The 16 byte | 
| 1136 | 		 * header is hacked into our SLIP driver. | 
| 1137 | 		 */ | 
| 1138 | 		cstate->off_linktype.constant_part = OFFSET_NOT_SET; | 
| 1139 | 		cstate->off_linkpl.constant_part = 16; | 
| 1140 | 		cstate->off_nl = 0; | 
| 1141 | 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */ | 
| 1142 | 		break; | 
| 1143 |  | 
| 1144 | 	case DLT_SLIP_BSDOS: | 
| 1145 | 		/* XXX this may be the same as the DLT_PPP_BSDOS case */ | 
| 1146 | 		cstate->off_linktype.constant_part = OFFSET_NOT_SET; | 
| 1147 | 		/* XXX end */ | 
| 1148 | 		cstate->off_linkpl.constant_part = 24; | 
| 1149 | 		cstate->off_nl = 0; | 
| 1150 | 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */ | 
| 1151 | 		break; | 
| 1152 |  | 
| 1153 | 	case DLT_NULL: | 
| 1154 | 	case DLT_LOOP: | 
| 1155 | 		cstate->off_linktype.constant_part = 0; | 
| 1156 | 		cstate->off_linkpl.constant_part = 4; | 
| 1157 | 		cstate->off_nl = 0; | 
| 1158 | 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */ | 
| 1159 | 		break; | 
| 1160 |  | 
| 1161 | 	case DLT_ENC: | 
| 1162 | 		cstate->off_linktype.constant_part = 0; | 
| 1163 | 		cstate->off_linkpl.constant_part = 12; | 
| 1164 | 		cstate->off_nl = 0; | 
| 1165 | 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */ | 
| 1166 | 		break; | 
| 1167 |  | 
| 1168 | 	case DLT_PPP: | 
| 1169 | 	case DLT_PPP_PPPD: | 
| 1170 | 	case DLT_C_HDLC:		/* BSD/OS Cisco HDLC */ | 
| 1171 | 	case DLT_PPP_SERIAL:		/* NetBSD sync/async serial PPP */ | 
| 1172 | 		cstate->off_linktype.constant_part = 2;	/* skip HDLC-like framing */ | 
| 1173 | 		cstate->off_linkpl.constant_part = 4;	/* skip HDLC-like framing and protocol field */ | 
| 1174 | 		cstate->off_nl = 0; | 
| 1175 | 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */ | 
| 1176 | 		break; | 
| 1177 |  | 
| 1178 | 	case DLT_PPP_ETHER: | 
| 1179 | 		/* | 
| 1180 | 		 * This does no include the Ethernet header, and | 
| 1181 | 		 * only covers session state. | 
| 1182 | 		 */ | 
| 1183 | 		cstate->off_linktype.constant_part = 6; | 
| 1184 | 		cstate->off_linkpl.constant_part = 8; | 
| 1185 | 		cstate->off_nl = 0; | 
| 1186 | 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */ | 
| 1187 | 		break; | 
| 1188 |  | 
| 1189 | 	case DLT_PPP_BSDOS: | 
| 1190 | 		cstate->off_linktype.constant_part = 5; | 
| 1191 | 		cstate->off_linkpl.constant_part = 24; | 
| 1192 | 		cstate->off_nl = 0; | 
| 1193 | 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */ | 
| 1194 | 		break; | 
| 1195 |  | 
| 1196 | 	case DLT_FDDI: | 
| 1197 | 		/* | 
| 1198 | 		 * FDDI doesn't really have a link-level type field. | 
| 1199 | 		 * We set "off_linktype" to the offset of the LLC header. | 
| 1200 | 		 * | 
| 1201 | 		 * To check for Ethernet types, we assume that SSAP = SNAP | 
| 1202 | 		 * is being used and pick out the encapsulated Ethernet type. | 
| 1203 | 		 * XXX - should we generate code to check for SNAP? | 
| 1204 | 		 */ | 
| 1205 | 		cstate->off_linktype.constant_part = 13; | 
| 1206 | 		cstate->off_linktype.constant_part += cstate->pcap_fddipad; | 
| 1207 | 		cstate->off_linkpl.constant_part = 13;	/* FDDI MAC header length */ | 
| 1208 | 		cstate->off_linkpl.constant_part += cstate->pcap_fddipad; | 
| 1209 | 		cstate->off_nl = 8;		/* 802.2+SNAP */ | 
| 1210 | 		cstate->off_nl_nosnap = 3;	/* 802.2 */ | 
| 1211 | 		break; | 
| 1212 |  | 
| 1213 | 	case DLT_IEEE802: | 
| 1214 | 		/* | 
| 1215 | 		 * Token Ring doesn't really have a link-level type field. | 
| 1216 | 		 * We set "off_linktype" to the offset of the LLC header. | 
| 1217 | 		 * | 
| 1218 | 		 * To check for Ethernet types, we assume that SSAP = SNAP | 
| 1219 | 		 * is being used and pick out the encapsulated Ethernet type. | 
| 1220 | 		 * XXX - should we generate code to check for SNAP? | 
| 1221 | 		 * | 
| 1222 | 		 * XXX - the header is actually variable-length. | 
| 1223 | 		 * Some various Linux patched versions gave 38 | 
| 1224 | 		 * as "off_linktype" and 40 as "off_nl"; however, | 
| 1225 | 		 * if a token ring packet has *no* routing | 
| 1226 | 		 * information, i.e. is not source-routed, the correct | 
| 1227 | 		 * values are 20 and 22, as they are in the vanilla code. | 
| 1228 | 		 * | 
| 1229 | 		 * A packet is source-routed iff the uppermost bit | 
| 1230 | 		 * of the first byte of the source address, at an | 
| 1231 | 		 * offset of 8, has the uppermost bit set.  If the | 
| 1232 | 		 * packet is source-routed, the total number of bytes | 
| 1233 | 		 * of routing information is 2 plus bits 0x1F00 of | 
| 1234 | 		 * the 16-bit value at an offset of 14 (shifted right | 
| 1235 | 		 * 8 - figure out which byte that is). | 
| 1236 | 		 */ | 
| 1237 | 		cstate->off_linktype.constant_part = 14; | 
| 1238 | 		cstate->off_linkpl.constant_part = 14;	/* Token Ring MAC header length */ | 
| 1239 | 		cstate->off_nl = 8;		/* 802.2+SNAP */ | 
| 1240 | 		cstate->off_nl_nosnap = 3;	/* 802.2 */ | 
| 1241 | 		break; | 
| 1242 |  | 
| 1243 | 	case DLT_PRISM_HEADER: | 
| 1244 | 	case DLT_IEEE802_11_RADIO_AVS: | 
| 1245 | 	case DLT_IEEE802_11_RADIO: | 
| 1246 | 		cstate->off_linkhdr.is_variable = 1; | 
| 1247 | 		/* Fall through, 802.11 doesn't have a variable link | 
| 1248 | 		 * prefix but is otherwise the same. */ | 
| 1249 |  | 
| 1250 | 	case DLT_IEEE802_11: | 
| 1251 | 		/* | 
| 1252 | 		 * 802.11 doesn't really have a link-level type field. | 
| 1253 | 		 * We set "off_linktype.constant_part" to the offset of | 
| 1254 | 		 * the LLC header. | 
| 1255 | 		 * | 
| 1256 | 		 * To check for Ethernet types, we assume that SSAP = SNAP | 
| 1257 | 		 * is being used and pick out the encapsulated Ethernet type. | 
| 1258 | 		 * XXX - should we generate code to check for SNAP? | 
| 1259 | 		 * | 
| 1260 | 		 * We also handle variable-length radio headers here. | 
| 1261 | 		 * The Prism header is in theory variable-length, but in | 
| 1262 | 		 * practice it's always 144 bytes long.  However, some | 
| 1263 | 		 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but | 
| 1264 | 		 * sometimes or always supply an AVS header, so we | 
| 1265 | 		 * have to check whether the radio header is a Prism | 
| 1266 | 		 * header or an AVS header, so, in practice, it's | 
| 1267 | 		 * variable-length. | 
| 1268 | 		 */ | 
| 1269 | 		cstate->off_linktype.constant_part = 24; | 
| 1270 | 		cstate->off_linkpl.constant_part = 0;	/* link-layer header is variable-length */ | 
| 1271 | 		cstate->off_linkpl.is_variable = 1; | 
| 1272 | 		cstate->off_nl = 8;		/* 802.2+SNAP */ | 
| 1273 | 		cstate->off_nl_nosnap = 3;	/* 802.2 */ | 
| 1274 | 		break; | 
| 1275 |  | 
| 1276 | 	case DLT_PPI: | 
| 1277 | 		/* | 
| 1278 | 		 * At the moment we treat PPI the same way that we treat | 
| 1279 | 		 * normal Radiotap encoded packets. The difference is in | 
| 1280 | 		 * the function that generates the code at the beginning | 
| 1281 | 		 * to compute the header length.  Since this code generator | 
| 1282 | 		 * of PPI supports bare 802.11 encapsulation only (i.e. | 
| 1283 | 		 * the encapsulated DLT should be DLT_IEEE802_11) we | 
| 1284 | 		 * generate code to check for this too. | 
| 1285 | 		 */ | 
| 1286 | 		cstate->off_linktype.constant_part = 24; | 
| 1287 | 		cstate->off_linkpl.constant_part = 0;	/* link-layer header is variable-length */ | 
| 1288 | 		cstate->off_linkpl.is_variable = 1; | 
| 1289 | 		cstate->off_linkhdr.is_variable = 1; | 
| 1290 | 		cstate->off_nl = 8;		/* 802.2+SNAP */ | 
| 1291 | 		cstate->off_nl_nosnap = 3;	/* 802.2 */ | 
| 1292 | 		break; | 
| 1293 |  | 
| 1294 | 	case DLT_ATM_RFC1483: | 
| 1295 | 	case DLT_ATM_CLIP:	/* Linux ATM defines this */ | 
| 1296 | 		/* | 
| 1297 | 		 * assume routed, non-ISO PDUs | 
| 1298 | 		 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00) | 
| 1299 | 		 * | 
| 1300 | 		 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS, | 
| 1301 | 		 * or PPP with the PPP NLPID (e.g., PPPoA)?  The | 
| 1302 | 		 * latter would presumably be treated the way PPPoE | 
| 1303 | 		 * should be, so you can do "pppoe and udp port 2049" | 
| 1304 | 		 * or "pppoa and tcp port 80" and have it check for | 
| 1305 | 		 * PPPo{A,E} and a PPP protocol of IP and.... | 
| 1306 | 		 */ | 
| 1307 | 		cstate->off_linktype.constant_part = 0; | 
| 1308 | 		cstate->off_linkpl.constant_part = 0;	/* packet begins with LLC header */ | 
| 1309 | 		cstate->off_nl = 8;		/* 802.2+SNAP */ | 
| 1310 | 		cstate->off_nl_nosnap = 3;	/* 802.2 */ | 
| 1311 | 		break; | 
| 1312 |  | 
| 1313 | 	case DLT_SUNATM: | 
| 1314 | 		/* | 
| 1315 | 		 * Full Frontal ATM; you get AALn PDUs with an ATM | 
| 1316 | 		 * pseudo-header. | 
| 1317 | 		 */ | 
| 1318 | 		cstate->is_atm = 1; | 
| 1319 | 		cstate->off_vpi = SUNATM_VPI_POS; | 
| 1320 | 		cstate->off_vci = SUNATM_VCI_POS; | 
| 1321 | 		cstate->off_proto = PROTO_POS; | 
| 1322 | 		cstate->off_payload = SUNATM_PKT_BEGIN_POS; | 
| 1323 | 		cstate->off_linktype.constant_part = cstate->off_payload; | 
| 1324 | 		cstate->off_linkpl.constant_part = cstate->off_payload;	/* if LLC-encapsulated */ | 
| 1325 | 		cstate->off_nl = 8;		/* 802.2+SNAP */ | 
| 1326 | 		cstate->off_nl_nosnap = 3;	/* 802.2 */ | 
| 1327 | 		break; | 
| 1328 |  | 
| 1329 | 	case DLT_RAW: | 
| 1330 | 	case DLT_IPV4: | 
| 1331 | 	case DLT_IPV6: | 
| 1332 | 		cstate->off_linktype.constant_part = OFFSET_NOT_SET; | 
| 1333 | 		cstate->off_linkpl.constant_part = 0; | 
| 1334 | 		cstate->off_nl = 0; | 
| 1335 | 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */ | 
| 1336 | 		break; | 
| 1337 |  | 
| 1338 | 	case DLT_LINUX_SLL:	/* fake header for Linux cooked socket */ | 
| 1339 | 		cstate->off_linktype.constant_part = 14; | 
| 1340 | 		cstate->off_linkpl.constant_part = 16; | 
| 1341 | 		cstate->off_nl = 0; | 
| 1342 | 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */ | 
| 1343 | 		break; | 
| 1344 |  | 
| 1345 | 	case DLT_LTALK: | 
| 1346 | 		/* | 
| 1347 | 		 * LocalTalk does have a 1-byte type field in the LLAP header, | 
| 1348 | 		 * but really it just indicates whether there is a "short" or | 
| 1349 | 		 * "long" DDP packet following. | 
| 1350 | 		 */ | 
| 1351 | 		cstate->off_linktype.constant_part = OFFSET_NOT_SET; | 
| 1352 | 		cstate->off_linkpl.constant_part = 0; | 
| 1353 | 		cstate->off_nl = 0; | 
| 1354 | 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */ | 
| 1355 | 		break; | 
| 1356 |  | 
| 1357 | 	case DLT_IP_OVER_FC: | 
| 1358 | 		/* | 
| 1359 | 		 * RFC 2625 IP-over-Fibre-Channel doesn't really have a | 
| 1360 | 		 * link-level type field.  We set "off_linktype" to the | 
| 1361 | 		 * offset of the LLC header. | 
| 1362 | 		 * | 
| 1363 | 		 * To check for Ethernet types, we assume that SSAP = SNAP | 
| 1364 | 		 * is being used and pick out the encapsulated Ethernet type. | 
| 1365 | 		 * XXX - should we generate code to check for SNAP? RFC | 
| 1366 | 		 * 2625 says SNAP should be used. | 
| 1367 | 		 */ | 
| 1368 | 		cstate->off_linktype.constant_part = 16; | 
| 1369 | 		cstate->off_linkpl.constant_part = 16; | 
| 1370 | 		cstate->off_nl = 8;		/* 802.2+SNAP */ | 
| 1371 | 		cstate->off_nl_nosnap = 3;	/* 802.2 */ | 
| 1372 | 		break; | 
| 1373 |  | 
| 1374 | 	case DLT_FRELAY: | 
| 1375 | 		/* | 
| 1376 | 		 * XXX - we should set this to handle SNAP-encapsulated | 
| 1377 | 		 * frames (NLPID of 0x80). | 
| 1378 | 		 */ | 
| 1379 | 		cstate->off_linktype.constant_part = OFFSET_NOT_SET; | 
| 1380 | 		cstate->off_linkpl.constant_part = 0; | 
| 1381 | 		cstate->off_nl = 0; | 
| 1382 | 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */ | 
| 1383 | 		break; | 
| 1384 |  | 
| 1385 |                 /* | 
| 1386 |                  * the only BPF-interesting FRF.16 frames are non-control frames; | 
| 1387 |                  * Frame Relay has a variable length link-layer | 
| 1388 |                  * so lets start with offset 4 for now and increments later on (FIXME); | 
| 1389 |                  */ | 
| 1390 | 	case DLT_MFR: | 
| 1391 | 		cstate->off_linktype.constant_part = OFFSET_NOT_SET; | 
| 1392 | 		cstate->off_linkpl.constant_part = 0; | 
| 1393 | 		cstate->off_nl = 4; | 
| 1394 | 		cstate->off_nl_nosnap = 0;	/* XXX - for now -> no 802.2 LLC */ | 
| 1395 | 		break; | 
| 1396 |  | 
| 1397 | 	case DLT_APPLE_IP_OVER_IEEE1394: | 
| 1398 | 		cstate->off_linktype.constant_part = 16; | 
| 1399 | 		cstate->off_linkpl.constant_part = 18; | 
| 1400 | 		cstate->off_nl = 0; | 
| 1401 | 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */ | 
| 1402 | 		break; | 
| 1403 |  | 
| 1404 | 	case DLT_SYMANTEC_FIREWALL: | 
| 1405 | 		cstate->off_linktype.constant_part = 6; | 
| 1406 | 		cstate->off_linkpl.constant_part = 44; | 
| 1407 | 		cstate->off_nl = 0;		/* Ethernet II */ | 
| 1408 | 		cstate->off_nl_nosnap = 0;	/* XXX - what does it do with 802.3 packets? */ | 
| 1409 | 		break; | 
| 1410 |  | 
| 1411 | #ifdef HAVE_NET_PFVAR_H | 
| 1412 | 	case DLT_PFLOG: | 
| 1413 | 		cstate->off_linktype.constant_part = 0; | 
| 1414 | 		cstate->off_linkpl.constant_part = PFLOG_HDRLEN; | 
| 1415 | 		cstate->off_nl = 0; | 
| 1416 | 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */ | 
| 1417 | 		break; | 
| 1418 | #endif | 
| 1419 |  | 
| 1420 |         case DLT_JUNIPER_MFR: | 
| 1421 |         case DLT_JUNIPER_MLFR: | 
| 1422 |         case DLT_JUNIPER_MLPPP: | 
| 1423 |         case DLT_JUNIPER_PPP: | 
| 1424 |         case DLT_JUNIPER_CHDLC: | 
| 1425 |         case DLT_JUNIPER_FRELAY: | 
| 1426 | 		cstate->off_linktype.constant_part = 4; | 
| 1427 | 		cstate->off_linkpl.constant_part = 4; | 
| 1428 | 		cstate->off_nl = 0; | 
| 1429 | 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */ | 
| 1430 |                 break; | 
| 1431 |  | 
| 1432 | 	case DLT_JUNIPER_ATM1: | 
| 1433 | 		cstate->off_linktype.constant_part = 4;		/* in reality variable between 4-8 */ | 
| 1434 | 		cstate->off_linkpl.constant_part = 4;	/* in reality variable between 4-8 */ | 
| 1435 | 		cstate->off_nl = 0; | 
| 1436 | 		cstate->off_nl_nosnap = 10; | 
| 1437 | 		break; | 
| 1438 |  | 
| 1439 | 	case DLT_JUNIPER_ATM2: | 
| 1440 | 		cstate->off_linktype.constant_part = 8;		/* in reality variable between 8-12 */ | 
| 1441 | 		cstate->off_linkpl.constant_part = 8;	/* in reality variable between 8-12 */ | 
| 1442 | 		cstate->off_nl = 0; | 
| 1443 | 		cstate->off_nl_nosnap = 10; | 
| 1444 | 		break; | 
| 1445 |  | 
| 1446 | 		/* frames captured on a Juniper PPPoE service PIC | 
| 1447 | 		 * contain raw ethernet frames */ | 
| 1448 | 	case DLT_JUNIPER_PPPOE: | 
| 1449 |         case DLT_JUNIPER_ETHER: | 
| 1450 | 		cstate->off_linkpl.constant_part = 14; | 
| 1451 | 		cstate->off_linktype.constant_part = 16; | 
| 1452 | 		cstate->off_nl = 18;		/* Ethernet II */ | 
| 1453 | 		cstate->off_nl_nosnap = 21;	/* 802.3+802.2 */ | 
| 1454 | 		break; | 
| 1455 |  | 
| 1456 | 	case DLT_JUNIPER_PPPOE_ATM: | 
| 1457 | 		cstate->off_linktype.constant_part = 4; | 
| 1458 | 		cstate->off_linkpl.constant_part = 6; | 
| 1459 | 		cstate->off_nl = 0; | 
| 1460 | 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */ | 
| 1461 | 		break; | 
| 1462 |  | 
| 1463 | 	case DLT_JUNIPER_GGSN: | 
| 1464 | 		cstate->off_linktype.constant_part = 6; | 
| 1465 | 		cstate->off_linkpl.constant_part = 12; | 
| 1466 | 		cstate->off_nl = 0; | 
| 1467 | 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */ | 
| 1468 | 		break; | 
| 1469 |  | 
| 1470 | 	case DLT_JUNIPER_ES: | 
| 1471 | 		cstate->off_linktype.constant_part = 6; | 
| 1472 | 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;	/* not really a network layer but raw IP addresses */ | 
| 1473 | 		cstate->off_nl = OFFSET_NOT_SET;	/* not really a network layer but raw IP addresses */ | 
| 1474 | 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */ | 
| 1475 | 		break; | 
| 1476 |  | 
| 1477 | 	case DLT_JUNIPER_MONITOR: | 
| 1478 | 		cstate->off_linktype.constant_part = 12; | 
| 1479 | 		cstate->off_linkpl.constant_part = 12; | 
| 1480 | 		cstate->off_nl = 0;			/* raw IP/IP6 header */ | 
| 1481 | 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */ | 
| 1482 | 		break; | 
| 1483 |  | 
| 1484 | 	case DLT_BACNET_MS_TP: | 
| 1485 | 		cstate->off_linktype.constant_part = OFFSET_NOT_SET; | 
| 1486 | 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET; | 
| 1487 | 		cstate->off_nl = OFFSET_NOT_SET; | 
| 1488 | 		cstate->off_nl_nosnap = OFFSET_NOT_SET; | 
| 1489 | 		break; | 
| 1490 |  | 
| 1491 | 	case DLT_JUNIPER_SERVICES: | 
| 1492 | 		cstate->off_linktype.constant_part = 12; | 
| 1493 | 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;	/* L3 proto location dep. on cookie type */ | 
| 1494 | 		cstate->off_nl = OFFSET_NOT_SET;	/* L3 proto location dep. on cookie type */ | 
| 1495 | 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */ | 
| 1496 | 		break; | 
| 1497 |  | 
| 1498 | 	case DLT_JUNIPER_VP: | 
| 1499 | 		cstate->off_linktype.constant_part = 18; | 
| 1500 | 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET; | 
| 1501 | 		cstate->off_nl = OFFSET_NOT_SET; | 
| 1502 | 		cstate->off_nl_nosnap = OFFSET_NOT_SET; | 
| 1503 | 		break; | 
| 1504 |  | 
| 1505 | 	case DLT_JUNIPER_ST: | 
| 1506 | 		cstate->off_linktype.constant_part = 18; | 
| 1507 | 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET; | 
| 1508 | 		cstate->off_nl = OFFSET_NOT_SET; | 
| 1509 | 		cstate->off_nl_nosnap = OFFSET_NOT_SET; | 
| 1510 | 		break; | 
| 1511 |  | 
| 1512 | 	case DLT_JUNIPER_ISM: | 
| 1513 | 		cstate->off_linktype.constant_part = 8; | 
| 1514 | 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET; | 
| 1515 | 		cstate->off_nl = OFFSET_NOT_SET; | 
| 1516 | 		cstate->off_nl_nosnap = OFFSET_NOT_SET; | 
| 1517 | 		break; | 
| 1518 |  | 
| 1519 | 	case DLT_JUNIPER_VS: | 
| 1520 | 	case DLT_JUNIPER_SRX_E2E: | 
| 1521 | 	case DLT_JUNIPER_FIBRECHANNEL: | 
| 1522 | 	case DLT_JUNIPER_ATM_CEMIC: | 
| 1523 | 		cstate->off_linktype.constant_part = 8; | 
| 1524 | 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET; | 
| 1525 | 		cstate->off_nl = OFFSET_NOT_SET; | 
| 1526 | 		cstate->off_nl_nosnap = OFFSET_NOT_SET; | 
| 1527 | 		break; | 
| 1528 |  | 
| 1529 | 	case DLT_MTP2: | 
| 1530 | 		cstate->off_li = 2; | 
| 1531 | 		cstate->off_li_hsl = 4; | 
| 1532 | 		cstate->off_sio = 3; | 
| 1533 | 		cstate->off_opc = 4; | 
| 1534 | 		cstate->off_dpc = 4; | 
| 1535 | 		cstate->off_sls = 7; | 
| 1536 | 		cstate->off_linktype.constant_part = OFFSET_NOT_SET; | 
| 1537 | 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET; | 
| 1538 | 		cstate->off_nl = OFFSET_NOT_SET; | 
| 1539 | 		cstate->off_nl_nosnap = OFFSET_NOT_SET; | 
| 1540 | 		break; | 
| 1541 |  | 
| 1542 | 	case DLT_MTP2_WITH_PHDR: | 
| 1543 | 		cstate->off_li = 6; | 
| 1544 | 		cstate->off_li_hsl = 8; | 
| 1545 | 		cstate->off_sio = 7; | 
| 1546 | 		cstate->off_opc = 8; | 
| 1547 | 		cstate->off_dpc = 8; | 
| 1548 | 		cstate->off_sls = 11; | 
| 1549 | 		cstate->off_linktype.constant_part = OFFSET_NOT_SET; | 
| 1550 | 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET; | 
| 1551 | 		cstate->off_nl = OFFSET_NOT_SET; | 
| 1552 | 		cstate->off_nl_nosnap = OFFSET_NOT_SET; | 
| 1553 | 		break; | 
| 1554 |  | 
| 1555 | 	case DLT_ERF: | 
| 1556 | 		cstate->off_li = 22; | 
| 1557 | 		cstate->off_li_hsl = 24; | 
| 1558 | 		cstate->off_sio = 23; | 
| 1559 | 		cstate->off_opc = 24; | 
| 1560 | 		cstate->off_dpc = 24; | 
| 1561 | 		cstate->off_sls = 27; | 
| 1562 | 		cstate->off_linktype.constant_part = OFFSET_NOT_SET; | 
| 1563 | 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET; | 
| 1564 | 		cstate->off_nl = OFFSET_NOT_SET; | 
| 1565 | 		cstate->off_nl_nosnap = OFFSET_NOT_SET; | 
| 1566 | 		break; | 
| 1567 |  | 
| 1568 | 	case DLT_PFSYNC: | 
| 1569 | 		cstate->off_linktype.constant_part = OFFSET_NOT_SET; | 
| 1570 | 		cstate->off_linkpl.constant_part = 4; | 
| 1571 | 		cstate->off_nl = 0; | 
| 1572 | 		cstate->off_nl_nosnap = 0; | 
| 1573 | 		break; | 
| 1574 |  | 
| 1575 | 	case DLT_AX25_KISS: | 
| 1576 | 		/* | 
| 1577 | 		 * Currently, only raw "link[N:M]" filtering is supported. | 
| 1578 | 		 */ | 
| 1579 | 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;	/* variable, min 15, max 71 steps of 7 */ | 
| 1580 | 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET; | 
| 1581 | 		cstate->off_nl = OFFSET_NOT_SET;	/* variable, min 16, max 71 steps of 7 */ | 
| 1582 | 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */ | 
| 1583 | 		break; | 
| 1584 |  | 
| 1585 | 	case DLT_IPNET: | 
| 1586 | 		cstate->off_linktype.constant_part = 1; | 
| 1587 | 		cstate->off_linkpl.constant_part = 24;	/* ipnet header length */ | 
| 1588 | 		cstate->off_nl = 0; | 
| 1589 | 		cstate->off_nl_nosnap = OFFSET_NOT_SET; | 
| 1590 | 		break; | 
| 1591 |  | 
| 1592 | 	case DLT_NETANALYZER: | 
| 1593 | 		cstate->off_linkhdr.constant_part = 4;	/* Ethernet header is past 4-byte pseudo-header */ | 
| 1594 | 		cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12; | 
| 1595 | 		cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14;	/* pseudo-header+Ethernet header length */ | 
| 1596 | 		cstate->off_nl = 0;		/* Ethernet II */ | 
| 1597 | 		cstate->off_nl_nosnap = 3;	/* 802.3+802.2 */ | 
| 1598 | 		break; | 
| 1599 |  | 
| 1600 | 	case DLT_NETANALYZER_TRANSPARENT: | 
| 1601 | 		cstate->off_linkhdr.constant_part = 12;	/* MAC header is past 4-byte pseudo-header, preamble, and SFD */ | 
| 1602 | 		cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12; | 
| 1603 | 		cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14;	/* pseudo-header+preamble+SFD+Ethernet header length */ | 
| 1604 | 		cstate->off_nl = 0;		/* Ethernet II */ | 
| 1605 | 		cstate->off_nl_nosnap = 3;	/* 802.3+802.2 */ | 
| 1606 | 		break; | 
| 1607 |  | 
| 1608 | 	default: | 
| 1609 | 		/* | 
| 1610 | 		 * For values in the range in which we've assigned new | 
| 1611 | 		 * DLT_ values, only raw "link[N:M]" filtering is supported. | 
| 1612 | 		 */ | 
| 1613 | 		if (cstate->linktype >= DLT_MATCHING_MIN && | 
| 1614 | 		    cstate->linktype <= DLT_MATCHING_MAX) { | 
| 1615 | 			cstate->off_linktype.constant_part = OFFSET_NOT_SET; | 
| 1616 | 			cstate->off_linkpl.constant_part = OFFSET_NOT_SET; | 
| 1617 | 			cstate->off_nl = OFFSET_NOT_SET; | 
| 1618 | 			cstate->off_nl_nosnap = OFFSET_NOT_SET; | 
| 1619 | 		} else { | 
| 1620 | 			bpf_error(cstate, "unknown data link type %d" , cstate->linktype); | 
| 1621 | 		} | 
| 1622 | 		break; | 
| 1623 | 	} | 
| 1624 |  | 
| 1625 | 	cstate->off_outermostlinkhdr = cstate->off_prevlinkhdr = cstate->off_linkhdr; | 
| 1626 | } | 
| 1627 |  | 
| 1628 | /* | 
| 1629 |  * Load a value relative to the specified absolute offset. | 
| 1630 |  */ | 
| 1631 | static struct slist * | 
| 1632 | gen_load_absoffsetrel(compiler_state_t *cstate, bpf_abs_offset *abs_offset, | 
| 1633 |     u_int offset, u_int size) | 
| 1634 | { | 
| 1635 | 	struct slist *s, *s2; | 
| 1636 |  | 
| 1637 | 	s = gen_abs_offset_varpart(cstate, abs_offset); | 
| 1638 |  | 
| 1639 | 	/* | 
| 1640 | 	 * If "s" is non-null, it has code to arrange that the X register | 
| 1641 | 	 * contains the variable part of the absolute offset, so we | 
| 1642 | 	 * generate a load relative to that, with an offset of | 
| 1643 | 	 * abs_offset->constant_part + offset. | 
| 1644 | 	 * | 
| 1645 | 	 * Otherwise, we can do an absolute load with an offset of | 
| 1646 | 	 * abs_offset->constant_part + offset. | 
| 1647 | 	 */ | 
| 1648 | 	if (s != NULL) { | 
| 1649 | 		/* | 
| 1650 | 		 * "s" points to a list of statements that puts the | 
| 1651 | 		 * variable part of the absolute offset into the X register. | 
| 1652 | 		 * Do an indirect load, to use the X register as an offset. | 
| 1653 | 		 */ | 
| 1654 | 		s2 = new_stmt(cstate, BPF_LD|BPF_IND|size); | 
| 1655 | 		s2->s.k = abs_offset->constant_part + offset; | 
| 1656 | 		sappend(s, s2); | 
| 1657 | 	} else { | 
| 1658 | 		/* | 
| 1659 | 		 * There is no variable part of the absolute offset, so | 
| 1660 | 		 * just do an absolute load. | 
| 1661 | 		 */ | 
| 1662 | 		s = new_stmt(cstate, BPF_LD|BPF_ABS|size); | 
| 1663 | 		s->s.k = abs_offset->constant_part + offset; | 
| 1664 | 	} | 
| 1665 | 	return s; | 
| 1666 | } | 
| 1667 |  | 
| 1668 | /* | 
| 1669 |  * Load a value relative to the beginning of the specified header. | 
| 1670 |  */ | 
| 1671 | static struct slist * | 
| 1672 | gen_load_a(compiler_state_t *cstate, enum e_offrel offrel, u_int offset, | 
| 1673 |     u_int size) | 
| 1674 | { | 
| 1675 | 	struct slist *s, *s2; | 
| 1676 |  | 
| 1677 | 	switch (offrel) { | 
| 1678 |  | 
| 1679 | 	case OR_PACKET: | 
| 1680 |                 s = new_stmt(cstate, BPF_LD|BPF_ABS|size); | 
| 1681 |                 s->s.k = offset; | 
| 1682 | 		break; | 
| 1683 |  | 
| 1684 | 	case OR_LINKHDR: | 
| 1685 | 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkhdr, offset, size); | 
| 1686 | 		break; | 
| 1687 |  | 
| 1688 | 	case OR_PREVLINKHDR: | 
| 1689 | 		s = gen_load_absoffsetrel(cstate, &cstate->off_prevlinkhdr, offset, size); | 
| 1690 | 		break; | 
| 1691 |  | 
| 1692 | 	case OR_LLC: | 
| 1693 | 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, offset, size); | 
| 1694 | 		break; | 
| 1695 |  | 
| 1696 | 	case OR_PREVMPLSHDR: | 
| 1697 | 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl - 4 + offset, size); | 
| 1698 | 		break; | 
| 1699 |  | 
| 1700 | 	case OR_LINKPL: | 
| 1701 | 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + offset, size); | 
| 1702 | 		break; | 
| 1703 |  | 
| 1704 | 	case OR_LINKPL_NOSNAP: | 
| 1705 | 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl_nosnap + offset, size); | 
| 1706 | 		break; | 
| 1707 |  | 
| 1708 | 	case OR_LINKTYPE: | 
| 1709 | 		s = gen_load_absoffsetrel(cstate, &cstate->off_linktype, offset, size); | 
| 1710 | 		break; | 
| 1711 |  | 
| 1712 | 	case OR_TRAN_IPV4: | 
| 1713 | 		/* | 
| 1714 | 		 * Load the X register with the length of the IPv4 header | 
| 1715 | 		 * (plus the offset of the link-layer header, if it's | 
| 1716 | 		 * preceded by a variable-length header such as a radio | 
| 1717 | 		 * header), in bytes. | 
| 1718 | 		 */ | 
| 1719 | 		s = gen_loadx_iphdrlen(cstate); | 
| 1720 |  | 
| 1721 | 		/* | 
| 1722 | 		 * Load the item at {offset of the link-layer payload} + | 
| 1723 | 		 * {offset, relative to the start of the link-layer | 
| 1724 | 		 * paylod, of the IPv4 header} + {length of the IPv4 header} + | 
| 1725 | 		 * {specified offset}. | 
| 1726 | 		 * | 
| 1727 | 		 * If the offset of the link-layer payload is variable, | 
| 1728 | 		 * the variable part of that offset is included in the | 
| 1729 | 		 * value in the X register, and we include the constant | 
| 1730 | 		 * part in the offset of the load. | 
| 1731 | 		 */ | 
| 1732 | 		s2 = new_stmt(cstate, BPF_LD|BPF_IND|size); | 
| 1733 | 		s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + offset; | 
| 1734 | 		sappend(s, s2); | 
| 1735 | 		break; | 
| 1736 |  | 
| 1737 | 	case OR_TRAN_IPV6: | 
| 1738 | 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + 40 + offset, size); | 
| 1739 | 		break; | 
| 1740 |  | 
| 1741 | 	default: | 
| 1742 | 		abort(); | 
| 1743 | 		/* NOTREACHED */ | 
| 1744 | 	} | 
| 1745 | 	return s; | 
| 1746 | } | 
| 1747 |  | 
| 1748 | /* | 
| 1749 |  * Generate code to load into the X register the sum of the length of | 
| 1750 |  * the IPv4 header and the variable part of the offset of the link-layer | 
| 1751 |  * payload. | 
| 1752 |  */ | 
| 1753 | static struct slist * | 
| 1754 | gen_loadx_iphdrlen(compiler_state_t *cstate) | 
| 1755 | { | 
| 1756 | 	struct slist *s, *s2; | 
| 1757 |  | 
| 1758 | 	s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl); | 
| 1759 | 	if (s != NULL) { | 
| 1760 | 		/* | 
| 1761 | 		 * The offset of the link-layer payload has a variable | 
| 1762 | 		 * part.  "s" points to a list of statements that put | 
| 1763 | 		 * the variable part of that offset into the X register. | 
| 1764 | 		 * | 
| 1765 | 		 * The 4*([k]&0xf) addressing mode can't be used, as we | 
| 1766 | 		 * don't have a constant offset, so we have to load the | 
| 1767 | 		 * value in question into the A register and add to it | 
| 1768 | 		 * the value from the X register. | 
| 1769 | 		 */ | 
| 1770 | 		s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B); | 
| 1771 | 		s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl; | 
| 1772 | 		sappend(s, s2); | 
| 1773 | 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K); | 
| 1774 | 		s2->s.k = 0xf; | 
| 1775 | 		sappend(s, s2); | 
| 1776 | 		s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K); | 
| 1777 | 		s2->s.k = 2; | 
| 1778 | 		sappend(s, s2); | 
| 1779 |  | 
| 1780 | 		/* | 
| 1781 | 		 * The A register now contains the length of the IP header. | 
| 1782 | 		 * We need to add to it the variable part of the offset of | 
| 1783 | 		 * the link-layer payload, which is still in the X | 
| 1784 | 		 * register, and move the result into the X register. | 
| 1785 | 		 */ | 
| 1786 | 		sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X)); | 
| 1787 | 		sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX)); | 
| 1788 | 	} else { | 
| 1789 | 		/* | 
| 1790 | 		 * The offset of the link-layer payload is a constant, | 
| 1791 | 		 * so no code was generated to load the (non-existent) | 
| 1792 | 		 * variable part of that offset. | 
| 1793 | 		 * | 
| 1794 | 		 * This means we can use the 4*([k]&0xf) addressing | 
| 1795 | 		 * mode.  Load the length of the IPv4 header, which | 
| 1796 | 		 * is at an offset of cstate->off_nl from the beginning of | 
| 1797 | 		 * the link-layer payload, and thus at an offset of | 
| 1798 | 		 * cstate->off_linkpl.constant_part + cstate->off_nl from the beginning | 
| 1799 | 		 * of the raw packet data, using that addressing mode. | 
| 1800 | 		 */ | 
| 1801 | 		s = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B); | 
| 1802 | 		s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl; | 
| 1803 | 	} | 
| 1804 | 	return s; | 
| 1805 | } | 
| 1806 |  | 
| 1807 |  | 
| 1808 | static struct block * | 
| 1809 | gen_uncond(compiler_state_t *cstate, int rsense) | 
| 1810 | { | 
| 1811 | 	struct block *b; | 
| 1812 | 	struct slist *s; | 
| 1813 |  | 
| 1814 | 	s = new_stmt(cstate, BPF_LD|BPF_IMM); | 
| 1815 | 	s->s.k = !rsense; | 
| 1816 | 	b = new_block(cstate, JMP(BPF_JEQ)); | 
| 1817 | 	b->stmts = s; | 
| 1818 |  | 
| 1819 | 	return b; | 
| 1820 | } | 
| 1821 |  | 
| 1822 | static inline struct block * | 
| 1823 | gen_true(compiler_state_t *cstate) | 
| 1824 | { | 
| 1825 | 	return gen_uncond(cstate, 1); | 
| 1826 | } | 
| 1827 |  | 
| 1828 | static inline struct block * | 
| 1829 | gen_false(compiler_state_t *cstate) | 
| 1830 | { | 
| 1831 | 	return gen_uncond(cstate, 0); | 
| 1832 | } | 
| 1833 |  | 
| 1834 | /* | 
| 1835 |  * Byte-swap a 32-bit number. | 
| 1836 |  * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on | 
| 1837 |  * big-endian platforms.) | 
| 1838 |  */ | 
| 1839 | #define	SWAPLONG(y) \ | 
| 1840 | ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff)) | 
| 1841 |  | 
| 1842 | /* | 
| 1843 |  * Generate code to match a particular packet type. | 
| 1844 |  * | 
| 1845 |  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP | 
| 1846 |  * value, if <= ETHERMTU.  We use that to determine whether to | 
| 1847 |  * match the type/length field or to check the type/length field for | 
| 1848 |  * a value <= ETHERMTU to see whether it's a type field and then do | 
| 1849 |  * the appropriate test. | 
| 1850 |  */ | 
| 1851 | static struct block * | 
| 1852 | gen_ether_linktype(compiler_state_t *cstate, int proto) | 
| 1853 | { | 
| 1854 | 	struct block *b0, *b1; | 
| 1855 |  | 
| 1856 | 	switch (proto) { | 
| 1857 |  | 
| 1858 | 	case LLCSAP_ISONS: | 
| 1859 | 	case LLCSAP_IP: | 
| 1860 | 	case LLCSAP_NETBEUI: | 
| 1861 | 		/* | 
| 1862 | 		 * OSI protocols and NetBEUI always use 802.2 encapsulation, | 
| 1863 | 		 * so we check the DSAP and SSAP. | 
| 1864 | 		 * | 
| 1865 | 		 * LLCSAP_IP checks for IP-over-802.2, rather | 
| 1866 | 		 * than IP-over-Ethernet or IP-over-SNAP. | 
| 1867 | 		 * | 
| 1868 | 		 * XXX - should we check both the DSAP and the | 
| 1869 | 		 * SSAP, like this, or should we check just the | 
| 1870 | 		 * DSAP, as we do for other types <= ETHERMTU | 
| 1871 | 		 * (i.e., other SAP values)? | 
| 1872 | 		 */ | 
| 1873 | 		b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU); | 
| 1874 | 		gen_not(b0); | 
| 1875 | 		b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_int32) | 
| 1876 | 			     ((proto << 8) | proto)); | 
| 1877 | 		gen_and(b0, b1); | 
| 1878 | 		return b1; | 
| 1879 |  | 
| 1880 | 	case LLCSAP_IPX: | 
| 1881 | 		/* | 
| 1882 | 		 * Check for; | 
| 1883 | 		 * | 
| 1884 | 		 *	Ethernet_II frames, which are Ethernet | 
| 1885 | 		 *	frames with a frame type of ETHERTYPE_IPX; | 
| 1886 | 		 * | 
| 1887 | 		 *	Ethernet_802.3 frames, which are 802.3 | 
| 1888 | 		 *	frames (i.e., the type/length field is | 
| 1889 | 		 *	a length field, <= ETHERMTU, rather than | 
| 1890 | 		 *	a type field) with the first two bytes | 
| 1891 | 		 *	after the Ethernet/802.3 header being | 
| 1892 | 		 *	0xFFFF; | 
| 1893 | 		 * | 
| 1894 | 		 *	Ethernet_802.2 frames, which are 802.3 | 
| 1895 | 		 *	frames with an 802.2 LLC header and | 
| 1896 | 		 *	with the IPX LSAP as the DSAP in the LLC | 
| 1897 | 		 *	header; | 
| 1898 | 		 * | 
| 1899 | 		 *	Ethernet_SNAP frames, which are 802.3 | 
| 1900 | 		 *	frames with an LLC header and a SNAP | 
| 1901 | 		 *	header and with an OUI of 0x000000 | 
| 1902 | 		 *	(encapsulated Ethernet) and a protocol | 
| 1903 | 		 *	ID of ETHERTYPE_IPX in the SNAP header. | 
| 1904 | 		 * | 
| 1905 | 		 * XXX - should we generate the same code both | 
| 1906 | 		 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX? | 
| 1907 | 		 */ | 
| 1908 |  | 
| 1909 | 		/* | 
| 1910 | 		 * This generates code to check both for the | 
| 1911 | 		 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3. | 
| 1912 | 		 */ | 
| 1913 | 		b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, (bpf_int32)LLCSAP_IPX); | 
| 1914 | 		b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_int32)0xFFFF); | 
| 1915 | 		gen_or(b0, b1); | 
| 1916 |  | 
| 1917 | 		/* | 
| 1918 | 		 * Now we add code to check for SNAP frames with | 
| 1919 | 		 * ETHERTYPE_IPX, i.e. Ethernet_SNAP. | 
| 1920 | 		 */ | 
| 1921 | 		b0 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX); | 
| 1922 | 		gen_or(b0, b1); | 
| 1923 |  | 
| 1924 | 		/* | 
| 1925 | 		 * Now we generate code to check for 802.3 | 
| 1926 | 		 * frames in general. | 
| 1927 | 		 */ | 
| 1928 | 		b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU); | 
| 1929 | 		gen_not(b0); | 
| 1930 |  | 
| 1931 | 		/* | 
| 1932 | 		 * Now add the check for 802.3 frames before the | 
| 1933 | 		 * check for Ethernet_802.2 and Ethernet_802.3, | 
| 1934 | 		 * as those checks should only be done on 802.3 | 
| 1935 | 		 * frames, not on Ethernet frames. | 
| 1936 | 		 */ | 
| 1937 | 		gen_and(b0, b1); | 
| 1938 |  | 
| 1939 | 		/* | 
| 1940 | 		 * Now add the check for Ethernet_II frames, and | 
| 1941 | 		 * do that before checking for the other frame | 
| 1942 | 		 * types. | 
| 1943 | 		 */ | 
| 1944 | 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)ETHERTYPE_IPX); | 
| 1945 | 		gen_or(b0, b1); | 
| 1946 | 		return b1; | 
| 1947 |  | 
| 1948 | 	case ETHERTYPE_ATALK: | 
| 1949 | 	case ETHERTYPE_AARP: | 
| 1950 | 		/* | 
| 1951 | 		 * EtherTalk (AppleTalk protocols on Ethernet link | 
| 1952 | 		 * layer) may use 802.2 encapsulation. | 
| 1953 | 		 */ | 
| 1954 |  | 
| 1955 | 		/* | 
| 1956 | 		 * Check for 802.2 encapsulation (EtherTalk phase 2?); | 
| 1957 | 		 * we check for an Ethernet type field less than | 
| 1958 | 		 * 1500, which means it's an 802.3 length field. | 
| 1959 | 		 */ | 
| 1960 | 		b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU); | 
| 1961 | 		gen_not(b0); | 
| 1962 |  | 
| 1963 | 		/* | 
| 1964 | 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are | 
| 1965 | 		 * SNAP packets with an organization code of | 
| 1966 | 		 * 0x080007 (Apple, for Appletalk) and a protocol | 
| 1967 | 		 * type of ETHERTYPE_ATALK (Appletalk). | 
| 1968 | 		 * | 
| 1969 | 		 * 802.2-encapsulated ETHERTYPE_AARP packets are | 
| 1970 | 		 * SNAP packets with an organization code of | 
| 1971 | 		 * 0x000000 (encapsulated Ethernet) and a protocol | 
| 1972 | 		 * type of ETHERTYPE_AARP (Appletalk ARP). | 
| 1973 | 		 */ | 
| 1974 | 		if (proto == ETHERTYPE_ATALK) | 
| 1975 | 			b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK); | 
| 1976 | 		else	/* proto == ETHERTYPE_AARP */ | 
| 1977 | 			b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP); | 
| 1978 | 		gen_and(b0, b1); | 
| 1979 |  | 
| 1980 | 		/* | 
| 1981 | 		 * Check for Ethernet encapsulation (Ethertalk | 
| 1982 | 		 * phase 1?); we just check for the Ethernet | 
| 1983 | 		 * protocol type. | 
| 1984 | 		 */ | 
| 1985 | 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto); | 
| 1986 |  | 
| 1987 | 		gen_or(b0, b1); | 
| 1988 | 		return b1; | 
| 1989 |  | 
| 1990 | 	default: | 
| 1991 | 		if (proto <= ETHERMTU) { | 
| 1992 | 			/* | 
| 1993 | 			 * This is an LLC SAP value, so the frames | 
| 1994 | 			 * that match would be 802.2 frames. | 
| 1995 | 			 * Check that the frame is an 802.2 frame | 
| 1996 | 			 * (i.e., that the length/type field is | 
| 1997 | 			 * a length field, <= ETHERMTU) and | 
| 1998 | 			 * then check the DSAP. | 
| 1999 | 			 */ | 
| 2000 | 			b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU); | 
| 2001 | 			gen_not(b0); | 
| 2002 | 			b1 = gen_cmp(cstate, OR_LINKTYPE, 2, BPF_B, (bpf_int32)proto); | 
| 2003 | 			gen_and(b0, b1); | 
| 2004 | 			return b1; | 
| 2005 | 		} else { | 
| 2006 | 			/* | 
| 2007 | 			 * This is an Ethernet type, so compare | 
| 2008 | 			 * the length/type field with it (if | 
| 2009 | 			 * the frame is an 802.2 frame, the length | 
| 2010 | 			 * field will be <= ETHERMTU, and, as | 
| 2011 | 			 * "proto" is > ETHERMTU, this test | 
| 2012 | 			 * will fail and the frame won't match, | 
| 2013 | 			 * which is what we want). | 
| 2014 | 			 */ | 
| 2015 | 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, | 
| 2016 | 			    (bpf_int32)proto); | 
| 2017 | 		} | 
| 2018 | 	} | 
| 2019 | } | 
| 2020 |  | 
| 2021 | static struct block * | 
| 2022 | gen_loopback_linktype(compiler_state_t *cstate, int proto) | 
| 2023 | { | 
| 2024 | 	/* | 
| 2025 | 	 * For DLT_NULL, the link-layer header is a 32-bit word | 
| 2026 | 	 * containing an AF_ value in *host* byte order, and for | 
| 2027 | 	 * DLT_ENC, the link-layer header begins with a 32-bit | 
| 2028 | 	 * word containing an AF_ value in host byte order. | 
| 2029 | 	 * | 
| 2030 | 	 * In addition, if we're reading a saved capture file, | 
| 2031 | 	 * the host byte order in the capture may not be the | 
| 2032 | 	 * same as the host byte order on this machine. | 
| 2033 | 	 * | 
| 2034 | 	 * For DLT_LOOP, the link-layer header is a 32-bit | 
| 2035 | 	 * word containing an AF_ value in *network* byte order. | 
| 2036 | 	 */ | 
| 2037 | 	if (cstate->linktype == DLT_NULL || cstate->linktype == DLT_ENC) { | 
| 2038 | 		/* | 
| 2039 | 		 * The AF_ value is in host byte order, but the BPF | 
| 2040 | 		 * interpreter will convert it to network byte order. | 
| 2041 | 		 * | 
| 2042 | 		 * If this is a save file, and it's from a machine | 
| 2043 | 		 * with the opposite byte order to ours, we byte-swap | 
| 2044 | 		 * the AF_ value. | 
| 2045 | 		 * | 
| 2046 | 		 * Then we run it through "htonl()", and generate | 
| 2047 | 		 * code to compare against the result. | 
| 2048 | 		 */ | 
| 2049 | 		if (cstate->bpf_pcap->rfile != NULL && cstate->bpf_pcap->swapped) | 
| 2050 | 			proto = SWAPLONG(proto); | 
| 2051 | 		proto = htonl(proto); | 
| 2052 | 	} | 
| 2053 | 	return (gen_cmp(cstate, OR_LINKHDR, 0, BPF_W, (bpf_int32)proto)); | 
| 2054 | } | 
| 2055 |  | 
| 2056 | /* | 
| 2057 |  * "proto" is an Ethernet type value and for IPNET, if it is not IPv4 | 
| 2058 |  * or IPv6 then we have an error. | 
| 2059 |  */ | 
| 2060 | static struct block * | 
| 2061 | gen_ipnet_linktype(compiler_state_t *cstate, int proto) | 
| 2062 | { | 
| 2063 | 	switch (proto) { | 
| 2064 |  | 
| 2065 | 	case ETHERTYPE_IP: | 
| 2066 | 		return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, (bpf_int32)IPH_AF_INET); | 
| 2067 | 		/* NOTREACHED */ | 
| 2068 |  | 
| 2069 | 	case ETHERTYPE_IPV6: | 
| 2070 | 		return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, | 
| 2071 | 		    (bpf_int32)IPH_AF_INET6); | 
| 2072 | 		/* NOTREACHED */ | 
| 2073 |  | 
| 2074 | 	default: | 
| 2075 | 		break; | 
| 2076 | 	} | 
| 2077 |  | 
| 2078 | 	return gen_false(cstate); | 
| 2079 | } | 
| 2080 |  | 
| 2081 | /* | 
| 2082 |  * Generate code to match a particular packet type. | 
| 2083 |  * | 
| 2084 |  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP | 
| 2085 |  * value, if <= ETHERMTU.  We use that to determine whether to | 
| 2086 |  * match the type field or to check the type field for the special | 
| 2087 |  * LINUX_SLL_P_802_2 value and then do the appropriate test. | 
| 2088 |  */ | 
| 2089 | static struct block * | 
| 2090 | gen_linux_sll_linktype(compiler_state_t *cstate, int proto) | 
| 2091 | { | 
| 2092 | 	struct block *b0, *b1; | 
| 2093 |  | 
| 2094 | 	switch (proto) { | 
| 2095 |  | 
| 2096 | 	case LLCSAP_ISONS: | 
| 2097 | 	case LLCSAP_IP: | 
| 2098 | 	case LLCSAP_NETBEUI: | 
| 2099 | 		/* | 
| 2100 | 		 * OSI protocols and NetBEUI always use 802.2 encapsulation, | 
| 2101 | 		 * so we check the DSAP and SSAP. | 
| 2102 | 		 * | 
| 2103 | 		 * LLCSAP_IP checks for IP-over-802.2, rather | 
| 2104 | 		 * than IP-over-Ethernet or IP-over-SNAP. | 
| 2105 | 		 * | 
| 2106 | 		 * XXX - should we check both the DSAP and the | 
| 2107 | 		 * SSAP, like this, or should we check just the | 
| 2108 | 		 * DSAP, as we do for other types <= ETHERMTU | 
| 2109 | 		 * (i.e., other SAP values)? | 
| 2110 | 		 */ | 
| 2111 | 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2); | 
| 2112 | 		b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_int32) | 
| 2113 | 			     ((proto << 8) | proto)); | 
| 2114 | 		gen_and(b0, b1); | 
| 2115 | 		return b1; | 
| 2116 |  | 
| 2117 | 	case LLCSAP_IPX: | 
| 2118 | 		/* | 
| 2119 | 		 *	Ethernet_II frames, which are Ethernet | 
| 2120 | 		 *	frames with a frame type of ETHERTYPE_IPX; | 
| 2121 | 		 * | 
| 2122 | 		 *	Ethernet_802.3 frames, which have a frame | 
| 2123 | 		 *	type of LINUX_SLL_P_802_3; | 
| 2124 | 		 * | 
| 2125 | 		 *	Ethernet_802.2 frames, which are 802.3 | 
| 2126 | 		 *	frames with an 802.2 LLC header (i.e, have | 
| 2127 | 		 *	a frame type of LINUX_SLL_P_802_2) and | 
| 2128 | 		 *	with the IPX LSAP as the DSAP in the LLC | 
| 2129 | 		 *	header; | 
| 2130 | 		 * | 
| 2131 | 		 *	Ethernet_SNAP frames, which are 802.3 | 
| 2132 | 		 *	frames with an LLC header and a SNAP | 
| 2133 | 		 *	header and with an OUI of 0x000000 | 
| 2134 | 		 *	(encapsulated Ethernet) and a protocol | 
| 2135 | 		 *	ID of ETHERTYPE_IPX in the SNAP header. | 
| 2136 | 		 * | 
| 2137 | 		 * First, do the checks on LINUX_SLL_P_802_2 | 
| 2138 | 		 * frames; generate the check for either | 
| 2139 | 		 * Ethernet_802.2 or Ethernet_SNAP frames, and | 
| 2140 | 		 * then put a check for LINUX_SLL_P_802_2 frames | 
| 2141 | 		 * before it. | 
| 2142 | 		 */ | 
| 2143 | 		b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, (bpf_int32)LLCSAP_IPX); | 
| 2144 | 		b1 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX); | 
| 2145 | 		gen_or(b0, b1); | 
| 2146 | 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2); | 
| 2147 | 		gen_and(b0, b1); | 
| 2148 |  | 
| 2149 | 		/* | 
| 2150 | 		 * Now check for 802.3 frames and OR that with | 
| 2151 | 		 * the previous test. | 
| 2152 | 		 */ | 
| 2153 | 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_3); | 
| 2154 | 		gen_or(b0, b1); | 
| 2155 |  | 
| 2156 | 		/* | 
| 2157 | 		 * Now add the check for Ethernet_II frames, and | 
| 2158 | 		 * do that before checking for the other frame | 
| 2159 | 		 * types. | 
| 2160 | 		 */ | 
| 2161 | 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)ETHERTYPE_IPX); | 
| 2162 | 		gen_or(b0, b1); | 
| 2163 | 		return b1; | 
| 2164 |  | 
| 2165 | 	case ETHERTYPE_ATALK: | 
| 2166 | 	case ETHERTYPE_AARP: | 
| 2167 | 		/* | 
| 2168 | 		 * EtherTalk (AppleTalk protocols on Ethernet link | 
| 2169 | 		 * layer) may use 802.2 encapsulation. | 
| 2170 | 		 */ | 
| 2171 |  | 
| 2172 | 		/* | 
| 2173 | 		 * Check for 802.2 encapsulation (EtherTalk phase 2?); | 
| 2174 | 		 * we check for the 802.2 protocol type in the | 
| 2175 | 		 * "Ethernet type" field. | 
| 2176 | 		 */ | 
| 2177 | 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2); | 
| 2178 |  | 
| 2179 | 		/* | 
| 2180 | 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are | 
| 2181 | 		 * SNAP packets with an organization code of | 
| 2182 | 		 * 0x080007 (Apple, for Appletalk) and a protocol | 
| 2183 | 		 * type of ETHERTYPE_ATALK (Appletalk). | 
| 2184 | 		 * | 
| 2185 | 		 * 802.2-encapsulated ETHERTYPE_AARP packets are | 
| 2186 | 		 * SNAP packets with an organization code of | 
| 2187 | 		 * 0x000000 (encapsulated Ethernet) and a protocol | 
| 2188 | 		 * type of ETHERTYPE_AARP (Appletalk ARP). | 
| 2189 | 		 */ | 
| 2190 | 		if (proto == ETHERTYPE_ATALK) | 
| 2191 | 			b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK); | 
| 2192 | 		else	/* proto == ETHERTYPE_AARP */ | 
| 2193 | 			b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP); | 
| 2194 | 		gen_and(b0, b1); | 
| 2195 |  | 
| 2196 | 		/* | 
| 2197 | 		 * Check for Ethernet encapsulation (Ethertalk | 
| 2198 | 		 * phase 1?); we just check for the Ethernet | 
| 2199 | 		 * protocol type. | 
| 2200 | 		 */ | 
| 2201 | 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto); | 
| 2202 |  | 
| 2203 | 		gen_or(b0, b1); | 
| 2204 | 		return b1; | 
| 2205 |  | 
| 2206 | 	default: | 
| 2207 | 		if (proto <= ETHERMTU) { | 
| 2208 | 			/* | 
| 2209 | 			 * This is an LLC SAP value, so the frames | 
| 2210 | 			 * that match would be 802.2 frames. | 
| 2211 | 			 * Check for the 802.2 protocol type | 
| 2212 | 			 * in the "Ethernet type" field, and | 
| 2213 | 			 * then check the DSAP. | 
| 2214 | 			 */ | 
| 2215 | 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2); | 
| 2216 | 			b1 = gen_cmp(cstate, OR_LINKHDR, cstate->off_linkpl.constant_part, BPF_B, | 
| 2217 | 			     (bpf_int32)proto); | 
| 2218 | 			gen_and(b0, b1); | 
| 2219 | 			return b1; | 
| 2220 | 		} else { | 
| 2221 | 			/* | 
| 2222 | 			 * This is an Ethernet type, so compare | 
| 2223 | 			 * the length/type field with it (if | 
| 2224 | 			 * the frame is an 802.2 frame, the length | 
| 2225 | 			 * field will be <= ETHERMTU, and, as | 
| 2226 | 			 * "proto" is > ETHERMTU, this test | 
| 2227 | 			 * will fail and the frame won't match, | 
| 2228 | 			 * which is what we want). | 
| 2229 | 			 */ | 
| 2230 | 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto); | 
| 2231 | 		} | 
| 2232 | 	} | 
| 2233 | } | 
| 2234 |  | 
| 2235 | static struct slist * | 
| 2236 | gen_load_prism_llprefixlen(compiler_state_t *cstate) | 
| 2237 | { | 
| 2238 | 	struct slist *s1, *s2; | 
| 2239 | 	struct slist *sjeq_avs_cookie; | 
| 2240 | 	struct slist *sjcommon; | 
| 2241 |  | 
| 2242 | 	/* | 
| 2243 | 	 * This code is not compatible with the optimizer, as | 
| 2244 | 	 * we are generating jmp instructions within a normal | 
| 2245 | 	 * slist of instructions | 
| 2246 | 	 */ | 
| 2247 | 	cstate->no_optimize = 1; | 
| 2248 |  | 
| 2249 | 	/* | 
| 2250 | 	 * Generate code to load the length of the radio header into | 
| 2251 | 	 * the register assigned to hold that length, if one has been | 
| 2252 | 	 * assigned.  (If one hasn't been assigned, no code we've | 
| 2253 | 	 * generated uses that prefix, so we don't need to generate any | 
| 2254 | 	 * code to load it.) | 
| 2255 | 	 * | 
| 2256 | 	 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes | 
| 2257 | 	 * or always use the AVS header rather than the Prism header. | 
| 2258 | 	 * We load a 4-byte big-endian value at the beginning of the | 
| 2259 | 	 * raw packet data, and see whether, when masked with 0xFFFFF000, | 
| 2260 | 	 * it's equal to 0x80211000.  If so, that indicates that it's | 
| 2261 | 	 * an AVS header (the masked-out bits are the version number). | 
| 2262 | 	 * Otherwise, it's a Prism header. | 
| 2263 | 	 * | 
| 2264 | 	 * XXX - the Prism header is also, in theory, variable-length, | 
| 2265 | 	 * but no known software generates headers that aren't 144 | 
| 2266 | 	 * bytes long. | 
| 2267 | 	 */ | 
| 2268 | 	if (cstate->off_linkhdr.reg != -1) { | 
| 2269 | 		/* | 
| 2270 | 		 * Load the cookie. | 
| 2271 | 		 */ | 
| 2272 | 		s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS); | 
| 2273 | 		s1->s.k = 0; | 
| 2274 |  | 
| 2275 | 		/* | 
| 2276 | 		 * AND it with 0xFFFFF000. | 
| 2277 | 		 */ | 
| 2278 | 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K); | 
| 2279 | 		s2->s.k = 0xFFFFF000; | 
| 2280 | 		sappend(s1, s2); | 
| 2281 |  | 
| 2282 | 		/* | 
| 2283 | 		 * Compare with 0x80211000. | 
| 2284 | 		 */ | 
| 2285 | 		sjeq_avs_cookie = new_stmt(cstate, JMP(BPF_JEQ)); | 
| 2286 | 		sjeq_avs_cookie->s.k = 0x80211000; | 
| 2287 | 		sappend(s1, sjeq_avs_cookie); | 
| 2288 |  | 
| 2289 | 		/* | 
| 2290 | 		 * If it's AVS: | 
| 2291 | 		 * | 
| 2292 | 		 * The 4 bytes at an offset of 4 from the beginning of | 
| 2293 | 		 * the AVS header are the length of the AVS header. | 
| 2294 | 		 * That field is big-endian. | 
| 2295 | 		 */ | 
| 2296 | 		s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS); | 
| 2297 | 		s2->s.k = 4; | 
| 2298 | 		sappend(s1, s2); | 
| 2299 | 		sjeq_avs_cookie->s.jt = s2; | 
| 2300 |  | 
| 2301 | 		/* | 
| 2302 | 		 * Now jump to the code to allocate a register | 
| 2303 | 		 * into which to save the header length and | 
| 2304 | 		 * store the length there.  (The "jump always" | 
| 2305 | 		 * instruction needs to have the k field set; | 
| 2306 | 		 * it's added to the PC, so, as we're jumping | 
| 2307 | 		 * over a single instruction, it should be 1.) | 
| 2308 | 		 */ | 
| 2309 | 		sjcommon = new_stmt(cstate, JMP(BPF_JA)); | 
| 2310 | 		sjcommon->s.k = 1; | 
| 2311 | 		sappend(s1, sjcommon); | 
| 2312 |  | 
| 2313 | 		/* | 
| 2314 | 		 * Now for the code that handles the Prism header. | 
| 2315 | 		 * Just load the length of the Prism header (144) | 
| 2316 | 		 * into the A register.  Have the test for an AVS | 
| 2317 | 		 * header branch here if we don't have an AVS header. | 
| 2318 | 		 */ | 
| 2319 | 		s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM); | 
| 2320 | 		s2->s.k = 144; | 
| 2321 | 		sappend(s1, s2); | 
| 2322 | 		sjeq_avs_cookie->s.jf = s2; | 
| 2323 |  | 
| 2324 | 		/* | 
| 2325 | 		 * Now allocate a register to hold that value and store | 
| 2326 | 		 * it.  The code for the AVS header will jump here after | 
| 2327 | 		 * loading the length of the AVS header. | 
| 2328 | 		 */ | 
| 2329 | 		s2 = new_stmt(cstate, BPF_ST); | 
| 2330 | 		s2->s.k = cstate->off_linkhdr.reg; | 
| 2331 | 		sappend(s1, s2); | 
| 2332 | 		sjcommon->s.jf = s2; | 
| 2333 |  | 
| 2334 | 		/* | 
| 2335 | 		 * Now move it into the X register. | 
| 2336 | 		 */ | 
| 2337 | 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX); | 
| 2338 | 		sappend(s1, s2); | 
| 2339 |  | 
| 2340 | 		return (s1); | 
| 2341 | 	} else | 
| 2342 | 		return (NULL); | 
| 2343 | } | 
| 2344 |  | 
| 2345 | static struct slist * | 
| 2346 | gen_load_avs_llprefixlen(compiler_state_t *cstate) | 
| 2347 | { | 
| 2348 | 	struct slist *s1, *s2; | 
| 2349 |  | 
| 2350 | 	/* | 
| 2351 | 	 * Generate code to load the length of the AVS header into | 
| 2352 | 	 * the register assigned to hold that length, if one has been | 
| 2353 | 	 * assigned.  (If one hasn't been assigned, no code we've | 
| 2354 | 	 * generated uses that prefix, so we don't need to generate any | 
| 2355 | 	 * code to load it.) | 
| 2356 | 	 */ | 
| 2357 | 	if (cstate->off_linkhdr.reg != -1) { | 
| 2358 | 		/* | 
| 2359 | 		 * The 4 bytes at an offset of 4 from the beginning of | 
| 2360 | 		 * the AVS header are the length of the AVS header. | 
| 2361 | 		 * That field is big-endian. | 
| 2362 | 		 */ | 
| 2363 | 		s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS); | 
| 2364 | 		s1->s.k = 4; | 
| 2365 |  | 
| 2366 | 		/* | 
| 2367 | 		 * Now allocate a register to hold that value and store | 
| 2368 | 		 * it. | 
| 2369 | 		 */ | 
| 2370 | 		s2 = new_stmt(cstate, BPF_ST); | 
| 2371 | 		s2->s.k = cstate->off_linkhdr.reg; | 
| 2372 | 		sappend(s1, s2); | 
| 2373 |  | 
| 2374 | 		/* | 
| 2375 | 		 * Now move it into the X register. | 
| 2376 | 		 */ | 
| 2377 | 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX); | 
| 2378 | 		sappend(s1, s2); | 
| 2379 |  | 
| 2380 | 		return (s1); | 
| 2381 | 	} else | 
| 2382 | 		return (NULL); | 
| 2383 | } | 
| 2384 |  | 
| 2385 | static struct slist * | 
| 2386 | gen_load_radiotap_llprefixlen(compiler_state_t *cstate) | 
| 2387 | { | 
| 2388 | 	struct slist *s1, *s2; | 
| 2389 |  | 
| 2390 | 	/* | 
| 2391 | 	 * Generate code to load the length of the radiotap header into | 
| 2392 | 	 * the register assigned to hold that length, if one has been | 
| 2393 | 	 * assigned.  (If one hasn't been assigned, no code we've | 
| 2394 | 	 * generated uses that prefix, so we don't need to generate any | 
| 2395 | 	 * code to load it.) | 
| 2396 | 	 */ | 
| 2397 | 	if (cstate->off_linkhdr.reg != -1) { | 
| 2398 | 		/* | 
| 2399 | 		 * The 2 bytes at offsets of 2 and 3 from the beginning | 
| 2400 | 		 * of the radiotap header are the length of the radiotap | 
| 2401 | 		 * header; unfortunately, it's little-endian, so we have | 
| 2402 | 		 * to load it a byte at a time and construct the value. | 
| 2403 | 		 */ | 
| 2404 |  | 
| 2405 | 		/* | 
| 2406 | 		 * Load the high-order byte, at an offset of 3, shift it | 
| 2407 | 		 * left a byte, and put the result in the X register. | 
| 2408 | 		 */ | 
| 2409 | 		s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS); | 
| 2410 | 		s1->s.k = 3; | 
| 2411 | 		s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K); | 
| 2412 | 		sappend(s1, s2); | 
| 2413 | 		s2->s.k = 8; | 
| 2414 | 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX); | 
| 2415 | 		sappend(s1, s2); | 
| 2416 |  | 
| 2417 | 		/* | 
| 2418 | 		 * Load the next byte, at an offset of 2, and OR the | 
| 2419 | 		 * value from the X register into it. | 
| 2420 | 		 */ | 
| 2421 | 		s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS); | 
| 2422 | 		sappend(s1, s2); | 
| 2423 | 		s2->s.k = 2; | 
| 2424 | 		s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X); | 
| 2425 | 		sappend(s1, s2); | 
| 2426 |  | 
| 2427 | 		/* | 
| 2428 | 		 * Now allocate a register to hold that value and store | 
| 2429 | 		 * it. | 
| 2430 | 		 */ | 
| 2431 | 		s2 = new_stmt(cstate, BPF_ST); | 
| 2432 | 		s2->s.k = cstate->off_linkhdr.reg; | 
| 2433 | 		sappend(s1, s2); | 
| 2434 |  | 
| 2435 | 		/* | 
| 2436 | 		 * Now move it into the X register. | 
| 2437 | 		 */ | 
| 2438 | 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX); | 
| 2439 | 		sappend(s1, s2); | 
| 2440 |  | 
| 2441 | 		return (s1); | 
| 2442 | 	} else | 
| 2443 | 		return (NULL); | 
| 2444 | } | 
| 2445 |  | 
| 2446 | /* | 
| 2447 |  * At the moment we treat PPI as normal Radiotap encoded | 
| 2448 |  * packets. The difference is in the function that generates | 
| 2449 |  * the code at the beginning to compute the header length. | 
| 2450 |  * Since this code generator of PPI supports bare 802.11 | 
| 2451 |  * encapsulation only (i.e. the encapsulated DLT should be | 
| 2452 |  * DLT_IEEE802_11) we generate code to check for this too; | 
| 2453 |  * that's done in finish_parse(). | 
| 2454 |  */ | 
| 2455 | static struct slist * | 
| 2456 | gen_load_ppi_llprefixlen(compiler_state_t *cstate) | 
| 2457 | { | 
| 2458 | 	struct slist *s1, *s2; | 
| 2459 |  | 
| 2460 | 	/* | 
| 2461 | 	 * Generate code to load the length of the radiotap header | 
| 2462 | 	 * into the register assigned to hold that length, if one has | 
| 2463 | 	 * been assigned. | 
| 2464 | 	 */ | 
| 2465 | 	if (cstate->off_linkhdr.reg != -1) { | 
| 2466 | 		/* | 
| 2467 | 		 * The 2 bytes at offsets of 2 and 3 from the beginning | 
| 2468 | 		 * of the radiotap header are the length of the radiotap | 
| 2469 | 		 * header; unfortunately, it's little-endian, so we have | 
| 2470 | 		 * to load it a byte at a time and construct the value. | 
| 2471 | 		 */ | 
| 2472 |  | 
| 2473 | 		/* | 
| 2474 | 		 * Load the high-order byte, at an offset of 3, shift it | 
| 2475 | 		 * left a byte, and put the result in the X register. | 
| 2476 | 		 */ | 
| 2477 | 		s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS); | 
| 2478 | 		s1->s.k = 3; | 
| 2479 | 		s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K); | 
| 2480 | 		sappend(s1, s2); | 
| 2481 | 		s2->s.k = 8; | 
| 2482 | 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX); | 
| 2483 | 		sappend(s1, s2); | 
| 2484 |  | 
| 2485 | 		/* | 
| 2486 | 		 * Load the next byte, at an offset of 2, and OR the | 
| 2487 | 		 * value from the X register into it. | 
| 2488 | 		 */ | 
| 2489 | 		s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS); | 
| 2490 | 		sappend(s1, s2); | 
| 2491 | 		s2->s.k = 2; | 
| 2492 | 		s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X); | 
| 2493 | 		sappend(s1, s2); | 
| 2494 |  | 
| 2495 | 		/* | 
| 2496 | 		 * Now allocate a register to hold that value and store | 
| 2497 | 		 * it. | 
| 2498 | 		 */ | 
| 2499 | 		s2 = new_stmt(cstate, BPF_ST); | 
| 2500 | 		s2->s.k = cstate->off_linkhdr.reg; | 
| 2501 | 		sappend(s1, s2); | 
| 2502 |  | 
| 2503 | 		/* | 
| 2504 | 		 * Now move it into the X register. | 
| 2505 | 		 */ | 
| 2506 | 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX); | 
| 2507 | 		sappend(s1, s2); | 
| 2508 |  | 
| 2509 | 		return (s1); | 
| 2510 | 	} else | 
| 2511 | 		return (NULL); | 
| 2512 | } | 
| 2513 |  | 
| 2514 | /* | 
| 2515 |  * Load a value relative to the beginning of the link-layer header after the 802.11 | 
| 2516 |  * header, i.e. LLC_SNAP. | 
| 2517 |  * The link-layer header doesn't necessarily begin at the beginning | 
| 2518 |  * of the packet data; there might be a variable-length prefix containing | 
| 2519 |  * radio information. | 
| 2520 |  */ | 
| 2521 | static struct slist * | 
| 2522 | (compiler_state_t *cstate, struct slist *s, struct slist *snext) | 
| 2523 | { | 
| 2524 | 	struct slist *s2; | 
| 2525 | 	struct slist *sjset_data_frame_1; | 
| 2526 | 	struct slist *sjset_data_frame_2; | 
| 2527 | 	struct slist *sjset_qos; | 
| 2528 | 	struct slist *sjset_radiotap_flags_present; | 
| 2529 | 	struct slist *sjset_radiotap_ext_present; | 
| 2530 | 	struct slist *sjset_radiotap_tsft_present; | 
| 2531 | 	struct slist *sjset_tsft_datapad, *sjset_notsft_datapad; | 
| 2532 | 	struct slist *s_roundup; | 
| 2533 |  | 
| 2534 | 	if (cstate->off_linkpl.reg == -1) { | 
| 2535 | 		/* | 
| 2536 | 		 * No register has been assigned to the offset of | 
| 2537 | 		 * the link-layer payload, which means nobody needs | 
| 2538 | 		 * it; don't bother computing it - just return | 
| 2539 | 		 * what we already have. | 
| 2540 | 		 */ | 
| 2541 | 		return (s); | 
| 2542 | 	} | 
| 2543 |  | 
| 2544 | 	/* | 
| 2545 | 	 * This code is not compatible with the optimizer, as | 
| 2546 | 	 * we are generating jmp instructions within a normal | 
| 2547 | 	 * slist of instructions | 
| 2548 | 	 */ | 
| 2549 | 	cstate->no_optimize = 1; | 
| 2550 |  | 
| 2551 | 	/* | 
| 2552 | 	 * If "s" is non-null, it has code to arrange that the X register | 
| 2553 | 	 * contains the length of the prefix preceding the link-layer | 
| 2554 | 	 * header. | 
| 2555 | 	 * | 
| 2556 | 	 * Otherwise, the length of the prefix preceding the link-layer | 
| 2557 | 	 * header is "off_outermostlinkhdr.constant_part". | 
| 2558 | 	 */ | 
| 2559 | 	if (s == NULL) { | 
| 2560 | 		/* | 
| 2561 | 		 * There is no variable-length header preceding the | 
| 2562 | 		 * link-layer header. | 
| 2563 | 		 * | 
| 2564 | 		 * Load the length of the fixed-length prefix preceding | 
| 2565 | 		 * the link-layer header (if any) into the X register, | 
| 2566 | 		 * and store it in the cstate->off_linkpl.reg register. | 
| 2567 | 		 * That length is off_outermostlinkhdr.constant_part. | 
| 2568 | 		 */ | 
| 2569 | 		s = new_stmt(cstate, BPF_LDX|BPF_IMM); | 
| 2570 | 		s->s.k = cstate->off_outermostlinkhdr.constant_part; | 
| 2571 | 	} | 
| 2572 |  | 
| 2573 | 	/* | 
| 2574 | 	 * The X register contains the offset of the beginning of the | 
| 2575 | 	 * link-layer header; add 24, which is the minimum length | 
| 2576 | 	 * of the MAC header for a data frame, to that, and store it | 
| 2577 | 	 * in cstate->off_linkpl.reg, and then load the Frame Control field, | 
| 2578 | 	 * which is at the offset in the X register, with an indexed load. | 
| 2579 | 	 */ | 
| 2580 | 	s2 = new_stmt(cstate, BPF_MISC|BPF_TXA); | 
| 2581 | 	sappend(s, s2); | 
| 2582 | 	s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K); | 
| 2583 | 	s2->s.k = 24; | 
| 2584 | 	sappend(s, s2); | 
| 2585 | 	s2 = new_stmt(cstate, BPF_ST); | 
| 2586 | 	s2->s.k = cstate->off_linkpl.reg; | 
| 2587 | 	sappend(s, s2); | 
| 2588 |  | 
| 2589 | 	s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B); | 
| 2590 | 	s2->s.k = 0; | 
| 2591 | 	sappend(s, s2); | 
| 2592 |  | 
| 2593 | 	/* | 
| 2594 | 	 * Check the Frame Control field to see if this is a data frame; | 
| 2595 | 	 * a data frame has the 0x08 bit (b3) in that field set and the | 
| 2596 | 	 * 0x04 bit (b2) clear. | 
| 2597 | 	 */ | 
| 2598 | 	sjset_data_frame_1 = new_stmt(cstate, JMP(BPF_JSET)); | 
| 2599 | 	sjset_data_frame_1->s.k = 0x08; | 
| 2600 | 	sappend(s, sjset_data_frame_1); | 
| 2601 |  | 
| 2602 | 	/* | 
| 2603 | 	 * If b3 is set, test b2, otherwise go to the first statement of | 
| 2604 | 	 * the rest of the program. | 
| 2605 | 	 */ | 
| 2606 | 	sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(cstate, JMP(BPF_JSET)); | 
| 2607 | 	sjset_data_frame_2->s.k = 0x04; | 
| 2608 | 	sappend(s, sjset_data_frame_2); | 
| 2609 | 	sjset_data_frame_1->s.jf = snext; | 
| 2610 |  | 
| 2611 | 	/* | 
| 2612 | 	 * If b2 is not set, this is a data frame; test the QoS bit. | 
| 2613 | 	 * Otherwise, go to the first statement of the rest of the | 
| 2614 | 	 * program. | 
| 2615 | 	 */ | 
| 2616 | 	sjset_data_frame_2->s.jt = snext; | 
| 2617 | 	sjset_data_frame_2->s.jf = sjset_qos = new_stmt(cstate, JMP(BPF_JSET)); | 
| 2618 | 	sjset_qos->s.k = 0x80;	/* QoS bit */ | 
| 2619 | 	sappend(s, sjset_qos); | 
| 2620 |  | 
| 2621 | 	/* | 
| 2622 | 	 * If it's set, add 2 to cstate->off_linkpl.reg, to skip the QoS | 
| 2623 | 	 * field. | 
| 2624 | 	 * Otherwise, go to the first statement of the rest of the | 
| 2625 | 	 * program. | 
| 2626 | 	 */ | 
| 2627 | 	sjset_qos->s.jt = s2 = new_stmt(cstate, BPF_LD|BPF_MEM); | 
| 2628 | 	s2->s.k = cstate->off_linkpl.reg; | 
| 2629 | 	sappend(s, s2); | 
| 2630 | 	s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM); | 
| 2631 | 	s2->s.k = 2; | 
| 2632 | 	sappend(s, s2); | 
| 2633 | 	s2 = new_stmt(cstate, BPF_ST); | 
| 2634 | 	s2->s.k = cstate->off_linkpl.reg; | 
| 2635 | 	sappend(s, s2); | 
| 2636 |  | 
| 2637 | 	/* | 
| 2638 | 	 * If we have a radiotap header, look at it to see whether | 
| 2639 | 	 * there's Atheros padding between the MAC-layer header | 
| 2640 | 	 * and the payload. | 
| 2641 | 	 * | 
| 2642 | 	 * Note: all of the fields in the radiotap header are | 
| 2643 | 	 * little-endian, so we byte-swap all of the values | 
| 2644 | 	 * we test against, as they will be loaded as big-endian | 
| 2645 | 	 * values. | 
| 2646 | 	 * | 
| 2647 | 	 * XXX - in the general case, we would have to scan through | 
| 2648 | 	 * *all* the presence bits, if there's more than one word of | 
| 2649 | 	 * presence bits.  That would require a loop, meaning that | 
| 2650 | 	 * we wouldn't be able to run the filter in the kernel. | 
| 2651 | 	 * | 
| 2652 | 	 * We assume here that the Atheros adapters that insert the | 
| 2653 | 	 * annoying padding don't have multiple antennae and therefore | 
| 2654 | 	 * do not generate radiotap headers with multiple presence words. | 
| 2655 | 	 */ | 
| 2656 | 	if (cstate->linktype == DLT_IEEE802_11_RADIO) { | 
| 2657 | 		/* | 
| 2658 | 		 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set | 
| 2659 | 		 * in the first presence flag word? | 
| 2660 | 		 */ | 
| 2661 | 		sjset_qos->s.jf = s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_W); | 
| 2662 | 		s2->s.k = 4; | 
| 2663 | 		sappend(s, s2); | 
| 2664 |  | 
| 2665 | 		sjset_radiotap_flags_present = new_stmt(cstate, JMP(BPF_JSET)); | 
| 2666 | 		sjset_radiotap_flags_present->s.k = SWAPLONG(0x00000002); | 
| 2667 | 		sappend(s, sjset_radiotap_flags_present); | 
| 2668 |  | 
| 2669 | 		/* | 
| 2670 | 		 * If not, skip all of this. | 
| 2671 | 		 */ | 
| 2672 | 		sjset_radiotap_flags_present->s.jf = snext; | 
| 2673 |  | 
| 2674 | 		/* | 
| 2675 | 		 * Otherwise, is the "extension" bit set in that word? | 
| 2676 | 		 */ | 
| 2677 | 		sjset_radiotap_ext_present = new_stmt(cstate, JMP(BPF_JSET)); | 
| 2678 | 		sjset_radiotap_ext_present->s.k = SWAPLONG(0x80000000); | 
| 2679 | 		sappend(s, sjset_radiotap_ext_present); | 
| 2680 | 		sjset_radiotap_flags_present->s.jt = sjset_radiotap_ext_present; | 
| 2681 |  | 
| 2682 | 		/* | 
| 2683 | 		 * If so, skip all of this. | 
| 2684 | 		 */ | 
| 2685 | 		sjset_radiotap_ext_present->s.jt = snext; | 
| 2686 |  | 
| 2687 | 		/* | 
| 2688 | 		 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set? | 
| 2689 | 		 */ | 
| 2690 | 		sjset_radiotap_tsft_present = new_stmt(cstate, JMP(BPF_JSET)); | 
| 2691 | 		sjset_radiotap_tsft_present->s.k = SWAPLONG(0x00000001); | 
| 2692 | 		sappend(s, sjset_radiotap_tsft_present); | 
| 2693 | 		sjset_radiotap_ext_present->s.jf = sjset_radiotap_tsft_present; | 
| 2694 |  | 
| 2695 | 		/* | 
| 2696 | 		 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is | 
| 2697 | 		 * at an offset of 16 from the beginning of the raw packet | 
| 2698 | 		 * data (8 bytes for the radiotap header and 8 bytes for | 
| 2699 | 		 * the TSFT field). | 
| 2700 | 		 * | 
| 2701 | 		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20) | 
| 2702 | 		 * is set. | 
| 2703 | 		 */ | 
| 2704 | 		s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B); | 
| 2705 | 		s2->s.k = 16; | 
| 2706 | 		sappend(s, s2); | 
| 2707 | 		sjset_radiotap_tsft_present->s.jt = s2; | 
| 2708 |  | 
| 2709 | 		sjset_tsft_datapad = new_stmt(cstate, JMP(BPF_JSET)); | 
| 2710 | 		sjset_tsft_datapad->s.k = 0x20; | 
| 2711 | 		sappend(s, sjset_tsft_datapad); | 
| 2712 |  | 
| 2713 | 		/* | 
| 2714 | 		 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is | 
| 2715 | 		 * at an offset of 8 from the beginning of the raw packet | 
| 2716 | 		 * data (8 bytes for the radiotap header). | 
| 2717 | 		 * | 
| 2718 | 		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20) | 
| 2719 | 		 * is set. | 
| 2720 | 		 */ | 
| 2721 | 		s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B); | 
| 2722 | 		s2->s.k = 8; | 
| 2723 | 		sappend(s, s2); | 
| 2724 | 		sjset_radiotap_tsft_present->s.jf = s2; | 
| 2725 |  | 
| 2726 | 		sjset_notsft_datapad = new_stmt(cstate, JMP(BPF_JSET)); | 
| 2727 | 		sjset_notsft_datapad->s.k = 0x20; | 
| 2728 | 		sappend(s, sjset_notsft_datapad); | 
| 2729 |  | 
| 2730 | 		/* | 
| 2731 | 		 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is | 
| 2732 | 		 * set, round the length of the 802.11 header to | 
| 2733 | 		 * a multiple of 4.  Do that by adding 3 and then | 
| 2734 | 		 * dividing by and multiplying by 4, which we do by | 
| 2735 | 		 * ANDing with ~3. | 
| 2736 | 		 */ | 
| 2737 | 		s_roundup = new_stmt(cstate, BPF_LD|BPF_MEM); | 
| 2738 | 		s_roundup->s.k = cstate->off_linkpl.reg; | 
| 2739 | 		sappend(s, s_roundup); | 
| 2740 | 		s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM); | 
| 2741 | 		s2->s.k = 3; | 
| 2742 | 		sappend(s, s2); | 
| 2743 | 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_IMM); | 
| 2744 | 		s2->s.k = ~3; | 
| 2745 | 		sappend(s, s2); | 
| 2746 | 		s2 = new_stmt(cstate, BPF_ST); | 
| 2747 | 		s2->s.k = cstate->off_linkpl.reg; | 
| 2748 | 		sappend(s, s2); | 
| 2749 |  | 
| 2750 | 		sjset_tsft_datapad->s.jt = s_roundup; | 
| 2751 | 		sjset_tsft_datapad->s.jf = snext; | 
| 2752 | 		sjset_notsft_datapad->s.jt = s_roundup; | 
| 2753 | 		sjset_notsft_datapad->s.jf = snext; | 
| 2754 | 	} else | 
| 2755 | 		sjset_qos->s.jf = snext; | 
| 2756 |  | 
| 2757 | 	return s; | 
| 2758 | } | 
| 2759 |  | 
| 2760 | static void | 
| 2761 | insert_compute_vloffsets(compiler_state_t *cstate, struct block *b) | 
| 2762 | { | 
| 2763 | 	struct slist *s; | 
| 2764 |  | 
| 2765 | 	/* There is an implicit dependency between the link | 
| 2766 | 	 * payload and link header since the payload computation | 
| 2767 | 	 * includes the variable part of the header. Therefore, | 
| 2768 | 	 * if nobody else has allocated a register for the link | 
| 2769 | 	 * header and we need it, do it now. */ | 
| 2770 | 	if (cstate->off_linkpl.reg != -1 && cstate->off_linkhdr.is_variable && | 
| 2771 | 	    cstate->off_linkhdr.reg == -1) | 
| 2772 | 		cstate->off_linkhdr.reg = alloc_reg(cstate); | 
| 2773 |  | 
| 2774 | 	/* | 
| 2775 | 	 * For link-layer types that have a variable-length header | 
| 2776 | 	 * preceding the link-layer header, generate code to load | 
| 2777 | 	 * the offset of the link-layer header into the register | 
| 2778 | 	 * assigned to that offset, if any. | 
| 2779 | 	 * | 
| 2780 | 	 * XXX - this, and the next switch statement, won't handle | 
| 2781 | 	 * encapsulation of 802.11 or 802.11+radio information in | 
| 2782 | 	 * some other protocol stack.  That's significantly more | 
| 2783 | 	 * complicated. | 
| 2784 | 	 */ | 
| 2785 | 	switch (cstate->outermostlinktype) { | 
| 2786 |  | 
| 2787 | 	case DLT_PRISM_HEADER: | 
| 2788 | 		s = gen_load_prism_llprefixlen(cstate); | 
| 2789 | 		break; | 
| 2790 |  | 
| 2791 | 	case DLT_IEEE802_11_RADIO_AVS: | 
| 2792 | 		s = gen_load_avs_llprefixlen(cstate); | 
| 2793 | 		break; | 
| 2794 |  | 
| 2795 | 	case DLT_IEEE802_11_RADIO: | 
| 2796 | 		s = gen_load_radiotap_llprefixlen(cstate); | 
| 2797 | 		break; | 
| 2798 |  | 
| 2799 | 	case DLT_PPI: | 
| 2800 | 		s = gen_load_ppi_llprefixlen(cstate); | 
| 2801 | 		break; | 
| 2802 |  | 
| 2803 | 	default: | 
| 2804 | 		s = NULL; | 
| 2805 | 		break; | 
| 2806 | 	} | 
| 2807 |  | 
| 2808 | 	/* | 
| 2809 | 	 * For link-layer types that have a variable-length link-layer | 
| 2810 | 	 * header, generate code to load the offset of the link-layer | 
| 2811 | 	 * payload into the register assigned to that offset, if any. | 
| 2812 | 	 */ | 
| 2813 | 	switch (cstate->outermostlinktype) { | 
| 2814 |  | 
| 2815 | 	case DLT_IEEE802_11: | 
| 2816 | 	case DLT_PRISM_HEADER: | 
| 2817 | 	case DLT_IEEE802_11_RADIO_AVS: | 
| 2818 | 	case DLT_IEEE802_11_RADIO: | 
| 2819 | 	case DLT_PPI: | 
| 2820 | 		s = gen_load_802_11_header_len(cstate, s, b->stmts); | 
| 2821 | 		break; | 
| 2822 | 	} | 
| 2823 |  | 
| 2824 | 	/* | 
| 2825 | 	 * If there there is no initialization yet and we need variable | 
| 2826 | 	 * length offsets for VLAN, initialize them to zero | 
| 2827 | 	 */ | 
| 2828 | 	if (s == NULL && cstate->is_vlan_vloffset) { | 
| 2829 | 		struct slist *s2; | 
| 2830 |  | 
| 2831 | 		if (cstate->off_linkpl.reg == -1) | 
| 2832 | 			cstate->off_linkpl.reg = alloc_reg(cstate); | 
| 2833 | 		if (cstate->off_linktype.reg == -1) | 
| 2834 | 			cstate->off_linktype.reg = alloc_reg(cstate); | 
| 2835 |  | 
| 2836 | 		s = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM); | 
| 2837 | 		s->s.k = 0; | 
| 2838 | 		s2 = new_stmt(cstate, BPF_ST); | 
| 2839 | 		s2->s.k = cstate->off_linkpl.reg; | 
| 2840 | 		sappend(s, s2); | 
| 2841 | 		s2 = new_stmt(cstate, BPF_ST); | 
| 2842 | 		s2->s.k = cstate->off_linktype.reg; | 
| 2843 | 		sappend(s, s2); | 
| 2844 | 	} | 
| 2845 |  | 
| 2846 | 	/* | 
| 2847 | 	 * If we have any offset-loading code, append all the | 
| 2848 | 	 * existing statements in the block to those statements, | 
| 2849 | 	 * and make the resulting list the list of statements | 
| 2850 | 	 * for the block. | 
| 2851 | 	 */ | 
| 2852 | 	if (s != NULL) { | 
| 2853 | 		sappend(s, b->stmts); | 
| 2854 | 		b->stmts = s; | 
| 2855 | 	} | 
| 2856 | } | 
| 2857 |  | 
| 2858 | static struct block * | 
| 2859 | gen_ppi_dlt_check(compiler_state_t *cstate) | 
| 2860 | { | 
| 2861 | 	struct slist *s_load_dlt; | 
| 2862 | 	struct block *b; | 
| 2863 |  | 
| 2864 | 	if (cstate->linktype == DLT_PPI) | 
| 2865 | 	{ | 
| 2866 | 		/* Create the statements that check for the DLT | 
| 2867 | 		 */ | 
| 2868 | 		s_load_dlt = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS); | 
| 2869 | 		s_load_dlt->s.k = 4; | 
| 2870 |  | 
| 2871 | 		b = new_block(cstate, JMP(BPF_JEQ)); | 
| 2872 |  | 
| 2873 | 		b->stmts = s_load_dlt; | 
| 2874 | 		b->s.k = SWAPLONG(DLT_IEEE802_11); | 
| 2875 | 	} | 
| 2876 | 	else | 
| 2877 | 	{ | 
| 2878 | 		b = NULL; | 
| 2879 | 	} | 
| 2880 |  | 
| 2881 | 	return b; | 
| 2882 | } | 
| 2883 |  | 
| 2884 | /* | 
| 2885 |  * Take an absolute offset, and: | 
| 2886 |  * | 
| 2887 |  *    if it has no variable part, return NULL; | 
| 2888 |  * | 
| 2889 |  *    if it has a variable part, generate code to load the register | 
| 2890 |  *    containing that variable part into the X register, returning | 
| 2891 |  *    a pointer to that code - if no register for that offset has | 
| 2892 |  *    been allocated, allocate it first. | 
| 2893 |  * | 
| 2894 |  * (The code to set that register will be generated later, but will | 
| 2895 |  * be placed earlier in the code sequence.) | 
| 2896 |  */ | 
| 2897 | static struct slist * | 
| 2898 | gen_abs_offset_varpart(compiler_state_t *cstate, bpf_abs_offset *off) | 
| 2899 | { | 
| 2900 | 	struct slist *s; | 
| 2901 |  | 
| 2902 | 	if (off->is_variable) { | 
| 2903 | 		if (off->reg == -1) { | 
| 2904 | 			/* | 
| 2905 | 			 * We haven't yet assigned a register for the | 
| 2906 | 			 * variable part of the offset of the link-layer | 
| 2907 | 			 * header; allocate one. | 
| 2908 | 			 */ | 
| 2909 | 			off->reg = alloc_reg(cstate); | 
| 2910 | 		} | 
| 2911 |  | 
| 2912 | 		/* | 
| 2913 | 		 * Load the register containing the variable part of the | 
| 2914 | 		 * offset of the link-layer header into the X register. | 
| 2915 | 		 */ | 
| 2916 | 		s = new_stmt(cstate, BPF_LDX|BPF_MEM); | 
| 2917 | 		s->s.k = off->reg; | 
| 2918 | 		return s; | 
| 2919 | 	} else { | 
| 2920 | 		/* | 
| 2921 | 		 * That offset isn't variable, there's no variable part, | 
| 2922 | 		 * so we don't need to generate any code. | 
| 2923 | 		 */ | 
| 2924 | 		return NULL; | 
| 2925 | 	} | 
| 2926 | } | 
| 2927 |  | 
| 2928 | /* | 
| 2929 |  * Map an Ethernet type to the equivalent PPP type. | 
| 2930 |  */ | 
| 2931 | static int | 
| 2932 | ethertype_to_ppptype(int proto) | 
| 2933 | { | 
| 2934 | 	switch (proto) { | 
| 2935 |  | 
| 2936 | 	case ETHERTYPE_IP: | 
| 2937 | 		proto = PPP_IP; | 
| 2938 | 		break; | 
| 2939 |  | 
| 2940 | 	case ETHERTYPE_IPV6: | 
| 2941 | 		proto = PPP_IPV6; | 
| 2942 | 		break; | 
| 2943 |  | 
| 2944 | 	case ETHERTYPE_DN: | 
| 2945 | 		proto = PPP_DECNET; | 
| 2946 | 		break; | 
| 2947 |  | 
| 2948 | 	case ETHERTYPE_ATALK: | 
| 2949 | 		proto = PPP_APPLE; | 
| 2950 | 		break; | 
| 2951 |  | 
| 2952 | 	case ETHERTYPE_NS: | 
| 2953 | 		proto = PPP_NS; | 
| 2954 | 		break; | 
| 2955 |  | 
| 2956 | 	case LLCSAP_ISONS: | 
| 2957 | 		proto = PPP_OSI; | 
| 2958 | 		break; | 
| 2959 |  | 
| 2960 | 	case LLCSAP_8021D: | 
| 2961 | 		/* | 
| 2962 | 		 * I'm assuming the "Bridging PDU"s that go | 
| 2963 | 		 * over PPP are Spanning Tree Protocol | 
| 2964 | 		 * Bridging PDUs. | 
| 2965 | 		 */ | 
| 2966 | 		proto = PPP_BRPDU; | 
| 2967 | 		break; | 
| 2968 |  | 
| 2969 | 	case LLCSAP_IPX: | 
| 2970 | 		proto = PPP_IPX; | 
| 2971 | 		break; | 
| 2972 | 	} | 
| 2973 | 	return (proto); | 
| 2974 | } | 
| 2975 |  | 
| 2976 | /* | 
| 2977 |  * Generate any tests that, for encapsulation of a link-layer packet | 
| 2978 |  * inside another protocol stack, need to be done to check for those | 
| 2979 |  * link-layer packets (and that haven't already been done by a check | 
| 2980 |  * for that encapsulation). | 
| 2981 |  */ | 
| 2982 | static struct block * | 
| 2983 | gen_prevlinkhdr_check(compiler_state_t *cstate) | 
| 2984 | { | 
| 2985 | 	struct block *b0; | 
| 2986 |  | 
| 2987 | 	if (cstate->is_geneve) | 
| 2988 | 		return gen_geneve_ll_check(cstate); | 
| 2989 |  | 
| 2990 | 	switch (cstate->prevlinktype) { | 
| 2991 |  | 
| 2992 | 	case DLT_SUNATM: | 
| 2993 | 		/* | 
| 2994 | 		 * This is LANE-encapsulated Ethernet; check that the LANE | 
| 2995 | 		 * packet doesn't begin with an LE Control marker, i.e. | 
| 2996 | 		 * that it's data, not a control message. | 
| 2997 | 		 * | 
| 2998 | 		 * (We've already generated a test for LANE.) | 
| 2999 | 		 */ | 
| 3000 | 		b0 = gen_cmp(cstate, OR_PREVLINKHDR, SUNATM_PKT_BEGIN_POS, BPF_H, 0xFF00); | 
| 3001 | 		gen_not(b0); | 
| 3002 | 		return b0; | 
| 3003 |  | 
| 3004 | 	default: | 
| 3005 | 		/* | 
| 3006 | 		 * No such tests are necessary. | 
| 3007 | 		 */ | 
| 3008 | 		return NULL; | 
| 3009 | 	} | 
| 3010 | 	/*NOTREACHED*/ | 
| 3011 | } | 
| 3012 |  | 
| 3013 | /* | 
| 3014 |  * The three different values we should check for when checking for an | 
| 3015 |  * IPv6 packet with DLT_NULL. | 
| 3016 |  */ | 
| 3017 | #define BSD_AFNUM_INET6_BSD	24	/* NetBSD, OpenBSD, BSD/OS, Npcap */ | 
| 3018 | #define BSD_AFNUM_INET6_FREEBSD	28	/* FreeBSD */ | 
| 3019 | #define BSD_AFNUM_INET6_DARWIN	30	/* macOS, iOS, other Darwin-based OSes */ | 
| 3020 |  | 
| 3021 | /* | 
| 3022 |  * Generate code to match a particular packet type by matching the | 
| 3023 |  * link-layer type field or fields in the 802.2 LLC header. | 
| 3024 |  * | 
| 3025 |  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP | 
| 3026 |  * value, if <= ETHERMTU. | 
| 3027 |  */ | 
| 3028 | static struct block * | 
| 3029 | gen_linktype(compiler_state_t *cstate, int proto) | 
| 3030 | { | 
| 3031 | 	struct block *b0, *b1, *b2; | 
| 3032 | 	const char *description; | 
| 3033 |  | 
| 3034 | 	/* are we checking MPLS-encapsulated packets? */ | 
| 3035 | 	if (cstate->label_stack_depth > 0) { | 
| 3036 | 		switch (proto) { | 
| 3037 | 		case ETHERTYPE_IP: | 
| 3038 | 		case PPP_IP: | 
| 3039 | 			/* FIXME add other L3 proto IDs */ | 
| 3040 | 			return gen_mpls_linktype(cstate, Q_IP); | 
| 3041 |  | 
| 3042 | 		case ETHERTYPE_IPV6: | 
| 3043 | 		case PPP_IPV6: | 
| 3044 | 			/* FIXME add other L3 proto IDs */ | 
| 3045 | 			return gen_mpls_linktype(cstate, Q_IPV6); | 
| 3046 |  | 
| 3047 | 		default: | 
| 3048 | 			bpf_error(cstate, "unsupported protocol over mpls" ); | 
| 3049 | 			/* NOTREACHED */ | 
| 3050 | 		} | 
| 3051 | 	} | 
| 3052 |  | 
| 3053 | 	switch (cstate->linktype) { | 
| 3054 |  | 
| 3055 | 	case DLT_EN10MB: | 
| 3056 | 	case DLT_NETANALYZER: | 
| 3057 | 	case DLT_NETANALYZER_TRANSPARENT: | 
| 3058 | 		/* Geneve has an EtherType regardless of whether there is an | 
| 3059 | 		 * L2 header. */ | 
| 3060 | 		if (!cstate->is_geneve) | 
| 3061 | 			b0 = gen_prevlinkhdr_check(cstate); | 
| 3062 | 		else | 
| 3063 | 			b0 = NULL; | 
| 3064 |  | 
| 3065 | 		b1 = gen_ether_linktype(cstate, proto); | 
| 3066 | 		if (b0 != NULL) | 
| 3067 | 			gen_and(b0, b1); | 
| 3068 | 		return b1; | 
| 3069 | 		/*NOTREACHED*/ | 
| 3070 | 		break; | 
| 3071 |  | 
| 3072 | 	case DLT_C_HDLC: | 
| 3073 | 		switch (proto) { | 
| 3074 |  | 
| 3075 | 		case LLCSAP_ISONS: | 
| 3076 | 			proto = (proto << 8 | LLCSAP_ISONS); | 
| 3077 | 			/* fall through */ | 
| 3078 |  | 
| 3079 | 		default: | 
| 3080 | 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto); | 
| 3081 | 			/*NOTREACHED*/ | 
| 3082 | 			break; | 
| 3083 | 		} | 
| 3084 | 		break; | 
| 3085 |  | 
| 3086 | 	case DLT_IEEE802_11: | 
| 3087 | 	case DLT_PRISM_HEADER: | 
| 3088 | 	case DLT_IEEE802_11_RADIO_AVS: | 
| 3089 | 	case DLT_IEEE802_11_RADIO: | 
| 3090 | 	case DLT_PPI: | 
| 3091 | 		/* | 
| 3092 | 		 * Check that we have a data frame. | 
| 3093 | 		 */ | 
| 3094 | 		b0 = gen_check_802_11_data_frame(cstate); | 
| 3095 |  | 
| 3096 | 		/* | 
| 3097 | 		 * Now check for the specified link-layer type. | 
| 3098 | 		 */ | 
| 3099 | 		b1 = gen_llc_linktype(cstate, proto); | 
| 3100 | 		gen_and(b0, b1); | 
| 3101 | 		return b1; | 
| 3102 | 		/*NOTREACHED*/ | 
| 3103 | 		break; | 
| 3104 |  | 
| 3105 | 	case DLT_FDDI: | 
| 3106 | 		/* | 
| 3107 | 		 * XXX - check for LLC frames. | 
| 3108 | 		 */ | 
| 3109 | 		return gen_llc_linktype(cstate, proto); | 
| 3110 | 		/*NOTREACHED*/ | 
| 3111 | 		break; | 
| 3112 |  | 
| 3113 | 	case DLT_IEEE802: | 
| 3114 | 		/* | 
| 3115 | 		 * XXX - check for LLC PDUs, as per IEEE 802.5. | 
| 3116 | 		 */ | 
| 3117 | 		return gen_llc_linktype(cstate, proto); | 
| 3118 | 		/*NOTREACHED*/ | 
| 3119 | 		break; | 
| 3120 |  | 
| 3121 | 	case DLT_ATM_RFC1483: | 
| 3122 | 	case DLT_ATM_CLIP: | 
| 3123 | 	case DLT_IP_OVER_FC: | 
| 3124 | 		return gen_llc_linktype(cstate, proto); | 
| 3125 | 		/*NOTREACHED*/ | 
| 3126 | 		break; | 
| 3127 |  | 
| 3128 | 	case DLT_SUNATM: | 
| 3129 | 		/* | 
| 3130 | 		 * Check for an LLC-encapsulated version of this protocol; | 
| 3131 | 		 * if we were checking for LANE, linktype would no longer | 
| 3132 | 		 * be DLT_SUNATM. | 
| 3133 | 		 * | 
| 3134 | 		 * Check for LLC encapsulation and then check the protocol. | 
| 3135 | 		 */ | 
| 3136 | 		b0 = gen_atmfield_code(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0); | 
| 3137 | 		b1 = gen_llc_linktype(cstate, proto); | 
| 3138 | 		gen_and(b0, b1); | 
| 3139 | 		return b1; | 
| 3140 | 		/*NOTREACHED*/ | 
| 3141 | 		break; | 
| 3142 |  | 
| 3143 | 	case DLT_LINUX_SLL: | 
| 3144 | 		return gen_linux_sll_linktype(cstate, proto); | 
| 3145 | 		/*NOTREACHED*/ | 
| 3146 | 		break; | 
| 3147 |  | 
| 3148 | 	case DLT_SLIP: | 
| 3149 | 	case DLT_SLIP_BSDOS: | 
| 3150 | 	case DLT_RAW: | 
| 3151 | 		/* | 
| 3152 | 		 * These types don't provide any type field; packets | 
| 3153 | 		 * are always IPv4 or IPv6. | 
| 3154 | 		 * | 
| 3155 | 		 * XXX - for IPv4, check for a version number of 4, and, | 
| 3156 | 		 * for IPv6, check for a version number of 6? | 
| 3157 | 		 */ | 
| 3158 | 		switch (proto) { | 
| 3159 |  | 
| 3160 | 		case ETHERTYPE_IP: | 
| 3161 | 			/* Check for a version number of 4. */ | 
| 3162 | 			return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x40, 0xF0); | 
| 3163 |  | 
| 3164 | 		case ETHERTYPE_IPV6: | 
| 3165 | 			/* Check for a version number of 6. */ | 
| 3166 | 			return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x60, 0xF0); | 
| 3167 |  | 
| 3168 | 		default: | 
| 3169 | 			return gen_false(cstate);	/* always false */ | 
| 3170 | 		} | 
| 3171 | 		/*NOTREACHED*/ | 
| 3172 | 		break; | 
| 3173 |  | 
| 3174 | 	case DLT_IPV4: | 
| 3175 | 		/* | 
| 3176 | 		 * Raw IPv4, so no type field. | 
| 3177 | 		 */ | 
| 3178 | 		if (proto == ETHERTYPE_IP) | 
| 3179 | 			return gen_true(cstate);	/* always true */ | 
| 3180 |  | 
| 3181 | 		/* Checking for something other than IPv4; always false */ | 
| 3182 | 		return gen_false(cstate); | 
| 3183 | 		/*NOTREACHED*/ | 
| 3184 | 		break; | 
| 3185 |  | 
| 3186 | 	case DLT_IPV6: | 
| 3187 | 		/* | 
| 3188 | 		 * Raw IPv6, so no type field. | 
| 3189 | 		 */ | 
| 3190 | 		if (proto == ETHERTYPE_IPV6) | 
| 3191 | 			return gen_true(cstate);	/* always true */ | 
| 3192 |  | 
| 3193 | 		/* Checking for something other than IPv6; always false */ | 
| 3194 | 		return gen_false(cstate); | 
| 3195 | 		/*NOTREACHED*/ | 
| 3196 | 		break; | 
| 3197 |  | 
| 3198 | 	case DLT_PPP: | 
| 3199 | 	case DLT_PPP_PPPD: | 
| 3200 | 	case DLT_PPP_SERIAL: | 
| 3201 | 	case DLT_PPP_ETHER: | 
| 3202 | 		/* | 
| 3203 | 		 * We use Ethernet protocol types inside libpcap; | 
| 3204 | 		 * map them to the corresponding PPP protocol types. | 
| 3205 | 		 */ | 
| 3206 | 		proto = ethertype_to_ppptype(proto); | 
| 3207 | 		return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto); | 
| 3208 | 		/*NOTREACHED*/ | 
| 3209 | 		break; | 
| 3210 |  | 
| 3211 | 	case DLT_PPP_BSDOS: | 
| 3212 | 		/* | 
| 3213 | 		 * We use Ethernet protocol types inside libpcap; | 
| 3214 | 		 * map them to the corresponding PPP protocol types. | 
| 3215 | 		 */ | 
| 3216 | 		switch (proto) { | 
| 3217 |  | 
| 3218 | 		case ETHERTYPE_IP: | 
| 3219 | 			/* | 
| 3220 | 			 * Also check for Van Jacobson-compressed IP. | 
| 3221 | 			 * XXX - do this for other forms of PPP? | 
| 3222 | 			 */ | 
| 3223 | 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_IP); | 
| 3224 | 			b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJC); | 
| 3225 | 			gen_or(b0, b1); | 
| 3226 | 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJNC); | 
| 3227 | 			gen_or(b1, b0); | 
| 3228 | 			return b0; | 
| 3229 |  | 
| 3230 | 		default: | 
| 3231 | 			proto = ethertype_to_ppptype(proto); | 
| 3232 | 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, | 
| 3233 | 				(bpf_int32)proto); | 
| 3234 | 		} | 
| 3235 | 		/*NOTREACHED*/ | 
| 3236 | 		break; | 
| 3237 |  | 
| 3238 | 	case DLT_NULL: | 
| 3239 | 	case DLT_LOOP: | 
| 3240 | 	case DLT_ENC: | 
| 3241 | 		switch (proto) { | 
| 3242 |  | 
| 3243 | 		case ETHERTYPE_IP: | 
| 3244 | 			return (gen_loopback_linktype(cstate, AF_INET)); | 
| 3245 |  | 
| 3246 | 		case ETHERTYPE_IPV6: | 
| 3247 | 			/* | 
| 3248 | 			 * AF_ values may, unfortunately, be platform- | 
| 3249 | 			 * dependent; AF_INET isn't, because everybody | 
| 3250 | 			 * used 4.2BSD's value, but AF_INET6 is, because | 
| 3251 | 			 * 4.2BSD didn't have a value for it (given that | 
| 3252 | 			 * IPv6 didn't exist back in the early 1980's), | 
| 3253 | 			 * and they all picked their own values. | 
| 3254 | 			 * | 
| 3255 | 			 * This means that, if we're reading from a | 
| 3256 | 			 * savefile, we need to check for all the | 
| 3257 | 			 * possible values. | 
| 3258 | 			 * | 
| 3259 | 			 * If we're doing a live capture, we only need | 
| 3260 | 			 * to check for this platform's value; however, | 
| 3261 | 			 * Npcap uses 24, which isn't Windows's AF_INET6 | 
| 3262 | 			 * value.  (Given the multiple different values, | 
| 3263 | 			 * programs that read pcap files shouldn't be | 
| 3264 | 			 * checking for their platform's AF_INET6 value | 
| 3265 | 			 * anyway, they should check for all of the | 
| 3266 | 			 * possible values. and they might as well do | 
| 3267 | 			 * that even for live captures.) | 
| 3268 | 			 */ | 
| 3269 | 			if (cstate->bpf_pcap->rfile != NULL) { | 
| 3270 | 				/* | 
| 3271 | 				 * Savefile - check for all three | 
| 3272 | 				 * possible IPv6 values. | 
| 3273 | 				 */ | 
| 3274 | 				b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_BSD); | 
| 3275 | 				b1 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_FREEBSD); | 
| 3276 | 				gen_or(b0, b1); | 
| 3277 | 				b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_DARWIN); | 
| 3278 | 				gen_or(b0, b1); | 
| 3279 | 				return (b1); | 
| 3280 | 			} else { | 
| 3281 | 				/* | 
| 3282 | 				 * Live capture, so we only need to | 
| 3283 | 				 * check for the value used on this | 
| 3284 | 				 * platform. | 
| 3285 | 				 */ | 
| 3286 | #ifdef _WIN32 | 
| 3287 | 				/* | 
| 3288 | 				 * Npcap doesn't use Windows's AF_INET6, | 
| 3289 | 				 * as that collides with AF_IPX on | 
| 3290 | 				 * some BSDs (both have the value 23). | 
| 3291 | 				 * Instead, it uses 24. | 
| 3292 | 				 */ | 
| 3293 | 				return (gen_loopback_linktype(cstate, 24)); | 
| 3294 | #else /* _WIN32 */ | 
| 3295 | #ifdef AF_INET6 | 
| 3296 | 				return (gen_loopback_linktype(cstate, AF_INET6)); | 
| 3297 | #else /* AF_INET6 */ | 
| 3298 | 				/* | 
| 3299 | 				 * I guess this platform doesn't support | 
| 3300 | 				 * IPv6, so we just reject all packets. | 
| 3301 | 				 */ | 
| 3302 | 				return gen_false(cstate); | 
| 3303 | #endif /* AF_INET6 */ | 
| 3304 | #endif /* _WIN32 */ | 
| 3305 | 			} | 
| 3306 |  | 
| 3307 | 		default: | 
| 3308 | 			/* | 
| 3309 | 			 * Not a type on which we support filtering. | 
| 3310 | 			 * XXX - support those that have AF_ values | 
| 3311 | 			 * #defined on this platform, at least? | 
| 3312 | 			 */ | 
| 3313 | 			return gen_false(cstate); | 
| 3314 | 		} | 
| 3315 |  | 
| 3316 | #ifdef HAVE_NET_PFVAR_H | 
| 3317 | 	case DLT_PFLOG: | 
| 3318 | 		/* | 
| 3319 | 		 * af field is host byte order in contrast to the rest of | 
| 3320 | 		 * the packet. | 
| 3321 | 		 */ | 
| 3322 | 		if (proto == ETHERTYPE_IP) | 
| 3323 | 			return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af), | 
| 3324 | 			    BPF_B, (bpf_int32)AF_INET)); | 
| 3325 | 		else if (proto == ETHERTYPE_IPV6) | 
| 3326 | 			return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af), | 
| 3327 | 			    BPF_B, (bpf_int32)AF_INET6)); | 
| 3328 | 		else | 
| 3329 | 			return gen_false(cstate); | 
| 3330 | 		/*NOTREACHED*/ | 
| 3331 | 		break; | 
| 3332 | #endif /* HAVE_NET_PFVAR_H */ | 
| 3333 |  | 
| 3334 | 	case DLT_ARCNET: | 
| 3335 | 	case DLT_ARCNET_LINUX: | 
| 3336 | 		/* | 
| 3337 | 		 * XXX should we check for first fragment if the protocol | 
| 3338 | 		 * uses PHDS? | 
| 3339 | 		 */ | 
| 3340 | 		switch (proto) { | 
| 3341 |  | 
| 3342 | 		default: | 
| 3343 | 			return gen_false(cstate); | 
| 3344 |  | 
| 3345 | 		case ETHERTYPE_IPV6: | 
| 3346 | 			return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, | 
| 3347 | 				(bpf_int32)ARCTYPE_INET6)); | 
| 3348 |  | 
| 3349 | 		case ETHERTYPE_IP: | 
| 3350 | 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, | 
| 3351 | 				     (bpf_int32)ARCTYPE_IP); | 
| 3352 | 			b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, | 
| 3353 | 				     (bpf_int32)ARCTYPE_IP_OLD); | 
| 3354 | 			gen_or(b0, b1); | 
| 3355 | 			return (b1); | 
| 3356 |  | 
| 3357 | 		case ETHERTYPE_ARP: | 
| 3358 | 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, | 
| 3359 | 				     (bpf_int32)ARCTYPE_ARP); | 
| 3360 | 			b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, | 
| 3361 | 				     (bpf_int32)ARCTYPE_ARP_OLD); | 
| 3362 | 			gen_or(b0, b1); | 
| 3363 | 			return (b1); | 
| 3364 |  | 
| 3365 | 		case ETHERTYPE_REVARP: | 
| 3366 | 			return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, | 
| 3367 | 					(bpf_int32)ARCTYPE_REVARP)); | 
| 3368 |  | 
| 3369 | 		case ETHERTYPE_ATALK: | 
| 3370 | 			return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, | 
| 3371 | 					(bpf_int32)ARCTYPE_ATALK)); | 
| 3372 | 		} | 
| 3373 | 		/*NOTREACHED*/ | 
| 3374 | 		break; | 
| 3375 |  | 
| 3376 | 	case DLT_LTALK: | 
| 3377 | 		switch (proto) { | 
| 3378 | 		case ETHERTYPE_ATALK: | 
| 3379 | 			return gen_true(cstate); | 
| 3380 | 		default: | 
| 3381 | 			return gen_false(cstate); | 
| 3382 | 		} | 
| 3383 | 		/*NOTREACHED*/ | 
| 3384 | 		break; | 
| 3385 |  | 
| 3386 | 	case DLT_FRELAY: | 
| 3387 | 		/* | 
| 3388 | 		 * XXX - assumes a 2-byte Frame Relay header with | 
| 3389 | 		 * DLCI and flags.  What if the address is longer? | 
| 3390 | 		 */ | 
| 3391 | 		switch (proto) { | 
| 3392 |  | 
| 3393 | 		case ETHERTYPE_IP: | 
| 3394 | 			/* | 
| 3395 | 			 * Check for the special NLPID for IP. | 
| 3396 | 			 */ | 
| 3397 | 			return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0xcc); | 
| 3398 |  | 
| 3399 | 		case ETHERTYPE_IPV6: | 
| 3400 | 			/* | 
| 3401 | 			 * Check for the special NLPID for IPv6. | 
| 3402 | 			 */ | 
| 3403 | 			return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0x8e); | 
| 3404 |  | 
| 3405 | 		case LLCSAP_ISONS: | 
| 3406 | 			/* | 
| 3407 | 			 * Check for several OSI protocols. | 
| 3408 | 			 * | 
| 3409 | 			 * Frame Relay packets typically have an OSI | 
| 3410 | 			 * NLPID at the beginning; we check for each | 
| 3411 | 			 * of them. | 
| 3412 | 			 * | 
| 3413 | 			 * What we check for is the NLPID and a frame | 
| 3414 | 			 * control field of UI, i.e. 0x03 followed | 
| 3415 | 			 * by the NLPID. | 
| 3416 | 			 */ | 
| 3417 | 			b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO8473_CLNP); | 
| 3418 | 			b1 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO9542_ESIS); | 
| 3419 | 			b2 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO10589_ISIS); | 
| 3420 | 			gen_or(b1, b2); | 
| 3421 | 			gen_or(b0, b2); | 
| 3422 | 			return b2; | 
| 3423 |  | 
| 3424 | 		default: | 
| 3425 | 			return gen_false(cstate); | 
| 3426 | 		} | 
| 3427 | 		/*NOTREACHED*/ | 
| 3428 | 		break; | 
| 3429 |  | 
| 3430 | 	case DLT_MFR: | 
| 3431 | 		bpf_error(cstate, "Multi-link Frame Relay link-layer type filtering not implemented" ); | 
| 3432 |  | 
| 3433 |         case DLT_JUNIPER_MFR: | 
| 3434 |         case DLT_JUNIPER_MLFR: | 
| 3435 |         case DLT_JUNIPER_MLPPP: | 
| 3436 | 	case DLT_JUNIPER_ATM1: | 
| 3437 | 	case DLT_JUNIPER_ATM2: | 
| 3438 | 	case DLT_JUNIPER_PPPOE: | 
| 3439 | 	case DLT_JUNIPER_PPPOE_ATM: | 
| 3440 |         case DLT_JUNIPER_GGSN: | 
| 3441 |         case DLT_JUNIPER_ES: | 
| 3442 |         case DLT_JUNIPER_MONITOR: | 
| 3443 |         case DLT_JUNIPER_SERVICES: | 
| 3444 |         case DLT_JUNIPER_ETHER: | 
| 3445 |         case DLT_JUNIPER_PPP: | 
| 3446 |         case DLT_JUNIPER_FRELAY: | 
| 3447 |         case DLT_JUNIPER_CHDLC: | 
| 3448 |         case DLT_JUNIPER_VP: | 
| 3449 |         case DLT_JUNIPER_ST: | 
| 3450 |         case DLT_JUNIPER_ISM: | 
| 3451 |         case DLT_JUNIPER_VS: | 
| 3452 |         case DLT_JUNIPER_SRX_E2E: | 
| 3453 |         case DLT_JUNIPER_FIBRECHANNEL: | 
| 3454 | 	case DLT_JUNIPER_ATM_CEMIC: | 
| 3455 |  | 
| 3456 | 		/* just lets verify the magic number for now - | 
| 3457 | 		 * on ATM we may have up to 6 different encapsulations on the wire | 
| 3458 | 		 * and need a lot of heuristics to figure out that the payload | 
| 3459 | 		 * might be; | 
| 3460 | 		 * | 
| 3461 | 		 * FIXME encapsulation specific BPF_ filters | 
| 3462 | 		 */ | 
| 3463 | 		return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */ | 
| 3464 |  | 
| 3465 | 	case DLT_BACNET_MS_TP: | 
| 3466 | 		return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x55FF0000, 0xffff0000); | 
| 3467 |  | 
| 3468 | 	case DLT_IPNET: | 
| 3469 | 		return gen_ipnet_linktype(cstate, proto); | 
| 3470 |  | 
| 3471 | 	case DLT_LINUX_IRDA: | 
| 3472 | 		bpf_error(cstate, "IrDA link-layer type filtering not implemented" ); | 
| 3473 |  | 
| 3474 | 	case DLT_DOCSIS: | 
| 3475 | 		bpf_error(cstate, "DOCSIS link-layer type filtering not implemented" ); | 
| 3476 |  | 
| 3477 | 	case DLT_MTP2: | 
| 3478 | 	case DLT_MTP2_WITH_PHDR: | 
| 3479 | 		bpf_error(cstate, "MTP2 link-layer type filtering not implemented" ); | 
| 3480 |  | 
| 3481 | 	case DLT_ERF: | 
| 3482 | 		bpf_error(cstate, "ERF link-layer type filtering not implemented" ); | 
| 3483 |  | 
| 3484 | 	case DLT_PFSYNC: | 
| 3485 | 		bpf_error(cstate, "PFSYNC link-layer type filtering not implemented" ); | 
| 3486 |  | 
| 3487 | 	case DLT_LINUX_LAPD: | 
| 3488 | 		bpf_error(cstate, "LAPD link-layer type filtering not implemented" ); | 
| 3489 |  | 
| 3490 | 	case DLT_USB_FREEBSD: | 
| 3491 | 	case DLT_USB_LINUX: | 
| 3492 | 	case DLT_USB_LINUX_MMAPPED: | 
| 3493 | 	case DLT_USBPCAP: | 
| 3494 | 		bpf_error(cstate, "USB link-layer type filtering not implemented" ); | 
| 3495 |  | 
| 3496 | 	case DLT_BLUETOOTH_HCI_H4: | 
| 3497 | 	case DLT_BLUETOOTH_HCI_H4_WITH_PHDR: | 
| 3498 | 		bpf_error(cstate, "Bluetooth link-layer type filtering not implemented" ); | 
| 3499 |  | 
| 3500 | 	case DLT_CAN20B: | 
| 3501 | 	case DLT_CAN_SOCKETCAN: | 
| 3502 | 		bpf_error(cstate, "CAN link-layer type filtering not implemented" ); | 
| 3503 |  | 
| 3504 | 	case DLT_IEEE802_15_4: | 
| 3505 | 	case DLT_IEEE802_15_4_LINUX: | 
| 3506 | 	case DLT_IEEE802_15_4_NONASK_PHY: | 
| 3507 | 	case DLT_IEEE802_15_4_NOFCS: | 
| 3508 | 		bpf_error(cstate, "IEEE 802.15.4 link-layer type filtering not implemented" ); | 
| 3509 |  | 
| 3510 | 	case DLT_IEEE802_16_MAC_CPS_RADIO: | 
| 3511 | 		bpf_error(cstate, "IEEE 802.16 link-layer type filtering not implemented" ); | 
| 3512 |  | 
| 3513 | 	case DLT_SITA: | 
| 3514 | 		bpf_error(cstate, "SITA link-layer type filtering not implemented" ); | 
| 3515 |  | 
| 3516 | 	case DLT_RAIF1: | 
| 3517 | 		bpf_error(cstate, "RAIF1 link-layer type filtering not implemented" ); | 
| 3518 |  | 
| 3519 | 	case DLT_IPMB: | 
| 3520 | 		bpf_error(cstate, "IPMB link-layer type filtering not implemented" ); | 
| 3521 |  | 
| 3522 | 	case DLT_AX25_KISS: | 
| 3523 | 		bpf_error(cstate, "AX.25 link-layer type filtering not implemented" ); | 
| 3524 |  | 
| 3525 | 	case DLT_NFLOG: | 
| 3526 | 		/* Using the fixed-size NFLOG header it is possible to tell only | 
| 3527 | 		 * the address family of the packet, other meaningful data is | 
| 3528 | 		 * either missing or behind TLVs. | 
| 3529 | 		 */ | 
| 3530 | 		bpf_error(cstate, "NFLOG link-layer type filtering not implemented" ); | 
| 3531 |  | 
| 3532 | 	default: | 
| 3533 | 		/* | 
| 3534 | 		 * Does this link-layer header type have a field | 
| 3535 | 		 * indicating the type of the next protocol?  If | 
| 3536 | 		 * so, off_linktype.constant_part will be the offset of that | 
| 3537 | 		 * field in the packet; if not, it will be OFFSET_NOT_SET. | 
| 3538 | 		 */ | 
| 3539 | 		if (cstate->off_linktype.constant_part != OFFSET_NOT_SET) { | 
| 3540 | 			/* | 
| 3541 | 			 * Yes; assume it's an Ethernet type.  (If | 
| 3542 | 			 * it's not, it needs to be handled specially | 
| 3543 | 			 * above.) | 
| 3544 | 			 */ | 
| 3545 | 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto); | 
| 3546 | 		} else { | 
| 3547 | 			/* | 
| 3548 | 			 * No; report an error. | 
| 3549 | 			 */ | 
| 3550 | 			description = pcap_datalink_val_to_description(cstate->linktype); | 
| 3551 | 			if (description != NULL) { | 
| 3552 | 				bpf_error(cstate, "%s link-layer type filtering not implemented" , | 
| 3553 | 				    description); | 
| 3554 | 			} else { | 
| 3555 | 				bpf_error(cstate, "DLT %u link-layer type filtering not implemented" , | 
| 3556 | 				    cstate->linktype); | 
| 3557 | 			} | 
| 3558 | 		} | 
| 3559 | 		break; | 
| 3560 | 	} | 
| 3561 | } | 
| 3562 |  | 
| 3563 | /* | 
| 3564 |  * Check for an LLC SNAP packet with a given organization code and | 
| 3565 |  * protocol type; we check the entire contents of the 802.2 LLC and | 
| 3566 |  * snap headers, checking for DSAP and SSAP of SNAP and a control | 
| 3567 |  * field of 0x03 in the LLC header, and for the specified organization | 
| 3568 |  * code and protocol type in the SNAP header. | 
| 3569 |  */ | 
| 3570 | static struct block * | 
| 3571 | gen_snap(compiler_state_t *cstate, bpf_u_int32 orgcode, bpf_u_int32 ptype) | 
| 3572 | { | 
| 3573 | 	u_char snapblock[8]; | 
| 3574 |  | 
| 3575 | 	snapblock[0] = LLCSAP_SNAP;		/* DSAP = SNAP */ | 
| 3576 | 	snapblock[1] = LLCSAP_SNAP;		/* SSAP = SNAP */ | 
| 3577 | 	snapblock[2] = 0x03;			/* control = UI */ | 
| 3578 | 	snapblock[3] = (u_char)(orgcode >> 16);	/* upper 8 bits of organization code */ | 
| 3579 | 	snapblock[4] = (u_char)(orgcode >> 8);	/* middle 8 bits of organization code */ | 
| 3580 | 	snapblock[5] = (u_char)(orgcode >> 0);	/* lower 8 bits of organization code */ | 
| 3581 | 	snapblock[6] = (u_char)(ptype >> 8);	/* upper 8 bits of protocol type */ | 
| 3582 | 	snapblock[7] = (u_char)(ptype >> 0);	/* lower 8 bits of protocol type */ | 
| 3583 | 	return gen_bcmp(cstate, OR_LLC, 0, 8, snapblock); | 
| 3584 | } | 
| 3585 |  | 
| 3586 | /* | 
| 3587 |  * Generate code to match frames with an LLC header. | 
| 3588 |  */ | 
| 3589 | struct block * | 
| 3590 | gen_llc(compiler_state_t *cstate) | 
| 3591 | { | 
| 3592 | 	struct block *b0, *b1; | 
| 3593 |  | 
| 3594 | 	switch (cstate->linktype) { | 
| 3595 |  | 
| 3596 | 	case DLT_EN10MB: | 
| 3597 | 		/* | 
| 3598 | 		 * We check for an Ethernet type field less than | 
| 3599 | 		 * 1500, which means it's an 802.3 length field. | 
| 3600 | 		 */ | 
| 3601 | 		b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU); | 
| 3602 | 		gen_not(b0); | 
| 3603 |  | 
| 3604 | 		/* | 
| 3605 | 		 * Now check for the purported DSAP and SSAP not being | 
| 3606 | 		 * 0xFF, to rule out NetWare-over-802.3. | 
| 3607 | 		 */ | 
| 3608 | 		b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_int32)0xFFFF); | 
| 3609 | 		gen_not(b1); | 
| 3610 | 		gen_and(b0, b1); | 
| 3611 | 		return b1; | 
| 3612 |  | 
| 3613 | 	case DLT_SUNATM: | 
| 3614 | 		/* | 
| 3615 | 		 * We check for LLC traffic. | 
| 3616 | 		 */ | 
| 3617 | 		b0 = gen_atmtype_abbrev(cstate, A_LLC); | 
| 3618 | 		return b0; | 
| 3619 |  | 
| 3620 | 	case DLT_IEEE802:	/* Token Ring */ | 
| 3621 | 		/* | 
| 3622 | 		 * XXX - check for LLC frames. | 
| 3623 | 		 */ | 
| 3624 | 		return gen_true(cstate); | 
| 3625 |  | 
| 3626 | 	case DLT_FDDI: | 
| 3627 | 		/* | 
| 3628 | 		 * XXX - check for LLC frames. | 
| 3629 | 		 */ | 
| 3630 | 		return gen_true(cstate); | 
| 3631 |  | 
| 3632 | 	case DLT_ATM_RFC1483: | 
| 3633 | 		/* | 
| 3634 | 		 * For LLC encapsulation, these are defined to have an | 
| 3635 | 		 * 802.2 LLC header. | 
| 3636 | 		 * | 
| 3637 | 		 * For VC encapsulation, they don't, but there's no | 
| 3638 | 		 * way to check for that; the protocol used on the VC | 
| 3639 | 		 * is negotiated out of band. | 
| 3640 | 		 */ | 
| 3641 | 		return gen_true(cstate); | 
| 3642 |  | 
| 3643 | 	case DLT_IEEE802_11: | 
| 3644 | 	case DLT_PRISM_HEADER: | 
| 3645 | 	case DLT_IEEE802_11_RADIO: | 
| 3646 | 	case DLT_IEEE802_11_RADIO_AVS: | 
| 3647 | 	case DLT_PPI: | 
| 3648 | 		/* | 
| 3649 | 		 * Check that we have a data frame. | 
| 3650 | 		 */ | 
| 3651 | 		b0 = gen_check_802_11_data_frame(cstate); | 
| 3652 | 		return b0; | 
| 3653 |  | 
| 3654 | 	default: | 
| 3655 | 		bpf_error(cstate, "'llc' not supported for linktype %d" , cstate->linktype); | 
| 3656 | 		/* NOTREACHED */ | 
| 3657 | 	} | 
| 3658 | } | 
| 3659 |  | 
| 3660 | struct block * | 
| 3661 | gen_llc_i(compiler_state_t *cstate) | 
| 3662 | { | 
| 3663 | 	struct block *b0, *b1; | 
| 3664 | 	struct slist *s; | 
| 3665 |  | 
| 3666 | 	/* | 
| 3667 | 	 * Check whether this is an LLC frame. | 
| 3668 | 	 */ | 
| 3669 | 	b0 = gen_llc(cstate); | 
| 3670 |  | 
| 3671 | 	/* | 
| 3672 | 	 * Load the control byte and test the low-order bit; it must | 
| 3673 | 	 * be clear for I frames. | 
| 3674 | 	 */ | 
| 3675 | 	s = gen_load_a(cstate, OR_LLC, 2, BPF_B); | 
| 3676 | 	b1 = new_block(cstate, JMP(BPF_JSET)); | 
| 3677 | 	b1->s.k = 0x01; | 
| 3678 | 	b1->stmts = s; | 
| 3679 | 	gen_not(b1); | 
| 3680 | 	gen_and(b0, b1); | 
| 3681 | 	return b1; | 
| 3682 | } | 
| 3683 |  | 
| 3684 | struct block * | 
| 3685 | gen_llc_s(compiler_state_t *cstate) | 
| 3686 | { | 
| 3687 | 	struct block *b0, *b1; | 
| 3688 |  | 
| 3689 | 	/* | 
| 3690 | 	 * Check whether this is an LLC frame. | 
| 3691 | 	 */ | 
| 3692 | 	b0 = gen_llc(cstate); | 
| 3693 |  | 
| 3694 | 	/* | 
| 3695 | 	 * Now compare the low-order 2 bit of the control byte against | 
| 3696 | 	 * the appropriate value for S frames. | 
| 3697 | 	 */ | 
| 3698 | 	b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_S_FMT, 0x03); | 
| 3699 | 	gen_and(b0, b1); | 
| 3700 | 	return b1; | 
| 3701 | } | 
| 3702 |  | 
| 3703 | struct block * | 
| 3704 | gen_llc_u(compiler_state_t *cstate) | 
| 3705 | { | 
| 3706 | 	struct block *b0, *b1; | 
| 3707 |  | 
| 3708 | 	/* | 
| 3709 | 	 * Check whether this is an LLC frame. | 
| 3710 | 	 */ | 
| 3711 | 	b0 = gen_llc(cstate); | 
| 3712 |  | 
| 3713 | 	/* | 
| 3714 | 	 * Now compare the low-order 2 bit of the control byte against | 
| 3715 | 	 * the appropriate value for U frames. | 
| 3716 | 	 */ | 
| 3717 | 	b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_U_FMT, 0x03); | 
| 3718 | 	gen_and(b0, b1); | 
| 3719 | 	return b1; | 
| 3720 | } | 
| 3721 |  | 
| 3722 | struct block * | 
| 3723 | gen_llc_s_subtype(compiler_state_t *cstate, bpf_u_int32 subtype) | 
| 3724 | { | 
| 3725 | 	struct block *b0, *b1; | 
| 3726 |  | 
| 3727 | 	/* | 
| 3728 | 	 * Check whether this is an LLC frame. | 
| 3729 | 	 */ | 
| 3730 | 	b0 = gen_llc(cstate); | 
| 3731 |  | 
| 3732 | 	/* | 
| 3733 | 	 * Now check for an S frame with the appropriate type. | 
| 3734 | 	 */ | 
| 3735 | 	b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_S_CMD_MASK); | 
| 3736 | 	gen_and(b0, b1); | 
| 3737 | 	return b1; | 
| 3738 | } | 
| 3739 |  | 
| 3740 | struct block * | 
| 3741 | gen_llc_u_subtype(compiler_state_t *cstate, bpf_u_int32 subtype) | 
| 3742 | { | 
| 3743 | 	struct block *b0, *b1; | 
| 3744 |  | 
| 3745 | 	/* | 
| 3746 | 	 * Check whether this is an LLC frame. | 
| 3747 | 	 */ | 
| 3748 | 	b0 = gen_llc(cstate); | 
| 3749 |  | 
| 3750 | 	/* | 
| 3751 | 	 * Now check for a U frame with the appropriate type. | 
| 3752 | 	 */ | 
| 3753 | 	b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_U_CMD_MASK); | 
| 3754 | 	gen_and(b0, b1); | 
| 3755 | 	return b1; | 
| 3756 | } | 
| 3757 |  | 
| 3758 | /* | 
| 3759 |  * Generate code to match a particular packet type, for link-layer types | 
| 3760 |  * using 802.2 LLC headers. | 
| 3761 |  * | 
| 3762 |  * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used | 
| 3763 |  * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues. | 
| 3764 |  * | 
| 3765 |  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP | 
| 3766 |  * value, if <= ETHERMTU.  We use that to determine whether to | 
| 3767 |  * match the DSAP or both DSAP and LSAP or to check the OUI and | 
| 3768 |  * protocol ID in a SNAP header. | 
| 3769 |  */ | 
| 3770 | static struct block * | 
| 3771 | gen_llc_linktype(compiler_state_t *cstate, int proto) | 
| 3772 | { | 
| 3773 | 	/* | 
| 3774 | 	 * XXX - handle token-ring variable-length header. | 
| 3775 | 	 */ | 
| 3776 | 	switch (proto) { | 
| 3777 |  | 
| 3778 | 	case LLCSAP_IP: | 
| 3779 | 	case LLCSAP_ISONS: | 
| 3780 | 	case LLCSAP_NETBEUI: | 
| 3781 | 		/* | 
| 3782 | 		 * XXX - should we check both the DSAP and the | 
| 3783 | 		 * SSAP, like this, or should we check just the | 
| 3784 | 		 * DSAP, as we do for other SAP values? | 
| 3785 | 		 */ | 
| 3786 | 		return gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_u_int32) | 
| 3787 | 			     ((proto << 8) | proto)); | 
| 3788 |  | 
| 3789 | 	case LLCSAP_IPX: | 
| 3790 | 		/* | 
| 3791 | 		 * XXX - are there ever SNAP frames for IPX on | 
| 3792 | 		 * non-Ethernet 802.x networks? | 
| 3793 | 		 */ | 
| 3794 | 		return gen_cmp(cstate, OR_LLC, 0, BPF_B, | 
| 3795 | 		    (bpf_int32)LLCSAP_IPX); | 
| 3796 |  | 
| 3797 | 	case ETHERTYPE_ATALK: | 
| 3798 | 		/* | 
| 3799 | 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are | 
| 3800 | 		 * SNAP packets with an organization code of | 
| 3801 | 		 * 0x080007 (Apple, for Appletalk) and a protocol | 
| 3802 | 		 * type of ETHERTYPE_ATALK (Appletalk). | 
| 3803 | 		 * | 
| 3804 | 		 * XXX - check for an organization code of | 
| 3805 | 		 * encapsulated Ethernet as well? | 
| 3806 | 		 */ | 
| 3807 | 		return gen_snap(cstate, 0x080007, ETHERTYPE_ATALK); | 
| 3808 |  | 
| 3809 | 	default: | 
| 3810 | 		/* | 
| 3811 | 		 * XXX - we don't have to check for IPX 802.3 | 
| 3812 | 		 * here, but should we check for the IPX Ethertype? | 
| 3813 | 		 */ | 
| 3814 | 		if (proto <= ETHERMTU) { | 
| 3815 | 			/* | 
| 3816 | 			 * This is an LLC SAP value, so check | 
| 3817 | 			 * the DSAP. | 
| 3818 | 			 */ | 
| 3819 | 			return gen_cmp(cstate, OR_LLC, 0, BPF_B, (bpf_int32)proto); | 
| 3820 | 		} else { | 
| 3821 | 			/* | 
| 3822 | 			 * This is an Ethernet type; we assume that it's | 
| 3823 | 			 * unlikely that it'll appear in the right place | 
| 3824 | 			 * at random, and therefore check only the | 
| 3825 | 			 * location that would hold the Ethernet type | 
| 3826 | 			 * in a SNAP frame with an organization code of | 
| 3827 | 			 * 0x000000 (encapsulated Ethernet). | 
| 3828 | 			 * | 
| 3829 | 			 * XXX - if we were to check for the SNAP DSAP and | 
| 3830 | 			 * LSAP, as per XXX, and were also to check for an | 
| 3831 | 			 * organization code of 0x000000 (encapsulated | 
| 3832 | 			 * Ethernet), we'd do | 
| 3833 | 			 * | 
| 3834 | 			 *	return gen_snap(cstate, 0x000000, proto); | 
| 3835 | 			 * | 
| 3836 | 			 * here; for now, we don't, as per the above. | 
| 3837 | 			 * I don't know whether it's worth the extra CPU | 
| 3838 | 			 * time to do the right check or not. | 
| 3839 | 			 */ | 
| 3840 | 			return gen_cmp(cstate, OR_LLC, 6, BPF_H, (bpf_int32)proto); | 
| 3841 | 		} | 
| 3842 | 	} | 
| 3843 | } | 
| 3844 |  | 
| 3845 | static struct block * | 
| 3846 | gen_hostop(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask, | 
| 3847 |     int dir, int proto, u_int src_off, u_int dst_off) | 
| 3848 | { | 
| 3849 | 	struct block *b0, *b1; | 
| 3850 | 	u_int offset; | 
| 3851 |  | 
| 3852 | 	switch (dir) { | 
| 3853 |  | 
| 3854 | 	case Q_SRC: | 
| 3855 | 		offset = src_off; | 
| 3856 | 		break; | 
| 3857 |  | 
| 3858 | 	case Q_DST: | 
| 3859 | 		offset = dst_off; | 
| 3860 | 		break; | 
| 3861 |  | 
| 3862 | 	case Q_AND: | 
| 3863 | 		b0 = gen_hostop(cstate, addr, mask, Q_SRC, proto, src_off, dst_off); | 
| 3864 | 		b1 = gen_hostop(cstate, addr, mask, Q_DST, proto, src_off, dst_off); | 
| 3865 | 		gen_and(b0, b1); | 
| 3866 | 		return b1; | 
| 3867 |  | 
| 3868 | 	case Q_OR: | 
| 3869 | 	case Q_DEFAULT: | 
| 3870 | 		b0 = gen_hostop(cstate, addr, mask, Q_SRC, proto, src_off, dst_off); | 
| 3871 | 		b1 = gen_hostop(cstate, addr, mask, Q_DST, proto, src_off, dst_off); | 
| 3872 | 		gen_or(b0, b1); | 
| 3873 | 		return b1; | 
| 3874 |  | 
| 3875 | 	case Q_ADDR1: | 
| 3876 | 		bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses" ); | 
| 3877 | 		break; | 
| 3878 |  | 
| 3879 | 	case Q_ADDR2: | 
| 3880 | 		bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses" ); | 
| 3881 | 		break; | 
| 3882 |  | 
| 3883 | 	case Q_ADDR3: | 
| 3884 | 		bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses" ); | 
| 3885 | 		break; | 
| 3886 |  | 
| 3887 | 	case Q_ADDR4: | 
| 3888 | 		bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses" ); | 
| 3889 | 		break; | 
| 3890 |  | 
| 3891 | 	case Q_RA: | 
| 3892 | 		bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses" ); | 
| 3893 | 		break; | 
| 3894 |  | 
| 3895 | 	case Q_TA: | 
| 3896 | 		bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses" ); | 
| 3897 | 		break; | 
| 3898 |  | 
| 3899 | 	default: | 
| 3900 | 		abort(); | 
| 3901 | 	} | 
| 3902 | 	b0 = gen_linktype(cstate, proto); | 
| 3903 | 	b1 = gen_mcmp(cstate, OR_LINKPL, offset, BPF_W, (bpf_int32)addr, mask); | 
| 3904 | 	gen_and(b0, b1); | 
| 3905 | 	return b1; | 
| 3906 | } | 
| 3907 |  | 
| 3908 | #ifdef INET6 | 
| 3909 | static struct block * | 
| 3910 | gen_hostop6(compiler_state_t *cstate, struct in6_addr *addr, | 
| 3911 |     struct in6_addr *mask, int dir, int proto, u_int src_off, u_int dst_off) | 
| 3912 | { | 
| 3913 | 	struct block *b0, *b1; | 
| 3914 | 	u_int offset; | 
| 3915 | 	uint32_t *a, *m; | 
| 3916 |  | 
| 3917 | 	switch (dir) { | 
| 3918 |  | 
| 3919 | 	case Q_SRC: | 
| 3920 | 		offset = src_off; | 
| 3921 | 		break; | 
| 3922 |  | 
| 3923 | 	case Q_DST: | 
| 3924 | 		offset = dst_off; | 
| 3925 | 		break; | 
| 3926 |  | 
| 3927 | 	case Q_AND: | 
| 3928 | 		b0 = gen_hostop6(cstate, addr, mask, Q_SRC, proto, src_off, dst_off); | 
| 3929 | 		b1 = gen_hostop6(cstate, addr, mask, Q_DST, proto, src_off, dst_off); | 
| 3930 | 		gen_and(b0, b1); | 
| 3931 | 		return b1; | 
| 3932 |  | 
| 3933 | 	case Q_OR: | 
| 3934 | 	case Q_DEFAULT: | 
| 3935 | 		b0 = gen_hostop6(cstate, addr, mask, Q_SRC, proto, src_off, dst_off); | 
| 3936 | 		b1 = gen_hostop6(cstate, addr, mask, Q_DST, proto, src_off, dst_off); | 
| 3937 | 		gen_or(b0, b1); | 
| 3938 | 		return b1; | 
| 3939 |  | 
| 3940 | 	case Q_ADDR1: | 
| 3941 | 		bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses" ); | 
| 3942 | 		break; | 
| 3943 |  | 
| 3944 | 	case Q_ADDR2: | 
| 3945 | 		bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses" ); | 
| 3946 | 		break; | 
| 3947 |  | 
| 3948 | 	case Q_ADDR3: | 
| 3949 | 		bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses" ); | 
| 3950 | 		break; | 
| 3951 |  | 
| 3952 | 	case Q_ADDR4: | 
| 3953 | 		bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses" ); | 
| 3954 | 		break; | 
| 3955 |  | 
| 3956 | 	case Q_RA: | 
| 3957 | 		bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses" ); | 
| 3958 | 		break; | 
| 3959 |  | 
| 3960 | 	case Q_TA: | 
| 3961 | 		bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses" ); | 
| 3962 | 		break; | 
| 3963 |  | 
| 3964 | 	default: | 
| 3965 | 		abort(); | 
| 3966 | 	} | 
| 3967 | 	/* this order is important */ | 
| 3968 | 	a = (uint32_t *)addr; | 
| 3969 | 	m = (uint32_t *)mask; | 
| 3970 | 	b1 = gen_mcmp(cstate, OR_LINKPL, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3])); | 
| 3971 | 	b0 = gen_mcmp(cstate, OR_LINKPL, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2])); | 
| 3972 | 	gen_and(b0, b1); | 
| 3973 | 	b0 = gen_mcmp(cstate, OR_LINKPL, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1])); | 
| 3974 | 	gen_and(b0, b1); | 
| 3975 | 	b0 = gen_mcmp(cstate, OR_LINKPL, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0])); | 
| 3976 | 	gen_and(b0, b1); | 
| 3977 | 	b0 = gen_linktype(cstate, proto); | 
| 3978 | 	gen_and(b0, b1); | 
| 3979 | 	return b1; | 
| 3980 | } | 
| 3981 | #endif | 
| 3982 |  | 
| 3983 | static struct block * | 
| 3984 | gen_ehostop(compiler_state_t *cstate, const u_char *eaddr, int dir) | 
| 3985 | { | 
| 3986 | 	register struct block *b0, *b1; | 
| 3987 |  | 
| 3988 | 	switch (dir) { | 
| 3989 | 	case Q_SRC: | 
| 3990 | 		return gen_bcmp(cstate, OR_LINKHDR, 6, 6, eaddr); | 
| 3991 |  | 
| 3992 | 	case Q_DST: | 
| 3993 | 		return gen_bcmp(cstate, OR_LINKHDR, 0, 6, eaddr); | 
| 3994 |  | 
| 3995 | 	case Q_AND: | 
| 3996 | 		b0 = gen_ehostop(cstate, eaddr, Q_SRC); | 
| 3997 | 		b1 = gen_ehostop(cstate, eaddr, Q_DST); | 
| 3998 | 		gen_and(b0, b1); | 
| 3999 | 		return b1; | 
| 4000 |  | 
| 4001 | 	case Q_DEFAULT: | 
| 4002 | 	case Q_OR: | 
| 4003 | 		b0 = gen_ehostop(cstate, eaddr, Q_SRC); | 
| 4004 | 		b1 = gen_ehostop(cstate, eaddr, Q_DST); | 
| 4005 | 		gen_or(b0, b1); | 
| 4006 | 		return b1; | 
| 4007 |  | 
| 4008 | 	case Q_ADDR1: | 
| 4009 | 		bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11 with 802.11 headers" ); | 
| 4010 | 		break; | 
| 4011 |  | 
| 4012 | 	case Q_ADDR2: | 
| 4013 | 		bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11 with 802.11 headers" ); | 
| 4014 | 		break; | 
| 4015 |  | 
| 4016 | 	case Q_ADDR3: | 
| 4017 | 		bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11 with 802.11 headers" ); | 
| 4018 | 		break; | 
| 4019 |  | 
| 4020 | 	case Q_ADDR4: | 
| 4021 | 		bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11 with 802.11 headers" ); | 
| 4022 | 		break; | 
| 4023 |  | 
| 4024 | 	case Q_RA: | 
| 4025 | 		bpf_error(cstate, "'ra' is only supported on 802.11 with 802.11 headers" ); | 
| 4026 | 		break; | 
| 4027 |  | 
| 4028 | 	case Q_TA: | 
| 4029 | 		bpf_error(cstate, "'ta' is only supported on 802.11 with 802.11 headers" ); | 
| 4030 | 		break; | 
| 4031 | 	} | 
| 4032 | 	abort(); | 
| 4033 | 	/* NOTREACHED */ | 
| 4034 | } | 
| 4035 |  | 
| 4036 | /* | 
| 4037 |  * Like gen_ehostop, but for DLT_FDDI | 
| 4038 |  */ | 
| 4039 | static struct block * | 
| 4040 | gen_fhostop(compiler_state_t *cstate, const u_char *eaddr, int dir) | 
| 4041 | { | 
| 4042 | 	struct block *b0, *b1; | 
| 4043 |  | 
| 4044 | 	switch (dir) { | 
| 4045 | 	case Q_SRC: | 
| 4046 | 		return gen_bcmp(cstate, OR_LINKHDR, 6 + 1 + cstate->pcap_fddipad, 6, eaddr); | 
| 4047 |  | 
| 4048 | 	case Q_DST: | 
| 4049 | 		return gen_bcmp(cstate, OR_LINKHDR, 0 + 1 + cstate->pcap_fddipad, 6, eaddr); | 
| 4050 |  | 
| 4051 | 	case Q_AND: | 
| 4052 | 		b0 = gen_fhostop(cstate, eaddr, Q_SRC); | 
| 4053 | 		b1 = gen_fhostop(cstate, eaddr, Q_DST); | 
| 4054 | 		gen_and(b0, b1); | 
| 4055 | 		return b1; | 
| 4056 |  | 
| 4057 | 	case Q_DEFAULT: | 
| 4058 | 	case Q_OR: | 
| 4059 | 		b0 = gen_fhostop(cstate, eaddr, Q_SRC); | 
| 4060 | 		b1 = gen_fhostop(cstate, eaddr, Q_DST); | 
| 4061 | 		gen_or(b0, b1); | 
| 4062 | 		return b1; | 
| 4063 |  | 
| 4064 | 	case Q_ADDR1: | 
| 4065 | 		bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11" ); | 
| 4066 | 		break; | 
| 4067 |  | 
| 4068 | 	case Q_ADDR2: | 
| 4069 | 		bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11" ); | 
| 4070 | 		break; | 
| 4071 |  | 
| 4072 | 	case Q_ADDR3: | 
| 4073 | 		bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11" ); | 
| 4074 | 		break; | 
| 4075 |  | 
| 4076 | 	case Q_ADDR4: | 
| 4077 | 		bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11" ); | 
| 4078 | 		break; | 
| 4079 |  | 
| 4080 | 	case Q_RA: | 
| 4081 | 		bpf_error(cstate, "'ra' is only supported on 802.11" ); | 
| 4082 | 		break; | 
| 4083 |  | 
| 4084 | 	case Q_TA: | 
| 4085 | 		bpf_error(cstate, "'ta' is only supported on 802.11" ); | 
| 4086 | 		break; | 
| 4087 | 	} | 
| 4088 | 	abort(); | 
| 4089 | 	/* NOTREACHED */ | 
| 4090 | } | 
| 4091 |  | 
| 4092 | /* | 
| 4093 |  * Like gen_ehostop, but for DLT_IEEE802 (Token Ring) | 
| 4094 |  */ | 
| 4095 | static struct block * | 
| 4096 | gen_thostop(compiler_state_t *cstate, const u_char *eaddr, int dir) | 
| 4097 | { | 
| 4098 | 	register struct block *b0, *b1; | 
| 4099 |  | 
| 4100 | 	switch (dir) { | 
| 4101 | 	case Q_SRC: | 
| 4102 | 		return gen_bcmp(cstate, OR_LINKHDR, 8, 6, eaddr); | 
| 4103 |  | 
| 4104 | 	case Q_DST: | 
| 4105 | 		return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr); | 
| 4106 |  | 
| 4107 | 	case Q_AND: | 
| 4108 | 		b0 = gen_thostop(cstate, eaddr, Q_SRC); | 
| 4109 | 		b1 = gen_thostop(cstate, eaddr, Q_DST); | 
| 4110 | 		gen_and(b0, b1); | 
| 4111 | 		return b1; | 
| 4112 |  | 
| 4113 | 	case Q_DEFAULT: | 
| 4114 | 	case Q_OR: | 
| 4115 | 		b0 = gen_thostop(cstate, eaddr, Q_SRC); | 
| 4116 | 		b1 = gen_thostop(cstate, eaddr, Q_DST); | 
| 4117 | 		gen_or(b0, b1); | 
| 4118 | 		return b1; | 
| 4119 |  | 
| 4120 | 	case Q_ADDR1: | 
| 4121 | 		bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11" ); | 
| 4122 | 		break; | 
| 4123 |  | 
| 4124 | 	case Q_ADDR2: | 
| 4125 | 		bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11" ); | 
| 4126 | 		break; | 
| 4127 |  | 
| 4128 | 	case Q_ADDR3: | 
| 4129 | 		bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11" ); | 
| 4130 | 		break; | 
| 4131 |  | 
| 4132 | 	case Q_ADDR4: | 
| 4133 | 		bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11" ); | 
| 4134 | 		break; | 
| 4135 |  | 
| 4136 | 	case Q_RA: | 
| 4137 | 		bpf_error(cstate, "'ra' is only supported on 802.11" ); | 
| 4138 | 		break; | 
| 4139 |  | 
| 4140 | 	case Q_TA: | 
| 4141 | 		bpf_error(cstate, "'ta' is only supported on 802.11" ); | 
| 4142 | 		break; | 
| 4143 | 	} | 
| 4144 | 	abort(); | 
| 4145 | 	/* NOTREACHED */ | 
| 4146 | } | 
| 4147 |  | 
| 4148 | /* | 
| 4149 |  * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and | 
| 4150 |  * various 802.11 + radio headers. | 
| 4151 |  */ | 
| 4152 | static struct block * | 
| 4153 | gen_wlanhostop(compiler_state_t *cstate, const u_char *eaddr, int dir) | 
| 4154 | { | 
| 4155 | 	register struct block *b0, *b1, *b2; | 
| 4156 | 	register struct slist *s; | 
| 4157 |  | 
| 4158 | #ifdef ENABLE_WLAN_FILTERING_PATCH | 
| 4159 | 	/* | 
| 4160 | 	 * TODO GV 20070613 | 
| 4161 | 	 * We need to disable the optimizer because the optimizer is buggy | 
| 4162 | 	 * and wipes out some LD instructions generated by the below | 
| 4163 | 	 * code to validate the Frame Control bits | 
| 4164 | 	 */ | 
| 4165 | 	cstate->no_optimize = 1; | 
| 4166 | #endif /* ENABLE_WLAN_FILTERING_PATCH */ | 
| 4167 |  | 
| 4168 | 	switch (dir) { | 
| 4169 | 	case Q_SRC: | 
| 4170 | 		/* | 
| 4171 | 		 * Oh, yuk. | 
| 4172 | 		 * | 
| 4173 | 		 *	For control frames, there is no SA. | 
| 4174 | 		 * | 
| 4175 | 		 *	For management frames, SA is at an | 
| 4176 | 		 *	offset of 10 from the beginning of | 
| 4177 | 		 *	the packet. | 
| 4178 | 		 * | 
| 4179 | 		 *	For data frames, SA is at an offset | 
| 4180 | 		 *	of 10 from the beginning of the packet | 
| 4181 | 		 *	if From DS is clear, at an offset of | 
| 4182 | 		 *	16 from the beginning of the packet | 
| 4183 | 		 *	if From DS is set and To DS is clear, | 
| 4184 | 		 *	and an offset of 24 from the beginning | 
| 4185 | 		 *	of the packet if From DS is set and To DS | 
| 4186 | 		 *	is set. | 
| 4187 | 		 */ | 
| 4188 |  | 
| 4189 | 		/* | 
| 4190 | 		 * Generate the tests to be done for data frames | 
| 4191 | 		 * with From DS set. | 
| 4192 | 		 * | 
| 4193 | 		 * First, check for To DS set, i.e. check "link[1] & 0x01". | 
| 4194 | 		 */ | 
| 4195 | 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B); | 
| 4196 | 		b1 = new_block(cstate, JMP(BPF_JSET)); | 
| 4197 | 		b1->s.k = 0x01;	/* To DS */ | 
| 4198 | 		b1->stmts = s; | 
| 4199 |  | 
| 4200 | 		/* | 
| 4201 | 		 * If To DS is set, the SA is at 24. | 
| 4202 | 		 */ | 
| 4203 | 		b0 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr); | 
| 4204 | 		gen_and(b1, b0); | 
| 4205 |  | 
| 4206 | 		/* | 
| 4207 | 		 * Now, check for To DS not set, i.e. check | 
| 4208 | 		 * "!(link[1] & 0x01)". | 
| 4209 | 		 */ | 
| 4210 | 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B); | 
| 4211 | 		b2 = new_block(cstate, JMP(BPF_JSET)); | 
| 4212 | 		b2->s.k = 0x01;	/* To DS */ | 
| 4213 | 		b2->stmts = s; | 
| 4214 | 		gen_not(b2); | 
| 4215 |  | 
| 4216 | 		/* | 
| 4217 | 		 * If To DS is not set, the SA is at 16. | 
| 4218 | 		 */ | 
| 4219 | 		b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr); | 
| 4220 | 		gen_and(b2, b1); | 
| 4221 |  | 
| 4222 | 		/* | 
| 4223 | 		 * Now OR together the last two checks.  That gives | 
| 4224 | 		 * the complete set of checks for data frames with | 
| 4225 | 		 * From DS set. | 
| 4226 | 		 */ | 
| 4227 | 		gen_or(b1, b0); | 
| 4228 |  | 
| 4229 | 		/* | 
| 4230 | 		 * Now check for From DS being set, and AND that with | 
| 4231 | 		 * the ORed-together checks. | 
| 4232 | 		 */ | 
| 4233 | 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B); | 
| 4234 | 		b1 = new_block(cstate, JMP(BPF_JSET)); | 
| 4235 | 		b1->s.k = 0x02;	/* From DS */ | 
| 4236 | 		b1->stmts = s; | 
| 4237 | 		gen_and(b1, b0); | 
| 4238 |  | 
| 4239 | 		/* | 
| 4240 | 		 * Now check for data frames with From DS not set. | 
| 4241 | 		 */ | 
| 4242 | 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B); | 
| 4243 | 		b2 = new_block(cstate, JMP(BPF_JSET)); | 
| 4244 | 		b2->s.k = 0x02;	/* From DS */ | 
| 4245 | 		b2->stmts = s; | 
| 4246 | 		gen_not(b2); | 
| 4247 |  | 
| 4248 | 		/* | 
| 4249 | 		 * If From DS isn't set, the SA is at 10. | 
| 4250 | 		 */ | 
| 4251 | 		b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr); | 
| 4252 | 		gen_and(b2, b1); | 
| 4253 |  | 
| 4254 | 		/* | 
| 4255 | 		 * Now OR together the checks for data frames with | 
| 4256 | 		 * From DS not set and for data frames with From DS | 
| 4257 | 		 * set; that gives the checks done for data frames. | 
| 4258 | 		 */ | 
| 4259 | 		gen_or(b1, b0); | 
| 4260 |  | 
| 4261 | 		/* | 
| 4262 | 		 * Now check for a data frame. | 
| 4263 | 		 * I.e, check "link[0] & 0x08". | 
| 4264 | 		 */ | 
| 4265 | 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B); | 
| 4266 | 		b1 = new_block(cstate, JMP(BPF_JSET)); | 
| 4267 | 		b1->s.k = 0x08; | 
| 4268 | 		b1->stmts = s; | 
| 4269 |  | 
| 4270 | 		/* | 
| 4271 | 		 * AND that with the checks done for data frames. | 
| 4272 | 		 */ | 
| 4273 | 		gen_and(b1, b0); | 
| 4274 |  | 
| 4275 | 		/* | 
| 4276 | 		 * If the high-order bit of the type value is 0, this | 
| 4277 | 		 * is a management frame. | 
| 4278 | 		 * I.e, check "!(link[0] & 0x08)". | 
| 4279 | 		 */ | 
| 4280 | 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B); | 
| 4281 | 		b2 = new_block(cstate, JMP(BPF_JSET)); | 
| 4282 | 		b2->s.k = 0x08; | 
| 4283 | 		b2->stmts = s; | 
| 4284 | 		gen_not(b2); | 
| 4285 |  | 
| 4286 | 		/* | 
| 4287 | 		 * For management frames, the SA is at 10. | 
| 4288 | 		 */ | 
| 4289 | 		b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr); | 
| 4290 | 		gen_and(b2, b1); | 
| 4291 |  | 
| 4292 | 		/* | 
| 4293 | 		 * OR that with the checks done for data frames. | 
| 4294 | 		 * That gives the checks done for management and | 
| 4295 | 		 * data frames. | 
| 4296 | 		 */ | 
| 4297 | 		gen_or(b1, b0); | 
| 4298 |  | 
| 4299 | 		/* | 
| 4300 | 		 * If the low-order bit of the type value is 1, | 
| 4301 | 		 * this is either a control frame or a frame | 
| 4302 | 		 * with a reserved type, and thus not a | 
| 4303 | 		 * frame with an SA. | 
| 4304 | 		 * | 
| 4305 | 		 * I.e., check "!(link[0] & 0x04)". | 
| 4306 | 		 */ | 
| 4307 | 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B); | 
| 4308 | 		b1 = new_block(cstate, JMP(BPF_JSET)); | 
| 4309 | 		b1->s.k = 0x04; | 
| 4310 | 		b1->stmts = s; | 
| 4311 | 		gen_not(b1); | 
| 4312 |  | 
| 4313 | 		/* | 
| 4314 | 		 * AND that with the checks for data and management | 
| 4315 | 		 * frames. | 
| 4316 | 		 */ | 
| 4317 | 		gen_and(b1, b0); | 
| 4318 | 		return b0; | 
| 4319 |  | 
| 4320 | 	case Q_DST: | 
| 4321 | 		/* | 
| 4322 | 		 * Oh, yuk. | 
| 4323 | 		 * | 
| 4324 | 		 *	For control frames, there is no DA. | 
| 4325 | 		 * | 
| 4326 | 		 *	For management frames, DA is at an | 
| 4327 | 		 *	offset of 4 from the beginning of | 
| 4328 | 		 *	the packet. | 
| 4329 | 		 * | 
| 4330 | 		 *	For data frames, DA is at an offset | 
| 4331 | 		 *	of 4 from the beginning of the packet | 
| 4332 | 		 *	if To DS is clear and at an offset of | 
| 4333 | 		 *	16 from the beginning of the packet | 
| 4334 | 		 *	if To DS is set. | 
| 4335 | 		 */ | 
| 4336 |  | 
| 4337 | 		/* | 
| 4338 | 		 * Generate the tests to be done for data frames. | 
| 4339 | 		 * | 
| 4340 | 		 * First, check for To DS set, i.e. "link[1] & 0x01". | 
| 4341 | 		 */ | 
| 4342 | 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B); | 
| 4343 | 		b1 = new_block(cstate, JMP(BPF_JSET)); | 
| 4344 | 		b1->s.k = 0x01;	/* To DS */ | 
| 4345 | 		b1->stmts = s; | 
| 4346 |  | 
| 4347 | 		/* | 
| 4348 | 		 * If To DS is set, the DA is at 16. | 
| 4349 | 		 */ | 
| 4350 | 		b0 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr); | 
| 4351 | 		gen_and(b1, b0); | 
| 4352 |  | 
| 4353 | 		/* | 
| 4354 | 		 * Now, check for To DS not set, i.e. check | 
| 4355 | 		 * "!(link[1] & 0x01)". | 
| 4356 | 		 */ | 
| 4357 | 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B); | 
| 4358 | 		b2 = new_block(cstate, JMP(BPF_JSET)); | 
| 4359 | 		b2->s.k = 0x01;	/* To DS */ | 
| 4360 | 		b2->stmts = s; | 
| 4361 | 		gen_not(b2); | 
| 4362 |  | 
| 4363 | 		/* | 
| 4364 | 		 * If To DS is not set, the DA is at 4. | 
| 4365 | 		 */ | 
| 4366 | 		b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr); | 
| 4367 | 		gen_and(b2, b1); | 
| 4368 |  | 
| 4369 | 		/* | 
| 4370 | 		 * Now OR together the last two checks.  That gives | 
| 4371 | 		 * the complete set of checks for data frames. | 
| 4372 | 		 */ | 
| 4373 | 		gen_or(b1, b0); | 
| 4374 |  | 
| 4375 | 		/* | 
| 4376 | 		 * Now check for a data frame. | 
| 4377 | 		 * I.e, check "link[0] & 0x08". | 
| 4378 | 		 */ | 
| 4379 | 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B); | 
| 4380 | 		b1 = new_block(cstate, JMP(BPF_JSET)); | 
| 4381 | 		b1->s.k = 0x08; | 
| 4382 | 		b1->stmts = s; | 
| 4383 |  | 
| 4384 | 		/* | 
| 4385 | 		 * AND that with the checks done for data frames. | 
| 4386 | 		 */ | 
| 4387 | 		gen_and(b1, b0); | 
| 4388 |  | 
| 4389 | 		/* | 
| 4390 | 		 * If the high-order bit of the type value is 0, this | 
| 4391 | 		 * is a management frame. | 
| 4392 | 		 * I.e, check "!(link[0] & 0x08)". | 
| 4393 | 		 */ | 
| 4394 | 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B); | 
| 4395 | 		b2 = new_block(cstate, JMP(BPF_JSET)); | 
| 4396 | 		b2->s.k = 0x08; | 
| 4397 | 		b2->stmts = s; | 
| 4398 | 		gen_not(b2); | 
| 4399 |  | 
| 4400 | 		/* | 
| 4401 | 		 * For management frames, the DA is at 4. | 
| 4402 | 		 */ | 
| 4403 | 		b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr); | 
| 4404 | 		gen_and(b2, b1); | 
| 4405 |  | 
| 4406 | 		/* | 
| 4407 | 		 * OR that with the checks done for data frames. | 
| 4408 | 		 * That gives the checks done for management and | 
| 4409 | 		 * data frames. | 
| 4410 | 		 */ | 
| 4411 | 		gen_or(b1, b0); | 
| 4412 |  | 
| 4413 | 		/* | 
| 4414 | 		 * If the low-order bit of the type value is 1, | 
| 4415 | 		 * this is either a control frame or a frame | 
| 4416 | 		 * with a reserved type, and thus not a | 
| 4417 | 		 * frame with an SA. | 
| 4418 | 		 * | 
| 4419 | 		 * I.e., check "!(link[0] & 0x04)". | 
| 4420 | 		 */ | 
| 4421 | 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B); | 
| 4422 | 		b1 = new_block(cstate, JMP(BPF_JSET)); | 
| 4423 | 		b1->s.k = 0x04; | 
| 4424 | 		b1->stmts = s; | 
| 4425 | 		gen_not(b1); | 
| 4426 |  | 
| 4427 | 		/* | 
| 4428 | 		 * AND that with the checks for data and management | 
| 4429 | 		 * frames. | 
| 4430 | 		 */ | 
| 4431 | 		gen_and(b1, b0); | 
| 4432 | 		return b0; | 
| 4433 |  | 
| 4434 | 	case Q_RA: | 
| 4435 | 		/* | 
| 4436 | 		 * Not present in management frames; addr1 in other | 
| 4437 | 		 * frames. | 
| 4438 | 		 */ | 
| 4439 |  | 
| 4440 | 		/* | 
| 4441 | 		 * If the high-order bit of the type value is 0, this | 
| 4442 | 		 * is a management frame. | 
| 4443 | 		 * I.e, check "(link[0] & 0x08)". | 
| 4444 | 		 */ | 
| 4445 | 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B); | 
| 4446 | 		b1 = new_block(cstate, JMP(BPF_JSET)); | 
| 4447 | 		b1->s.k = 0x08; | 
| 4448 | 		b1->stmts = s; | 
| 4449 |  | 
| 4450 | 		/* | 
| 4451 | 		 * Check addr1. | 
| 4452 | 		 */ | 
| 4453 | 		b0 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr); | 
| 4454 |  | 
| 4455 | 		/* | 
| 4456 | 		 * AND that with the check of addr1. | 
| 4457 | 		 */ | 
| 4458 | 		gen_and(b1, b0); | 
| 4459 | 		return (b0); | 
| 4460 |  | 
| 4461 | 	case Q_TA: | 
| 4462 | 		/* | 
| 4463 | 		 * Not present in management frames; addr2, if present, | 
| 4464 | 		 * in other frames. | 
| 4465 | 		 */ | 
| 4466 |  | 
| 4467 | 		/* | 
| 4468 | 		 * Not present in CTS or ACK control frames. | 
| 4469 | 		 */ | 
| 4470 | 		b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL, | 
| 4471 | 			IEEE80211_FC0_TYPE_MASK); | 
| 4472 | 		gen_not(b0); | 
| 4473 | 		b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS, | 
| 4474 | 			IEEE80211_FC0_SUBTYPE_MASK); | 
| 4475 | 		gen_not(b1); | 
| 4476 | 		b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK, | 
| 4477 | 			IEEE80211_FC0_SUBTYPE_MASK); | 
| 4478 | 		gen_not(b2); | 
| 4479 | 		gen_and(b1, b2); | 
| 4480 | 		gen_or(b0, b2); | 
| 4481 |  | 
| 4482 | 		/* | 
| 4483 | 		 * If the high-order bit of the type value is 0, this | 
| 4484 | 		 * is a management frame. | 
| 4485 | 		 * I.e, check "(link[0] & 0x08)". | 
| 4486 | 		 */ | 
| 4487 | 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B); | 
| 4488 | 		b1 = new_block(cstate, JMP(BPF_JSET)); | 
| 4489 | 		b1->s.k = 0x08; | 
| 4490 | 		b1->stmts = s; | 
| 4491 |  | 
| 4492 | 		/* | 
| 4493 | 		 * AND that with the check for frames other than | 
| 4494 | 		 * CTS and ACK frames. | 
| 4495 | 		 */ | 
| 4496 | 		gen_and(b1, b2); | 
| 4497 |  | 
| 4498 | 		/* | 
| 4499 | 		 * Check addr2. | 
| 4500 | 		 */ | 
| 4501 | 		b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr); | 
| 4502 | 		gen_and(b2, b1); | 
| 4503 | 		return b1; | 
| 4504 |  | 
| 4505 | 	/* | 
| 4506 | 	 * XXX - add BSSID keyword? | 
| 4507 | 	 */ | 
| 4508 | 	case Q_ADDR1: | 
| 4509 | 		return (gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr)); | 
| 4510 |  | 
| 4511 | 	case Q_ADDR2: | 
| 4512 | 		/* | 
| 4513 | 		 * Not present in CTS or ACK control frames. | 
| 4514 | 		 */ | 
| 4515 | 		b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL, | 
| 4516 | 			IEEE80211_FC0_TYPE_MASK); | 
| 4517 | 		gen_not(b0); | 
| 4518 | 		b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS, | 
| 4519 | 			IEEE80211_FC0_SUBTYPE_MASK); | 
| 4520 | 		gen_not(b1); | 
| 4521 | 		b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK, | 
| 4522 | 			IEEE80211_FC0_SUBTYPE_MASK); | 
| 4523 | 		gen_not(b2); | 
| 4524 | 		gen_and(b1, b2); | 
| 4525 | 		gen_or(b0, b2); | 
| 4526 | 		b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr); | 
| 4527 | 		gen_and(b2, b1); | 
| 4528 | 		return b1; | 
| 4529 |  | 
| 4530 | 	case Q_ADDR3: | 
| 4531 | 		/* | 
| 4532 | 		 * Not present in control frames. | 
| 4533 | 		 */ | 
| 4534 | 		b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL, | 
| 4535 | 			IEEE80211_FC0_TYPE_MASK); | 
| 4536 | 		gen_not(b0); | 
| 4537 | 		b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr); | 
| 4538 | 		gen_and(b0, b1); | 
| 4539 | 		return b1; | 
| 4540 |  | 
| 4541 | 	case Q_ADDR4: | 
| 4542 | 		/* | 
| 4543 | 		 * Present only if the direction mask has both "From DS" | 
| 4544 | 		 * and "To DS" set.  Neither control frames nor management | 
| 4545 | 		 * frames should have both of those set, so we don't | 
| 4546 | 		 * check the frame type. | 
| 4547 | 		 */ | 
| 4548 | 		b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B, | 
| 4549 | 			IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK); | 
| 4550 | 		b1 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr); | 
| 4551 | 		gen_and(b0, b1); | 
| 4552 | 		return b1; | 
| 4553 |  | 
| 4554 | 	case Q_AND: | 
| 4555 | 		b0 = gen_wlanhostop(cstate, eaddr, Q_SRC); | 
| 4556 | 		b1 = gen_wlanhostop(cstate, eaddr, Q_DST); | 
| 4557 | 		gen_and(b0, b1); | 
| 4558 | 		return b1; | 
| 4559 |  | 
| 4560 | 	case Q_DEFAULT: | 
| 4561 | 	case Q_OR: | 
| 4562 | 		b0 = gen_wlanhostop(cstate, eaddr, Q_SRC); | 
| 4563 | 		b1 = gen_wlanhostop(cstate, eaddr, Q_DST); | 
| 4564 | 		gen_or(b0, b1); | 
| 4565 | 		return b1; | 
| 4566 | 	} | 
| 4567 | 	abort(); | 
| 4568 | 	/* NOTREACHED */ | 
| 4569 | } | 
| 4570 |  | 
| 4571 | /* | 
| 4572 |  * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel. | 
| 4573 |  * (We assume that the addresses are IEEE 48-bit MAC addresses, | 
| 4574 |  * as the RFC states.) | 
| 4575 |  */ | 
| 4576 | static struct block * | 
| 4577 | gen_ipfchostop(compiler_state_t *cstate, const u_char *eaddr, int dir) | 
| 4578 | { | 
| 4579 | 	register struct block *b0, *b1; | 
| 4580 |  | 
| 4581 | 	switch (dir) { | 
| 4582 | 	case Q_SRC: | 
| 4583 | 		return gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr); | 
| 4584 |  | 
| 4585 | 	case Q_DST: | 
| 4586 | 		return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr); | 
| 4587 |  | 
| 4588 | 	case Q_AND: | 
| 4589 | 		b0 = gen_ipfchostop(cstate, eaddr, Q_SRC); | 
| 4590 | 		b1 = gen_ipfchostop(cstate, eaddr, Q_DST); | 
| 4591 | 		gen_and(b0, b1); | 
| 4592 | 		return b1; | 
| 4593 |  | 
| 4594 | 	case Q_DEFAULT: | 
| 4595 | 	case Q_OR: | 
| 4596 | 		b0 = gen_ipfchostop(cstate, eaddr, Q_SRC); | 
| 4597 | 		b1 = gen_ipfchostop(cstate, eaddr, Q_DST); | 
| 4598 | 		gen_or(b0, b1); | 
| 4599 | 		return b1; | 
| 4600 |  | 
| 4601 | 	case Q_ADDR1: | 
| 4602 | 		bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11" ); | 
| 4603 | 		break; | 
| 4604 |  | 
| 4605 | 	case Q_ADDR2: | 
| 4606 | 		bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11" ); | 
| 4607 | 		break; | 
| 4608 |  | 
| 4609 | 	case Q_ADDR3: | 
| 4610 | 		bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11" ); | 
| 4611 | 		break; | 
| 4612 |  | 
| 4613 | 	case Q_ADDR4: | 
| 4614 | 		bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11" ); | 
| 4615 | 		break; | 
| 4616 |  | 
| 4617 | 	case Q_RA: | 
| 4618 | 		bpf_error(cstate, "'ra' is only supported on 802.11" ); | 
| 4619 | 		break; | 
| 4620 |  | 
| 4621 | 	case Q_TA: | 
| 4622 | 		bpf_error(cstate, "'ta' is only supported on 802.11" ); | 
| 4623 | 		break; | 
| 4624 | 	} | 
| 4625 | 	abort(); | 
| 4626 | 	/* NOTREACHED */ | 
| 4627 | } | 
| 4628 |  | 
| 4629 | /* | 
| 4630 |  * This is quite tricky because there may be pad bytes in front of the | 
| 4631 |  * DECNET header, and then there are two possible data packet formats that | 
| 4632 |  * carry both src and dst addresses, plus 5 packet types in a format that | 
| 4633 |  * carries only the src node, plus 2 types that use a different format and | 
| 4634 |  * also carry just the src node. | 
| 4635 |  * | 
| 4636 |  * Yuck. | 
| 4637 |  * | 
| 4638 |  * Instead of doing those all right, we just look for data packets with | 
| 4639 |  * 0 or 1 bytes of padding.  If you want to look at other packets, that | 
| 4640 |  * will require a lot more hacking. | 
| 4641 |  * | 
| 4642 |  * To add support for filtering on DECNET "areas" (network numbers) | 
| 4643 |  * one would want to add a "mask" argument to this routine.  That would | 
| 4644 |  * make the filter even more inefficient, although one could be clever | 
| 4645 |  * and not generate masking instructions if the mask is 0xFFFF. | 
| 4646 |  */ | 
| 4647 | static struct block * | 
| 4648 | gen_dnhostop(compiler_state_t *cstate, bpf_u_int32 addr, int dir) | 
| 4649 | { | 
| 4650 | 	struct block *b0, *b1, *b2, *tmp; | 
| 4651 | 	u_int offset_lh;	/* offset if long header is received */ | 
| 4652 | 	u_int offset_sh;	/* offset if short header is received */ | 
| 4653 |  | 
| 4654 | 	switch (dir) { | 
| 4655 |  | 
| 4656 | 	case Q_DST: | 
| 4657 | 		offset_sh = 1;	/* follows flags */ | 
| 4658 | 		offset_lh = 7;	/* flgs,darea,dsubarea,HIORD */ | 
| 4659 | 		break; | 
| 4660 |  | 
| 4661 | 	case Q_SRC: | 
| 4662 | 		offset_sh = 3;	/* follows flags, dstnode */ | 
| 4663 | 		offset_lh = 15;	/* flgs,darea,dsubarea,did,sarea,ssub,HIORD */ | 
| 4664 | 		break; | 
| 4665 |  | 
| 4666 | 	case Q_AND: | 
| 4667 | 		/* Inefficient because we do our Calvinball dance twice */ | 
| 4668 | 		b0 = gen_dnhostop(cstate, addr, Q_SRC); | 
| 4669 | 		b1 = gen_dnhostop(cstate, addr, Q_DST); | 
| 4670 | 		gen_and(b0, b1); | 
| 4671 | 		return b1; | 
| 4672 |  | 
| 4673 | 	case Q_OR: | 
| 4674 | 	case Q_DEFAULT: | 
| 4675 | 		/* Inefficient because we do our Calvinball dance twice */ | 
| 4676 | 		b0 = gen_dnhostop(cstate, addr, Q_SRC); | 
| 4677 | 		b1 = gen_dnhostop(cstate, addr, Q_DST); | 
| 4678 | 		gen_or(b0, b1); | 
| 4679 | 		return b1; | 
| 4680 |  | 
| 4681 | 	case Q_ISO: | 
| 4682 | 		bpf_error(cstate, "ISO host filtering not implemented" ); | 
| 4683 |  | 
| 4684 | 	default: | 
| 4685 | 		abort(); | 
| 4686 | 	} | 
| 4687 | 	b0 = gen_linktype(cstate, ETHERTYPE_DN); | 
| 4688 | 	/* Check for pad = 1, long header case */ | 
| 4689 | 	tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H, | 
| 4690 | 	    (bpf_int32)ntohs(0x0681), (bpf_int32)ntohs(0x07FF)); | 
| 4691 | 	b1 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_lh, | 
| 4692 | 	    BPF_H, (bpf_int32)ntohs((u_short)addr)); | 
| 4693 | 	gen_and(tmp, b1); | 
| 4694 | 	/* Check for pad = 0, long header case */ | 
| 4695 | 	tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, (bpf_int32)0x06, (bpf_int32)0x7); | 
| 4696 | 	b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_lh, BPF_H, (bpf_int32)ntohs((u_short)addr)); | 
| 4697 | 	gen_and(tmp, b2); | 
| 4698 | 	gen_or(b2, b1); | 
| 4699 | 	/* Check for pad = 1, short header case */ | 
| 4700 | 	tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H, | 
| 4701 | 	    (bpf_int32)ntohs(0x0281), (bpf_int32)ntohs(0x07FF)); | 
| 4702 | 	b2 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr)); | 
| 4703 | 	gen_and(tmp, b2); | 
| 4704 | 	gen_or(b2, b1); | 
| 4705 | 	/* Check for pad = 0, short header case */ | 
| 4706 | 	tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, (bpf_int32)0x02, (bpf_int32)0x7); | 
| 4707 | 	b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr)); | 
| 4708 | 	gen_and(tmp, b2); | 
| 4709 | 	gen_or(b2, b1); | 
| 4710 |  | 
| 4711 | 	/* Combine with test for cstate->linktype */ | 
| 4712 | 	gen_and(b0, b1); | 
| 4713 | 	return b1; | 
| 4714 | } | 
| 4715 |  | 
| 4716 | /* | 
| 4717 |  * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets; | 
| 4718 |  * test the bottom-of-stack bit, and then check the version number | 
| 4719 |  * field in the IP header. | 
| 4720 |  */ | 
| 4721 | static struct block * | 
| 4722 | gen_mpls_linktype(compiler_state_t *cstate, int proto) | 
| 4723 | { | 
| 4724 | 	struct block *b0, *b1; | 
| 4725 |  | 
| 4726 |         switch (proto) { | 
| 4727 |  | 
| 4728 |         case Q_IP: | 
| 4729 |                 /* match the bottom-of-stack bit */ | 
| 4730 |                 b0 = gen_mcmp(cstate, OR_LINKPL, (u_int)-2, BPF_B, 0x01, 0x01); | 
| 4731 |                 /* match the IPv4 version number */ | 
| 4732 |                 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x40, 0xf0); | 
| 4733 |                 gen_and(b0, b1); | 
| 4734 |                 return b1; | 
| 4735 |  | 
| 4736 |        case Q_IPV6: | 
| 4737 |                 /* match the bottom-of-stack bit */ | 
| 4738 |                 b0 = gen_mcmp(cstate, OR_LINKPL, (u_int)-2, BPF_B, 0x01, 0x01); | 
| 4739 |                 /* match the IPv4 version number */ | 
| 4740 |                 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x60, 0xf0); | 
| 4741 |                 gen_and(b0, b1); | 
| 4742 |                 return b1; | 
| 4743 |  | 
| 4744 |        default: | 
| 4745 |                 abort(); | 
| 4746 |         } | 
| 4747 | } | 
| 4748 |  | 
| 4749 | static struct block * | 
| 4750 | gen_host(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask, | 
| 4751 |     int proto, int dir, int type) | 
| 4752 | { | 
| 4753 | 	struct block *b0, *b1; | 
| 4754 | 	const char *typestr; | 
| 4755 |  | 
| 4756 | 	if (type == Q_NET) | 
| 4757 | 		typestr = "net" ; | 
| 4758 | 	else | 
| 4759 | 		typestr = "host" ; | 
| 4760 |  | 
| 4761 | 	switch (proto) { | 
| 4762 |  | 
| 4763 | 	case Q_DEFAULT: | 
| 4764 | 		b0 = gen_host(cstate, addr, mask, Q_IP, dir, type); | 
| 4765 | 		/* | 
| 4766 | 		 * Only check for non-IPv4 addresses if we're not | 
| 4767 | 		 * checking MPLS-encapsulated packets. | 
| 4768 | 		 */ | 
| 4769 | 		if (cstate->label_stack_depth == 0) { | 
| 4770 | 			b1 = gen_host(cstate, addr, mask, Q_ARP, dir, type); | 
| 4771 | 			gen_or(b0, b1); | 
| 4772 | 			b0 = gen_host(cstate, addr, mask, Q_RARP, dir, type); | 
| 4773 | 			gen_or(b1, b0); | 
| 4774 | 		} | 
| 4775 | 		return b0; | 
| 4776 |  | 
| 4777 | 	case Q_IP: | 
| 4778 | 		return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_IP, 12, 16); | 
| 4779 |  | 
| 4780 | 	case Q_RARP: | 
| 4781 | 		return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_REVARP, 14, 24); | 
| 4782 |  | 
| 4783 | 	case Q_ARP: | 
| 4784 | 		return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_ARP, 14, 24); | 
| 4785 |  | 
| 4786 | 	case Q_TCP: | 
| 4787 | 		bpf_error(cstate, "'tcp' modifier applied to %s" , typestr); | 
| 4788 |  | 
| 4789 | 	case Q_SCTP: | 
| 4790 | 		bpf_error(cstate, "'sctp' modifier applied to %s" , typestr); | 
| 4791 |  | 
| 4792 | 	case Q_UDP: | 
| 4793 | 		bpf_error(cstate, "'udp' modifier applied to %s" , typestr); | 
| 4794 |  | 
| 4795 | 	case Q_ICMP: | 
| 4796 | 		bpf_error(cstate, "'icmp' modifier applied to %s" , typestr); | 
| 4797 |  | 
| 4798 | 	case Q_IGMP: | 
| 4799 | 		bpf_error(cstate, "'igmp' modifier applied to %s" , typestr); | 
| 4800 |  | 
| 4801 | 	case Q_IGRP: | 
| 4802 | 		bpf_error(cstate, "'igrp' modifier applied to %s" , typestr); | 
| 4803 |  | 
| 4804 | 	case Q_PIM: | 
| 4805 | 		bpf_error(cstate, "'pim' modifier applied to %s" , typestr); | 
| 4806 |  | 
| 4807 | 	case Q_VRRP: | 
| 4808 | 		bpf_error(cstate, "'vrrp' modifier applied to %s" , typestr); | 
| 4809 |  | 
| 4810 | 	case Q_CARP: | 
| 4811 | 		bpf_error(cstate, "'carp' modifier applied to %s" , typestr); | 
| 4812 |  | 
| 4813 | 	case Q_ATALK: | 
| 4814 | 		bpf_error(cstate, "ATALK host filtering not implemented" ); | 
| 4815 |  | 
| 4816 | 	case Q_AARP: | 
| 4817 | 		bpf_error(cstate, "AARP host filtering not implemented" ); | 
| 4818 |  | 
| 4819 | 	case Q_DECNET: | 
| 4820 | 		return gen_dnhostop(cstate, addr, dir); | 
| 4821 |  | 
| 4822 | 	case Q_SCA: | 
| 4823 | 		bpf_error(cstate, "SCA host filtering not implemented" ); | 
| 4824 |  | 
| 4825 | 	case Q_LAT: | 
| 4826 | 		bpf_error(cstate, "LAT host filtering not implemented" ); | 
| 4827 |  | 
| 4828 | 	case Q_MOPDL: | 
| 4829 | 		bpf_error(cstate, "MOPDL host filtering not implemented" ); | 
| 4830 |  | 
| 4831 | 	case Q_MOPRC: | 
| 4832 | 		bpf_error(cstate, "MOPRC host filtering not implemented" ); | 
| 4833 |  | 
| 4834 | 	case Q_IPV6: | 
| 4835 | 		bpf_error(cstate, "'ip6' modifier applied to ip host" ); | 
| 4836 |  | 
| 4837 | 	case Q_ICMPV6: | 
| 4838 | 		bpf_error(cstate, "'icmp6' modifier applied to %s" , typestr); | 
| 4839 |  | 
| 4840 | 	case Q_AH: | 
| 4841 | 		bpf_error(cstate, "'ah' modifier applied to %s" , typestr); | 
| 4842 |  | 
| 4843 | 	case Q_ESP: | 
| 4844 | 		bpf_error(cstate, "'esp' modifier applied to %s" , typestr); | 
| 4845 |  | 
| 4846 | 	case Q_ISO: | 
| 4847 | 		bpf_error(cstate, "ISO host filtering not implemented" ); | 
| 4848 |  | 
| 4849 | 	case Q_ESIS: | 
| 4850 | 		bpf_error(cstate, "'esis' modifier applied to %s" , typestr); | 
| 4851 |  | 
| 4852 | 	case Q_ISIS: | 
| 4853 | 		bpf_error(cstate, "'isis' modifier applied to %s" , typestr); | 
| 4854 |  | 
| 4855 | 	case Q_CLNP: | 
| 4856 | 		bpf_error(cstate, "'clnp' modifier applied to %s" , typestr); | 
| 4857 |  | 
| 4858 | 	case Q_STP: | 
| 4859 | 		bpf_error(cstate, "'stp' modifier applied to %s" , typestr); | 
| 4860 |  | 
| 4861 | 	case Q_IPX: | 
| 4862 | 		bpf_error(cstate, "IPX host filtering not implemented" ); | 
| 4863 |  | 
| 4864 | 	case Q_NETBEUI: | 
| 4865 | 		bpf_error(cstate, "'netbeui' modifier applied to %s" , typestr); | 
| 4866 |  | 
| 4867 | 	case Q_RADIO: | 
| 4868 | 		bpf_error(cstate, "'radio' modifier applied to %s" , typestr); | 
| 4869 |  | 
| 4870 | 	default: | 
| 4871 | 		abort(); | 
| 4872 | 	} | 
| 4873 | 	/* NOTREACHED */ | 
| 4874 | } | 
| 4875 |  | 
| 4876 | #ifdef INET6 | 
| 4877 | static struct block * | 
| 4878 | gen_host6(compiler_state_t *cstate, struct in6_addr *addr, | 
| 4879 |     struct in6_addr *mask, int proto, int dir, int type) | 
| 4880 | { | 
| 4881 | 	const char *typestr; | 
| 4882 |  | 
| 4883 | 	if (type == Q_NET) | 
| 4884 | 		typestr = "net" ; | 
| 4885 | 	else | 
| 4886 | 		typestr = "host" ; | 
| 4887 |  | 
| 4888 | 	switch (proto) { | 
| 4889 |  | 
| 4890 | 	case Q_DEFAULT: | 
| 4891 | 		return gen_host6(cstate, addr, mask, Q_IPV6, dir, type); | 
| 4892 |  | 
| 4893 | 	case Q_LINK: | 
| 4894 | 		bpf_error(cstate, "link-layer modifier applied to ip6 %s" , typestr); | 
| 4895 |  | 
| 4896 | 	case Q_IP: | 
| 4897 | 		bpf_error(cstate, "'ip' modifier applied to ip6 %s" , typestr); | 
| 4898 |  | 
| 4899 | 	case Q_RARP: | 
| 4900 | 		bpf_error(cstate, "'rarp' modifier applied to ip6 %s" , typestr); | 
| 4901 |  | 
| 4902 | 	case Q_ARP: | 
| 4903 | 		bpf_error(cstate, "'arp' modifier applied to ip6 %s" , typestr); | 
| 4904 |  | 
| 4905 | 	case Q_SCTP: | 
| 4906 | 		bpf_error(cstate, "'sctp' modifier applied to %s" , typestr); | 
| 4907 |  | 
| 4908 | 	case Q_TCP: | 
| 4909 | 		bpf_error(cstate, "'tcp' modifier applied to %s" , typestr); | 
| 4910 |  | 
| 4911 | 	case Q_UDP: | 
| 4912 | 		bpf_error(cstate, "'udp' modifier applied to %s" , typestr); | 
| 4913 |  | 
| 4914 | 	case Q_ICMP: | 
| 4915 | 		bpf_error(cstate, "'icmp' modifier applied to %s" , typestr); | 
| 4916 |  | 
| 4917 | 	case Q_IGMP: | 
| 4918 | 		bpf_error(cstate, "'igmp' modifier applied to %s" , typestr); | 
| 4919 |  | 
| 4920 | 	case Q_IGRP: | 
| 4921 | 		bpf_error(cstate, "'igrp' modifier applied to %s" , typestr); | 
| 4922 |  | 
| 4923 | 	case Q_PIM: | 
| 4924 | 		bpf_error(cstate, "'pim' modifier applied to %s" , typestr); | 
| 4925 |  | 
| 4926 | 	case Q_VRRP: | 
| 4927 | 		bpf_error(cstate, "'vrrp' modifier applied to %s" , typestr); | 
| 4928 |  | 
| 4929 | 	case Q_CARP: | 
| 4930 | 		bpf_error(cstate, "'carp' modifier applied to %s" , typestr); | 
| 4931 |  | 
| 4932 | 	case Q_ATALK: | 
| 4933 | 		bpf_error(cstate, "ATALK host filtering not implemented" ); | 
| 4934 |  | 
| 4935 | 	case Q_AARP: | 
| 4936 | 		bpf_error(cstate, "AARP host filtering not implemented" ); | 
| 4937 |  | 
| 4938 | 	case Q_DECNET: | 
| 4939 | 		bpf_error(cstate, "'decnet' modifier applied to ip6 %s" , typestr); | 
| 4940 |  | 
| 4941 | 	case Q_SCA: | 
| 4942 | 		bpf_error(cstate, "SCA host filtering not implemented" ); | 
| 4943 |  | 
| 4944 | 	case Q_LAT: | 
| 4945 | 		bpf_error(cstate, "LAT host filtering not implemented" ); | 
| 4946 |  | 
| 4947 | 	case Q_MOPDL: | 
| 4948 | 		bpf_error(cstate, "MOPDL host filtering not implemented" ); | 
| 4949 |  | 
| 4950 | 	case Q_MOPRC: | 
| 4951 | 		bpf_error(cstate, "MOPRC host filtering not implemented" ); | 
| 4952 |  | 
| 4953 | 	case Q_IPV6: | 
| 4954 | 		return gen_hostop6(cstate, addr, mask, dir, ETHERTYPE_IPV6, 8, 24); | 
| 4955 |  | 
| 4956 | 	case Q_ICMPV6: | 
| 4957 | 		bpf_error(cstate, "'icmp6' modifier applied to %s" , typestr); | 
| 4958 |  | 
| 4959 | 	case Q_AH: | 
| 4960 | 		bpf_error(cstate, "'ah' modifier applied to %s" , typestr); | 
| 4961 |  | 
| 4962 | 	case Q_ESP: | 
| 4963 | 		bpf_error(cstate, "'esp' modifier applied to %s" , typestr); | 
| 4964 |  | 
| 4965 | 	case Q_ISO: | 
| 4966 | 		bpf_error(cstate, "ISO host filtering not implemented" ); | 
| 4967 |  | 
| 4968 | 	case Q_ESIS: | 
| 4969 | 		bpf_error(cstate, "'esis' modifier applied to %s" , typestr); | 
| 4970 |  | 
| 4971 | 	case Q_ISIS: | 
| 4972 | 		bpf_error(cstate, "'isis' modifier applied to %s" , typestr); | 
| 4973 |  | 
| 4974 | 	case Q_CLNP: | 
| 4975 | 		bpf_error(cstate, "'clnp' modifier applied to %s" , typestr); | 
| 4976 |  | 
| 4977 | 	case Q_STP: | 
| 4978 | 		bpf_error(cstate, "'stp' modifier applied to %s" , typestr); | 
| 4979 |  | 
| 4980 | 	case Q_IPX: | 
| 4981 | 		bpf_error(cstate, "IPX host filtering not implemented" ); | 
| 4982 |  | 
| 4983 | 	case Q_NETBEUI: | 
| 4984 | 		bpf_error(cstate, "'netbeui' modifier applied to %s" , typestr); | 
| 4985 |  | 
| 4986 | 	case Q_RADIO: | 
| 4987 | 		bpf_error(cstate, "'radio' modifier applied to %s" , typestr); | 
| 4988 |  | 
| 4989 | 	default: | 
| 4990 | 		abort(); | 
| 4991 | 	} | 
| 4992 | 	/* NOTREACHED */ | 
| 4993 | } | 
| 4994 | #endif | 
| 4995 |  | 
| 4996 | #ifndef INET6 | 
| 4997 | static struct block * | 
| 4998 | gen_gateway(compiler_state_t *cstate, const u_char *eaddr, | 
| 4999 |     struct addrinfo *alist, int proto, int dir) | 
| 5000 | { | 
| 5001 | 	struct block *b0, *b1, *tmp; | 
| 5002 | 	struct addrinfo *ai; | 
| 5003 | 	struct sockaddr_in *sin; | 
| 5004 |  | 
| 5005 | 	if (dir != 0) | 
| 5006 | 		bpf_error(cstate, "direction applied to 'gateway'" ); | 
| 5007 |  | 
| 5008 | 	switch (proto) { | 
| 5009 | 	case Q_DEFAULT: | 
| 5010 | 	case Q_IP: | 
| 5011 | 	case Q_ARP: | 
| 5012 | 	case Q_RARP: | 
| 5013 | 		switch (cstate->linktype) { | 
| 5014 | 		case DLT_EN10MB: | 
| 5015 | 		case DLT_NETANALYZER: | 
| 5016 | 		case DLT_NETANALYZER_TRANSPARENT: | 
| 5017 | 			b1 = gen_prevlinkhdr_check(cstate); | 
| 5018 | 			b0 = gen_ehostop(cstate, eaddr, Q_OR); | 
| 5019 | 			if (b1 != NULL) | 
| 5020 | 				gen_and(b1, b0); | 
| 5021 | 			break; | 
| 5022 | 		case DLT_FDDI: | 
| 5023 | 			b0 = gen_fhostop(cstate, eaddr, Q_OR); | 
| 5024 | 			break; | 
| 5025 | 		case DLT_IEEE802: | 
| 5026 | 			b0 = gen_thostop(cstate, eaddr, Q_OR); | 
| 5027 | 			break; | 
| 5028 | 		case DLT_IEEE802_11: | 
| 5029 | 		case DLT_PRISM_HEADER: | 
| 5030 | 		case DLT_IEEE802_11_RADIO_AVS: | 
| 5031 | 		case DLT_IEEE802_11_RADIO: | 
| 5032 | 		case DLT_PPI: | 
| 5033 | 			b0 = gen_wlanhostop(cstate, eaddr, Q_OR); | 
| 5034 | 			break; | 
| 5035 | 		case DLT_SUNATM: | 
| 5036 | 			/* | 
| 5037 | 			 * This is LLC-multiplexed traffic; if it were | 
| 5038 | 			 * LANE, cstate->linktype would have been set to | 
| 5039 | 			 * DLT_EN10MB. | 
| 5040 | 			 */ | 
| 5041 | 			bpf_error(cstate, | 
| 5042 | 			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel" ); | 
| 5043 | 			break; | 
| 5044 | 		case DLT_IP_OVER_FC: | 
| 5045 | 			b0 = gen_ipfchostop(cstate, eaddr, Q_OR); | 
| 5046 | 			break; | 
| 5047 | 		default: | 
| 5048 | 			bpf_error(cstate, | 
| 5049 | 			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel" ); | 
| 5050 | 		} | 
| 5051 | 		b1 = NULL; | 
| 5052 | 		for (ai = alist; ai != NULL; ai = ai->ai_next) { | 
| 5053 | 			/* | 
| 5054 | 			 * Does it have an address? | 
| 5055 | 			 */ | 
| 5056 | 			if (ai->ai_addr != NULL) { | 
| 5057 | 				/* | 
| 5058 | 				 * Yes.  Is it an IPv4 address? | 
| 5059 | 				 */ | 
| 5060 | 				if (ai->ai_addr->sa_family == AF_INET) { | 
| 5061 | 					/* | 
| 5062 | 					 * Generate an entry for it. | 
| 5063 | 					 */ | 
| 5064 | 					sin = (struct sockaddr_in *)ai->ai_addr; | 
| 5065 | 					tmp = gen_host(cstate, | 
| 5066 | 					    ntohl(sin->sin_addr.s_addr), | 
| 5067 | 					    0xffffffff, proto, Q_OR, Q_HOST); | 
| 5068 | 					/* | 
| 5069 | 					 * Is it the *first* IPv4 address? | 
| 5070 | 					 */ | 
| 5071 | 					if (b1 == NULL) { | 
| 5072 | 						/* | 
| 5073 | 						 * Yes, so start with it. | 
| 5074 | 						 */ | 
| 5075 | 						b1 = tmp; | 
| 5076 | 					} else { | 
| 5077 | 						/* | 
| 5078 | 						 * No, so OR it into the | 
| 5079 | 						 * existing set of | 
| 5080 | 						 * addresses. | 
| 5081 | 						 */ | 
| 5082 | 						gen_or(b1, tmp); | 
| 5083 | 						b1 = tmp; | 
| 5084 | 					} | 
| 5085 | 				} | 
| 5086 | 			} | 
| 5087 | 		} | 
| 5088 | 		if (b1 == NULL) { | 
| 5089 | 			/* | 
| 5090 | 			 * No IPv4 addresses found. | 
| 5091 | 			 */ | 
| 5092 | 			return (NULL); | 
| 5093 | 		} | 
| 5094 | 		gen_not(b1); | 
| 5095 | 		gen_and(b0, b1); | 
| 5096 | 		return b1; | 
| 5097 | 	} | 
| 5098 | 	bpf_error(cstate, "illegal modifier of 'gateway'" ); | 
| 5099 | 	/* NOTREACHED */ | 
| 5100 | } | 
| 5101 | #endif | 
| 5102 |  | 
| 5103 | struct block * | 
| 5104 | gen_proto_abbrev(compiler_state_t *cstate, int proto) | 
| 5105 | { | 
| 5106 | 	struct block *b0; | 
| 5107 | 	struct block *b1; | 
| 5108 |  | 
| 5109 | 	switch (proto) { | 
| 5110 |  | 
| 5111 | 	case Q_SCTP: | 
| 5112 | 		b1 = gen_proto(cstate, IPPROTO_SCTP, Q_IP, Q_DEFAULT); | 
| 5113 | 		b0 = gen_proto(cstate, IPPROTO_SCTP, Q_IPV6, Q_DEFAULT); | 
| 5114 | 		gen_or(b0, b1); | 
| 5115 | 		break; | 
| 5116 |  | 
| 5117 | 	case Q_TCP: | 
| 5118 | 		b1 = gen_proto(cstate, IPPROTO_TCP, Q_IP, Q_DEFAULT); | 
| 5119 | 		b0 = gen_proto(cstate, IPPROTO_TCP, Q_IPV6, Q_DEFAULT); | 
| 5120 | 		gen_or(b0, b1); | 
| 5121 | 		break; | 
| 5122 |  | 
| 5123 | 	case Q_UDP: | 
| 5124 | 		b1 = gen_proto(cstate, IPPROTO_UDP, Q_IP, Q_DEFAULT); | 
| 5125 | 		b0 = gen_proto(cstate, IPPROTO_UDP, Q_IPV6, Q_DEFAULT); | 
| 5126 | 		gen_or(b0, b1); | 
| 5127 | 		break; | 
| 5128 |  | 
| 5129 | 	case Q_ICMP: | 
| 5130 | 		b1 = gen_proto(cstate, IPPROTO_ICMP, Q_IP, Q_DEFAULT); | 
| 5131 | 		break; | 
| 5132 |  | 
| 5133 | #ifndef	IPPROTO_IGMP | 
| 5134 | #define	IPPROTO_IGMP	2 | 
| 5135 | #endif | 
| 5136 |  | 
| 5137 | 	case Q_IGMP: | 
| 5138 | 		b1 = gen_proto(cstate, IPPROTO_IGMP, Q_IP, Q_DEFAULT); | 
| 5139 | 		break; | 
| 5140 |  | 
| 5141 | #ifndef	IPPROTO_IGRP | 
| 5142 | #define	IPPROTO_IGRP	9 | 
| 5143 | #endif | 
| 5144 | 	case Q_IGRP: | 
| 5145 | 		b1 = gen_proto(cstate, IPPROTO_IGRP, Q_IP, Q_DEFAULT); | 
| 5146 | 		break; | 
| 5147 |  | 
| 5148 | #ifndef IPPROTO_PIM | 
| 5149 | #define IPPROTO_PIM	103 | 
| 5150 | #endif | 
| 5151 |  | 
| 5152 | 	case Q_PIM: | 
| 5153 | 		b1 = gen_proto(cstate, IPPROTO_PIM, Q_IP, Q_DEFAULT); | 
| 5154 | 		b0 = gen_proto(cstate, IPPROTO_PIM, Q_IPV6, Q_DEFAULT); | 
| 5155 | 		gen_or(b0, b1); | 
| 5156 | 		break; | 
| 5157 |  | 
| 5158 | #ifndef IPPROTO_VRRP | 
| 5159 | #define IPPROTO_VRRP	112 | 
| 5160 | #endif | 
| 5161 |  | 
| 5162 | 	case Q_VRRP: | 
| 5163 | 		b1 = gen_proto(cstate, IPPROTO_VRRP, Q_IP, Q_DEFAULT); | 
| 5164 | 		break; | 
| 5165 |  | 
| 5166 | #ifndef IPPROTO_CARP | 
| 5167 | #define IPPROTO_CARP	112 | 
| 5168 | #endif | 
| 5169 |  | 
| 5170 | 	case Q_CARP: | 
| 5171 | 		b1 = gen_proto(cstate, IPPROTO_CARP, Q_IP, Q_DEFAULT); | 
| 5172 | 		break; | 
| 5173 |  | 
| 5174 | 	case Q_IP: | 
| 5175 | 		b1 = gen_linktype(cstate, ETHERTYPE_IP); | 
| 5176 | 		break; | 
| 5177 |  | 
| 5178 | 	case Q_ARP: | 
| 5179 | 		b1 = gen_linktype(cstate, ETHERTYPE_ARP); | 
| 5180 | 		break; | 
| 5181 |  | 
| 5182 | 	case Q_RARP: | 
| 5183 | 		b1 = gen_linktype(cstate, ETHERTYPE_REVARP); | 
| 5184 | 		break; | 
| 5185 |  | 
| 5186 | 	case Q_LINK: | 
| 5187 | 		bpf_error(cstate, "link layer applied in wrong context" ); | 
| 5188 |  | 
| 5189 | 	case Q_ATALK: | 
| 5190 | 		b1 = gen_linktype(cstate, ETHERTYPE_ATALK); | 
| 5191 | 		break; | 
| 5192 |  | 
| 5193 | 	case Q_AARP: | 
| 5194 | 		b1 = gen_linktype(cstate, ETHERTYPE_AARP); | 
| 5195 | 		break; | 
| 5196 |  | 
| 5197 | 	case Q_DECNET: | 
| 5198 | 		b1 = gen_linktype(cstate, ETHERTYPE_DN); | 
| 5199 | 		break; | 
| 5200 |  | 
| 5201 | 	case Q_SCA: | 
| 5202 | 		b1 = gen_linktype(cstate, ETHERTYPE_SCA); | 
| 5203 | 		break; | 
| 5204 |  | 
| 5205 | 	case Q_LAT: | 
| 5206 | 		b1 = gen_linktype(cstate, ETHERTYPE_LAT); | 
| 5207 | 		break; | 
| 5208 |  | 
| 5209 | 	case Q_MOPDL: | 
| 5210 | 		b1 = gen_linktype(cstate, ETHERTYPE_MOPDL); | 
| 5211 | 		break; | 
| 5212 |  | 
| 5213 | 	case Q_MOPRC: | 
| 5214 | 		b1 = gen_linktype(cstate, ETHERTYPE_MOPRC); | 
| 5215 | 		break; | 
| 5216 |  | 
| 5217 | 	case Q_IPV6: | 
| 5218 | 		b1 = gen_linktype(cstate, ETHERTYPE_IPV6); | 
| 5219 | 		break; | 
| 5220 |  | 
| 5221 | #ifndef IPPROTO_ICMPV6 | 
| 5222 | #define IPPROTO_ICMPV6	58 | 
| 5223 | #endif | 
| 5224 | 	case Q_ICMPV6: | 
| 5225 | 		b1 = gen_proto(cstate, IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT); | 
| 5226 | 		break; | 
| 5227 |  | 
| 5228 | #ifndef IPPROTO_AH | 
| 5229 | #define IPPROTO_AH	51 | 
| 5230 | #endif | 
| 5231 | 	case Q_AH: | 
| 5232 | 		b1 = gen_proto(cstate, IPPROTO_AH, Q_IP, Q_DEFAULT); | 
| 5233 | 		b0 = gen_proto(cstate, IPPROTO_AH, Q_IPV6, Q_DEFAULT); | 
| 5234 | 		gen_or(b0, b1); | 
| 5235 | 		break; | 
| 5236 |  | 
| 5237 | #ifndef IPPROTO_ESP | 
| 5238 | #define IPPROTO_ESP	50 | 
| 5239 | #endif | 
| 5240 | 	case Q_ESP: | 
| 5241 | 		b1 = gen_proto(cstate, IPPROTO_ESP, Q_IP, Q_DEFAULT); | 
| 5242 | 		b0 = gen_proto(cstate, IPPROTO_ESP, Q_IPV6, Q_DEFAULT); | 
| 5243 | 		gen_or(b0, b1); | 
| 5244 | 		break; | 
| 5245 |  | 
| 5246 | 	case Q_ISO: | 
| 5247 | 		b1 = gen_linktype(cstate, LLCSAP_ISONS); | 
| 5248 | 		break; | 
| 5249 |  | 
| 5250 | 	case Q_ESIS: | 
| 5251 | 		b1 = gen_proto(cstate, ISO9542_ESIS, Q_ISO, Q_DEFAULT); | 
| 5252 | 		break; | 
| 5253 |  | 
| 5254 | 	case Q_ISIS: | 
| 5255 | 		b1 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT); | 
| 5256 | 		break; | 
| 5257 |  | 
| 5258 | 	case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */ | 
| 5259 | 		b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT); | 
| 5260 | 		b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */ | 
| 5261 | 		gen_or(b0, b1); | 
| 5262 | 		b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT); | 
| 5263 | 		gen_or(b0, b1); | 
| 5264 | 		b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT); | 
| 5265 | 		gen_or(b0, b1); | 
| 5266 | 		b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT); | 
| 5267 | 		gen_or(b0, b1); | 
| 5268 | 		break; | 
| 5269 |  | 
| 5270 | 	case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */ | 
| 5271 | 		b0 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT); | 
| 5272 | 		b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */ | 
| 5273 | 		gen_or(b0, b1); | 
| 5274 | 		b0 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT); | 
| 5275 | 		gen_or(b0, b1); | 
| 5276 | 		b0 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT); | 
| 5277 | 		gen_or(b0, b1); | 
| 5278 | 		b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT); | 
| 5279 | 		gen_or(b0, b1); | 
| 5280 | 		break; | 
| 5281 |  | 
| 5282 | 	case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */ | 
| 5283 | 		b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT); | 
| 5284 | 		b1 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT); | 
| 5285 | 		gen_or(b0, b1); | 
| 5286 | 		b0 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); | 
| 5287 | 		gen_or(b0, b1); | 
| 5288 | 		break; | 
| 5289 |  | 
| 5290 | 	case Q_ISIS_LSP: | 
| 5291 | 		b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT); | 
| 5292 | 		b1 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT); | 
| 5293 | 		gen_or(b0, b1); | 
| 5294 | 		break; | 
| 5295 |  | 
| 5296 | 	case Q_ISIS_SNP: | 
| 5297 | 		b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT); | 
| 5298 | 		b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT); | 
| 5299 | 		gen_or(b0, b1); | 
| 5300 | 		b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT); | 
| 5301 | 		gen_or(b0, b1); | 
| 5302 | 		b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT); | 
| 5303 | 		gen_or(b0, b1); | 
| 5304 | 		break; | 
| 5305 |  | 
| 5306 | 	case Q_ISIS_CSNP: | 
| 5307 | 		b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT); | 
| 5308 | 		b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT); | 
| 5309 | 		gen_or(b0, b1); | 
| 5310 | 		break; | 
| 5311 |  | 
| 5312 | 	case Q_ISIS_PSNP: | 
| 5313 | 		b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT); | 
| 5314 | 		b1 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT); | 
| 5315 | 		gen_or(b0, b1); | 
| 5316 | 		break; | 
| 5317 |  | 
| 5318 | 	case Q_CLNP: | 
| 5319 | 		b1 = gen_proto(cstate, ISO8473_CLNP, Q_ISO, Q_DEFAULT); | 
| 5320 | 		break; | 
| 5321 |  | 
| 5322 | 	case Q_STP: | 
| 5323 | 		b1 = gen_linktype(cstate, LLCSAP_8021D); | 
| 5324 | 		break; | 
| 5325 |  | 
| 5326 | 	case Q_IPX: | 
| 5327 | 		b1 = gen_linktype(cstate, LLCSAP_IPX); | 
| 5328 | 		break; | 
| 5329 |  | 
| 5330 | 	case Q_NETBEUI: | 
| 5331 | 		b1 = gen_linktype(cstate, LLCSAP_NETBEUI); | 
| 5332 | 		break; | 
| 5333 |  | 
| 5334 | 	case Q_RADIO: | 
| 5335 | 		bpf_error(cstate, "'radio' is not a valid protocol type" ); | 
| 5336 |  | 
| 5337 | 	default: | 
| 5338 | 		abort(); | 
| 5339 | 	} | 
| 5340 | 	return b1; | 
| 5341 | } | 
| 5342 |  | 
| 5343 | static struct block * | 
| 5344 | gen_ipfrag(compiler_state_t *cstate) | 
| 5345 | { | 
| 5346 | 	struct slist *s; | 
| 5347 | 	struct block *b; | 
| 5348 |  | 
| 5349 | 	/* not IPv4 frag other than the first frag */ | 
| 5350 | 	s = gen_load_a(cstate, OR_LINKPL, 6, BPF_H); | 
| 5351 | 	b = new_block(cstate, JMP(BPF_JSET)); | 
| 5352 | 	b->s.k = 0x1fff; | 
| 5353 | 	b->stmts = s; | 
| 5354 | 	gen_not(b); | 
| 5355 |  | 
| 5356 | 	return b; | 
| 5357 | } | 
| 5358 |  | 
| 5359 | /* | 
| 5360 |  * Generate a comparison to a port value in the transport-layer header | 
| 5361 |  * at the specified offset from the beginning of that header. | 
| 5362 |  * | 
| 5363 |  * XXX - this handles a variable-length prefix preceding the link-layer | 
| 5364 |  * header, such as the radiotap or AVS radio prefix, but doesn't handle | 
| 5365 |  * variable-length link-layer headers (such as Token Ring or 802.11 | 
| 5366 |  * headers). | 
| 5367 |  */ | 
| 5368 | static struct block * | 
| 5369 | gen_portatom(compiler_state_t *cstate, int off, bpf_int32 v) | 
| 5370 | { | 
| 5371 | 	return gen_cmp(cstate, OR_TRAN_IPV4, off, BPF_H, v); | 
| 5372 | } | 
| 5373 |  | 
| 5374 | static struct block * | 
| 5375 | gen_portatom6(compiler_state_t *cstate, int off, bpf_int32 v) | 
| 5376 | { | 
| 5377 | 	return gen_cmp(cstate, OR_TRAN_IPV6, off, BPF_H, v); | 
| 5378 | } | 
| 5379 |  | 
| 5380 | struct block * | 
| 5381 | gen_portop(compiler_state_t *cstate, int port, int proto, int dir) | 
| 5382 | { | 
| 5383 | 	struct block *b0, *b1, *tmp; | 
| 5384 |  | 
| 5385 | 	/* ip proto 'proto' and not a fragment other than the first fragment */ | 
| 5386 | 	tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, (bpf_int32)proto); | 
| 5387 | 	b0 = gen_ipfrag(cstate); | 
| 5388 | 	gen_and(tmp, b0); | 
| 5389 |  | 
| 5390 | 	switch (dir) { | 
| 5391 | 	case Q_SRC: | 
| 5392 | 		b1 = gen_portatom(cstate, 0, (bpf_int32)port); | 
| 5393 | 		break; | 
| 5394 |  | 
| 5395 | 	case Q_DST: | 
| 5396 | 		b1 = gen_portatom(cstate, 2, (bpf_int32)port); | 
| 5397 | 		break; | 
| 5398 |  | 
| 5399 | 	case Q_OR: | 
| 5400 | 	case Q_DEFAULT: | 
| 5401 | 		tmp = gen_portatom(cstate, 0, (bpf_int32)port); | 
| 5402 | 		b1 = gen_portatom(cstate, 2, (bpf_int32)port); | 
| 5403 | 		gen_or(tmp, b1); | 
| 5404 | 		break; | 
| 5405 |  | 
| 5406 | 	case Q_AND: | 
| 5407 | 		tmp = gen_portatom(cstate, 0, (bpf_int32)port); | 
| 5408 | 		b1 = gen_portatom(cstate, 2, (bpf_int32)port); | 
| 5409 | 		gen_and(tmp, b1); | 
| 5410 | 		break; | 
| 5411 |  | 
| 5412 | 	default: | 
| 5413 | 		abort(); | 
| 5414 | 	} | 
| 5415 | 	gen_and(b0, b1); | 
| 5416 |  | 
| 5417 | 	return b1; | 
| 5418 | } | 
| 5419 |  | 
| 5420 | static struct block * | 
| 5421 | gen_port(compiler_state_t *cstate, int port, int ip_proto, int dir) | 
| 5422 | { | 
| 5423 | 	struct block *b0, *b1, *tmp; | 
| 5424 |  | 
| 5425 | 	/* | 
| 5426 | 	 * ether proto ip | 
| 5427 | 	 * | 
| 5428 | 	 * For FDDI, RFC 1188 says that SNAP encapsulation is used, | 
| 5429 | 	 * not LLC encapsulation with LLCSAP_IP. | 
| 5430 | 	 * | 
| 5431 | 	 * For IEEE 802 networks - which includes 802.5 token ring | 
| 5432 | 	 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042 | 
| 5433 | 	 * says that SNAP encapsulation is used, not LLC encapsulation | 
| 5434 | 	 * with LLCSAP_IP. | 
| 5435 | 	 * | 
| 5436 | 	 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and | 
| 5437 | 	 * RFC 2225 say that SNAP encapsulation is used, not LLC | 
| 5438 | 	 * encapsulation with LLCSAP_IP. | 
| 5439 | 	 * | 
| 5440 | 	 * So we always check for ETHERTYPE_IP. | 
| 5441 | 	 */ | 
| 5442 | 	b0 = gen_linktype(cstate, ETHERTYPE_IP); | 
| 5443 |  | 
| 5444 | 	switch (ip_proto) { | 
| 5445 | 	case IPPROTO_UDP: | 
| 5446 | 	case IPPROTO_TCP: | 
| 5447 | 	case IPPROTO_SCTP: | 
| 5448 | 		b1 = gen_portop(cstate, port, ip_proto, dir); | 
| 5449 | 		break; | 
| 5450 |  | 
| 5451 | 	case PROTO_UNDEF: | 
| 5452 | 		tmp = gen_portop(cstate, port, IPPROTO_TCP, dir); | 
| 5453 | 		b1 = gen_portop(cstate, port, IPPROTO_UDP, dir); | 
| 5454 | 		gen_or(tmp, b1); | 
| 5455 | 		tmp = gen_portop(cstate, port, IPPROTO_SCTP, dir); | 
| 5456 | 		gen_or(tmp, b1); | 
| 5457 | 		break; | 
| 5458 |  | 
| 5459 | 	default: | 
| 5460 | 		abort(); | 
| 5461 | 	} | 
| 5462 | 	gen_and(b0, b1); | 
| 5463 | 	return b1; | 
| 5464 | } | 
| 5465 |  | 
| 5466 | struct block * | 
| 5467 | gen_portop6(compiler_state_t *cstate, int port, int proto, int dir) | 
| 5468 | { | 
| 5469 | 	struct block *b0, *b1, *tmp; | 
| 5470 |  | 
| 5471 | 	/* ip6 proto 'proto' */ | 
| 5472 | 	/* XXX - catch the first fragment of a fragmented packet? */ | 
| 5473 | 	b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, (bpf_int32)proto); | 
| 5474 |  | 
| 5475 | 	switch (dir) { | 
| 5476 | 	case Q_SRC: | 
| 5477 | 		b1 = gen_portatom6(cstate, 0, (bpf_int32)port); | 
| 5478 | 		break; | 
| 5479 |  | 
| 5480 | 	case Q_DST: | 
| 5481 | 		b1 = gen_portatom6(cstate, 2, (bpf_int32)port); | 
| 5482 | 		break; | 
| 5483 |  | 
| 5484 | 	case Q_OR: | 
| 5485 | 	case Q_DEFAULT: | 
| 5486 | 		tmp = gen_portatom6(cstate, 0, (bpf_int32)port); | 
| 5487 | 		b1 = gen_portatom6(cstate, 2, (bpf_int32)port); | 
| 5488 | 		gen_or(tmp, b1); | 
| 5489 | 		break; | 
| 5490 |  | 
| 5491 | 	case Q_AND: | 
| 5492 | 		tmp = gen_portatom6(cstate, 0, (bpf_int32)port); | 
| 5493 | 		b1 = gen_portatom6(cstate, 2, (bpf_int32)port); | 
| 5494 | 		gen_and(tmp, b1); | 
| 5495 | 		break; | 
| 5496 |  | 
| 5497 | 	default: | 
| 5498 | 		abort(); | 
| 5499 | 	} | 
| 5500 | 	gen_and(b0, b1); | 
| 5501 |  | 
| 5502 | 	return b1; | 
| 5503 | } | 
| 5504 |  | 
| 5505 | static struct block * | 
| 5506 | gen_port6(compiler_state_t *cstate, int port, int ip_proto, int dir) | 
| 5507 | { | 
| 5508 | 	struct block *b0, *b1, *tmp; | 
| 5509 |  | 
| 5510 | 	/* link proto ip6 */ | 
| 5511 | 	b0 = gen_linktype(cstate, ETHERTYPE_IPV6); | 
| 5512 |  | 
| 5513 | 	switch (ip_proto) { | 
| 5514 | 	case IPPROTO_UDP: | 
| 5515 | 	case IPPROTO_TCP: | 
| 5516 | 	case IPPROTO_SCTP: | 
| 5517 | 		b1 = gen_portop6(cstate, port, ip_proto, dir); | 
| 5518 | 		break; | 
| 5519 |  | 
| 5520 | 	case PROTO_UNDEF: | 
| 5521 | 		tmp = gen_portop6(cstate, port, IPPROTO_TCP, dir); | 
| 5522 | 		b1 = gen_portop6(cstate, port, IPPROTO_UDP, dir); | 
| 5523 | 		gen_or(tmp, b1); | 
| 5524 | 		tmp = gen_portop6(cstate, port, IPPROTO_SCTP, dir); | 
| 5525 | 		gen_or(tmp, b1); | 
| 5526 | 		break; | 
| 5527 |  | 
| 5528 | 	default: | 
| 5529 | 		abort(); | 
| 5530 | 	} | 
| 5531 | 	gen_and(b0, b1); | 
| 5532 | 	return b1; | 
| 5533 | } | 
| 5534 |  | 
| 5535 | /* gen_portrange code */ | 
| 5536 | static struct block * | 
| 5537 | gen_portrangeatom(compiler_state_t *cstate, int off, bpf_int32 v1, | 
| 5538 |     bpf_int32 v2) | 
| 5539 | { | 
| 5540 | 	struct block *b1, *b2; | 
| 5541 |  | 
| 5542 | 	if (v1 > v2) { | 
| 5543 | 		/* | 
| 5544 | 		 * Reverse the order of the ports, so v1 is the lower one. | 
| 5545 | 		 */ | 
| 5546 | 		bpf_int32 vtemp; | 
| 5547 |  | 
| 5548 | 		vtemp = v1; | 
| 5549 | 		v1 = v2; | 
| 5550 | 		v2 = vtemp; | 
| 5551 | 	} | 
| 5552 |  | 
| 5553 | 	b1 = gen_cmp_ge(cstate, OR_TRAN_IPV4, off, BPF_H, v1); | 
| 5554 | 	b2 = gen_cmp_le(cstate, OR_TRAN_IPV4, off, BPF_H, v2); | 
| 5555 |  | 
| 5556 | 	gen_and(b1, b2); | 
| 5557 |  | 
| 5558 | 	return b2; | 
| 5559 | } | 
| 5560 |  | 
| 5561 | struct block * | 
| 5562 | gen_portrangeop(compiler_state_t *cstate, int port1, int port2, int proto, | 
| 5563 |     int dir) | 
| 5564 | { | 
| 5565 | 	struct block *b0, *b1, *tmp; | 
| 5566 |  | 
| 5567 | 	/* ip proto 'proto' and not a fragment other than the first fragment */ | 
| 5568 | 	tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, (bpf_int32)proto); | 
| 5569 | 	b0 = gen_ipfrag(cstate); | 
| 5570 | 	gen_and(tmp, b0); | 
| 5571 |  | 
| 5572 | 	switch (dir) { | 
| 5573 | 	case Q_SRC: | 
| 5574 | 		b1 = gen_portrangeatom(cstate, 0, (bpf_int32)port1, (bpf_int32)port2); | 
| 5575 | 		break; | 
| 5576 |  | 
| 5577 | 	case Q_DST: | 
| 5578 | 		b1 = gen_portrangeatom(cstate, 2, (bpf_int32)port1, (bpf_int32)port2); | 
| 5579 | 		break; | 
| 5580 |  | 
| 5581 | 	case Q_OR: | 
| 5582 | 	case Q_DEFAULT: | 
| 5583 | 		tmp = gen_portrangeatom(cstate, 0, (bpf_int32)port1, (bpf_int32)port2); | 
| 5584 | 		b1 = gen_portrangeatom(cstate, 2, (bpf_int32)port1, (bpf_int32)port2); | 
| 5585 | 		gen_or(tmp, b1); | 
| 5586 | 		break; | 
| 5587 |  | 
| 5588 | 	case Q_AND: | 
| 5589 | 		tmp = gen_portrangeatom(cstate, 0, (bpf_int32)port1, (bpf_int32)port2); | 
| 5590 | 		b1 = gen_portrangeatom(cstate, 2, (bpf_int32)port1, (bpf_int32)port2); | 
| 5591 | 		gen_and(tmp, b1); | 
| 5592 | 		break; | 
| 5593 |  | 
| 5594 | 	default: | 
| 5595 | 		abort(); | 
| 5596 | 	} | 
| 5597 | 	gen_and(b0, b1); | 
| 5598 |  | 
| 5599 | 	return b1; | 
| 5600 | } | 
| 5601 |  | 
| 5602 | static struct block * | 
| 5603 | gen_portrange(compiler_state_t *cstate, int port1, int port2, int ip_proto, | 
| 5604 |     int dir) | 
| 5605 | { | 
| 5606 | 	struct block *b0, *b1, *tmp; | 
| 5607 |  | 
| 5608 | 	/* link proto ip */ | 
| 5609 | 	b0 = gen_linktype(cstate, ETHERTYPE_IP); | 
| 5610 |  | 
| 5611 | 	switch (ip_proto) { | 
| 5612 | 	case IPPROTO_UDP: | 
| 5613 | 	case IPPROTO_TCP: | 
| 5614 | 	case IPPROTO_SCTP: | 
| 5615 | 		b1 = gen_portrangeop(cstate, port1, port2, ip_proto, dir); | 
| 5616 | 		break; | 
| 5617 |  | 
| 5618 | 	case PROTO_UNDEF: | 
| 5619 | 		tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_TCP, dir); | 
| 5620 | 		b1 = gen_portrangeop(cstate, port1, port2, IPPROTO_UDP, dir); | 
| 5621 | 		gen_or(tmp, b1); | 
| 5622 | 		tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_SCTP, dir); | 
| 5623 | 		gen_or(tmp, b1); | 
| 5624 | 		break; | 
| 5625 |  | 
| 5626 | 	default: | 
| 5627 | 		abort(); | 
| 5628 | 	} | 
| 5629 | 	gen_and(b0, b1); | 
| 5630 | 	return b1; | 
| 5631 | } | 
| 5632 |  | 
| 5633 | static struct block * | 
| 5634 | gen_portrangeatom6(compiler_state_t *cstate, int off, bpf_int32 v1, | 
| 5635 |     bpf_int32 v2) | 
| 5636 | { | 
| 5637 | 	struct block *b1, *b2; | 
| 5638 |  | 
| 5639 | 	if (v1 > v2) { | 
| 5640 | 		/* | 
| 5641 | 		 * Reverse the order of the ports, so v1 is the lower one. | 
| 5642 | 		 */ | 
| 5643 | 		bpf_int32 vtemp; | 
| 5644 |  | 
| 5645 | 		vtemp = v1; | 
| 5646 | 		v1 = v2; | 
| 5647 | 		v2 = vtemp; | 
| 5648 | 	} | 
| 5649 |  | 
| 5650 | 	b1 = gen_cmp_ge(cstate, OR_TRAN_IPV6, off, BPF_H, v1); | 
| 5651 | 	b2 = gen_cmp_le(cstate, OR_TRAN_IPV6, off, BPF_H, v2); | 
| 5652 |  | 
| 5653 | 	gen_and(b1, b2); | 
| 5654 |  | 
| 5655 | 	return b2; | 
| 5656 | } | 
| 5657 |  | 
| 5658 | struct block * | 
| 5659 | gen_portrangeop6(compiler_state_t *cstate, int port1, int port2, int proto, | 
| 5660 |     int dir) | 
| 5661 | { | 
| 5662 | 	struct block *b0, *b1, *tmp; | 
| 5663 |  | 
| 5664 | 	/* ip6 proto 'proto' */ | 
| 5665 | 	/* XXX - catch the first fragment of a fragmented packet? */ | 
| 5666 | 	b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, (bpf_int32)proto); | 
| 5667 |  | 
| 5668 | 	switch (dir) { | 
| 5669 | 	case Q_SRC: | 
| 5670 | 		b1 = gen_portrangeatom6(cstate, 0, (bpf_int32)port1, (bpf_int32)port2); | 
| 5671 | 		break; | 
| 5672 |  | 
| 5673 | 	case Q_DST: | 
| 5674 | 		b1 = gen_portrangeatom6(cstate, 2, (bpf_int32)port1, (bpf_int32)port2); | 
| 5675 | 		break; | 
| 5676 |  | 
| 5677 | 	case Q_OR: | 
| 5678 | 	case Q_DEFAULT: | 
| 5679 | 		tmp = gen_portrangeatom6(cstate, 0, (bpf_int32)port1, (bpf_int32)port2); | 
| 5680 | 		b1 = gen_portrangeatom6(cstate, 2, (bpf_int32)port1, (bpf_int32)port2); | 
| 5681 | 		gen_or(tmp, b1); | 
| 5682 | 		break; | 
| 5683 |  | 
| 5684 | 	case Q_AND: | 
| 5685 | 		tmp = gen_portrangeatom6(cstate, 0, (bpf_int32)port1, (bpf_int32)port2); | 
| 5686 | 		b1 = gen_portrangeatom6(cstate, 2, (bpf_int32)port1, (bpf_int32)port2); | 
| 5687 | 		gen_and(tmp, b1); | 
| 5688 | 		break; | 
| 5689 |  | 
| 5690 | 	default: | 
| 5691 | 		abort(); | 
| 5692 | 	} | 
| 5693 | 	gen_and(b0, b1); | 
| 5694 |  | 
| 5695 | 	return b1; | 
| 5696 | } | 
| 5697 |  | 
| 5698 | static struct block * | 
| 5699 | gen_portrange6(compiler_state_t *cstate, int port1, int port2, int ip_proto, | 
| 5700 |     int dir) | 
| 5701 | { | 
| 5702 | 	struct block *b0, *b1, *tmp; | 
| 5703 |  | 
| 5704 | 	/* link proto ip6 */ | 
| 5705 | 	b0 = gen_linktype(cstate, ETHERTYPE_IPV6); | 
| 5706 |  | 
| 5707 | 	switch (ip_proto) { | 
| 5708 | 	case IPPROTO_UDP: | 
| 5709 | 	case IPPROTO_TCP: | 
| 5710 | 	case IPPROTO_SCTP: | 
| 5711 | 		b1 = gen_portrangeop6(cstate, port1, port2, ip_proto, dir); | 
| 5712 | 		break; | 
| 5713 |  | 
| 5714 | 	case PROTO_UNDEF: | 
| 5715 | 		tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_TCP, dir); | 
| 5716 | 		b1 = gen_portrangeop6(cstate, port1, port2, IPPROTO_UDP, dir); | 
| 5717 | 		gen_or(tmp, b1); | 
| 5718 | 		tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_SCTP, dir); | 
| 5719 | 		gen_or(tmp, b1); | 
| 5720 | 		break; | 
| 5721 |  | 
| 5722 | 	default: | 
| 5723 | 		abort(); | 
| 5724 | 	} | 
| 5725 | 	gen_and(b0, b1); | 
| 5726 | 	return b1; | 
| 5727 | } | 
| 5728 |  | 
| 5729 | static int | 
| 5730 | lookup_proto(compiler_state_t *cstate, const char *name, int proto) | 
| 5731 | { | 
| 5732 | 	register int v; | 
| 5733 |  | 
| 5734 | 	switch (proto) { | 
| 5735 |  | 
| 5736 | 	case Q_DEFAULT: | 
| 5737 | 	case Q_IP: | 
| 5738 | 	case Q_IPV6: | 
| 5739 | 		v = pcap_nametoproto(name); | 
| 5740 | 		if (v == PROTO_UNDEF) | 
| 5741 | 			bpf_error(cstate, "unknown ip proto '%s'" , name); | 
| 5742 | 		break; | 
| 5743 |  | 
| 5744 | 	case Q_LINK: | 
| 5745 | 		/* XXX should look up h/w protocol type based on cstate->linktype */ | 
| 5746 | 		v = pcap_nametoeproto(name); | 
| 5747 | 		if (v == PROTO_UNDEF) { | 
| 5748 | 			v = pcap_nametollc(name); | 
| 5749 | 			if (v == PROTO_UNDEF) | 
| 5750 | 				bpf_error(cstate, "unknown ether proto '%s'" , name); | 
| 5751 | 		} | 
| 5752 | 		break; | 
| 5753 |  | 
| 5754 | 	case Q_ISO: | 
| 5755 | 		if (strcmp(name, "esis" ) == 0) | 
| 5756 | 			v = ISO9542_ESIS; | 
| 5757 | 		else if (strcmp(name, "isis" ) == 0) | 
| 5758 | 			v = ISO10589_ISIS; | 
| 5759 | 		else if (strcmp(name, "clnp" ) == 0) | 
| 5760 | 			v = ISO8473_CLNP; | 
| 5761 | 		else | 
| 5762 | 			bpf_error(cstate, "unknown osi proto '%s'" , name); | 
| 5763 | 		break; | 
| 5764 |  | 
| 5765 | 	default: | 
| 5766 | 		v = PROTO_UNDEF; | 
| 5767 | 		break; | 
| 5768 | 	} | 
| 5769 | 	return v; | 
| 5770 | } | 
| 5771 |  | 
| 5772 | #if 0 | 
| 5773 | struct stmt * | 
| 5774 | gen_joinsp(struct stmt **s, int n) | 
| 5775 | { | 
| 5776 | 	return NULL; | 
| 5777 | } | 
| 5778 | #endif | 
| 5779 |  | 
| 5780 | static struct block * | 
| 5781 | gen_protochain(compiler_state_t *cstate, int v, int proto, int dir) | 
| 5782 | { | 
| 5783 | #ifdef NO_PROTOCHAIN | 
| 5784 | 	return gen_proto(cstate, v, proto, dir); | 
| 5785 | #else | 
| 5786 | 	struct block *b0, *b; | 
| 5787 | 	struct slist *s[100]; | 
| 5788 | 	int fix2, fix3, fix4, fix5; | 
| 5789 | 	int ahcheck, again, end; | 
| 5790 | 	int i, max; | 
| 5791 | 	int reg2 = alloc_reg(cstate); | 
| 5792 |  | 
| 5793 | 	memset(s, 0, sizeof(s)); | 
| 5794 | 	fix3 = fix4 = fix5 = 0; | 
| 5795 |  | 
| 5796 | 	switch (proto) { | 
| 5797 | 	case Q_IP: | 
| 5798 | 	case Q_IPV6: | 
| 5799 | 		break; | 
| 5800 | 	case Q_DEFAULT: | 
| 5801 | 		b0 = gen_protochain(cstate, v, Q_IP, dir); | 
| 5802 | 		b = gen_protochain(cstate, v, Q_IPV6, dir); | 
| 5803 | 		gen_or(b0, b); | 
| 5804 | 		return b; | 
| 5805 | 	default: | 
| 5806 | 		bpf_error(cstate, "bad protocol applied for 'protochain'" ); | 
| 5807 | 		/*NOTREACHED*/ | 
| 5808 | 	} | 
| 5809 |  | 
| 5810 | 	/* | 
| 5811 | 	 * We don't handle variable-length prefixes before the link-layer | 
| 5812 | 	 * header, or variable-length link-layer headers, here yet. | 
| 5813 | 	 * We might want to add BPF instructions to do the protochain | 
| 5814 | 	 * work, to simplify that and, on platforms that have a BPF | 
| 5815 | 	 * interpreter with the new instructions, let the filtering | 
| 5816 | 	 * be done in the kernel.  (We already require a modified BPF | 
| 5817 | 	 * engine to do the protochain stuff, to support backward | 
| 5818 | 	 * branches, and backward branch support is unlikely to appear | 
| 5819 | 	 * in kernel BPF engines.) | 
| 5820 | 	 */ | 
| 5821 | 	if (cstate->off_linkpl.is_variable) | 
| 5822 | 		bpf_error(cstate, "'protochain' not supported with variable length headers" ); | 
| 5823 |  | 
| 5824 | 	cstate->no_optimize = 1; /* this code is not compatible with optimizer yet */ | 
| 5825 |  | 
| 5826 | 	/* | 
| 5827 | 	 * s[0] is a dummy entry to protect other BPF insn from damage | 
| 5828 | 	 * by s[fix] = foo with uninitialized variable "fix".  It is somewhat | 
| 5829 | 	 * hard to find interdependency made by jump table fixup. | 
| 5830 | 	 */ | 
| 5831 | 	i = 0; | 
| 5832 | 	s[i] = new_stmt(cstate, 0);	/*dummy*/ | 
| 5833 | 	i++; | 
| 5834 |  | 
| 5835 | 	switch (proto) { | 
| 5836 | 	case Q_IP: | 
| 5837 | 		b0 = gen_linktype(cstate, ETHERTYPE_IP); | 
| 5838 |  | 
| 5839 | 		/* A = ip->ip_p */ | 
| 5840 | 		s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B); | 
| 5841 | 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 9; | 
| 5842 | 		i++; | 
| 5843 | 		/* X = ip->ip_hl << 2 */ | 
| 5844 | 		s[i] = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B); | 
| 5845 | 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl; | 
| 5846 | 		i++; | 
| 5847 | 		break; | 
| 5848 |  | 
| 5849 | 	case Q_IPV6: | 
| 5850 | 		b0 = gen_linktype(cstate, ETHERTYPE_IPV6); | 
| 5851 |  | 
| 5852 | 		/* A = ip6->ip_nxt */ | 
| 5853 | 		s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B); | 
| 5854 | 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 6; | 
| 5855 | 		i++; | 
| 5856 | 		/* X = sizeof(struct ip6_hdr) */ | 
| 5857 | 		s[i] = new_stmt(cstate, BPF_LDX|BPF_IMM); | 
| 5858 | 		s[i]->s.k = 40; | 
| 5859 | 		i++; | 
| 5860 | 		break; | 
| 5861 |  | 
| 5862 | 	default: | 
| 5863 | 		bpf_error(cstate, "unsupported proto to gen_protochain" ); | 
| 5864 | 		/*NOTREACHED*/ | 
| 5865 | 	} | 
| 5866 |  | 
| 5867 | 	/* again: if (A == v) goto end; else fall through; */ | 
| 5868 | 	again = i; | 
| 5869 | 	s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K); | 
| 5870 | 	s[i]->s.k = v; | 
| 5871 | 	s[i]->s.jt = NULL;		/*later*/ | 
| 5872 | 	s[i]->s.jf = NULL;		/*update in next stmt*/ | 
| 5873 | 	fix5 = i; | 
| 5874 | 	i++; | 
| 5875 |  | 
| 5876 | #ifndef IPPROTO_NONE | 
| 5877 | #define IPPROTO_NONE	59 | 
| 5878 | #endif | 
| 5879 | 	/* if (A == IPPROTO_NONE) goto end */ | 
| 5880 | 	s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K); | 
| 5881 | 	s[i]->s.jt = NULL;	/*later*/ | 
| 5882 | 	s[i]->s.jf = NULL;	/*update in next stmt*/ | 
| 5883 | 	s[i]->s.k = IPPROTO_NONE; | 
| 5884 | 	s[fix5]->s.jf = s[i]; | 
| 5885 | 	fix2 = i; | 
| 5886 | 	i++; | 
| 5887 |  | 
| 5888 | 	if (proto == Q_IPV6) { | 
| 5889 | 		int v6start, v6end, v6advance, j; | 
| 5890 |  | 
| 5891 | 		v6start = i; | 
| 5892 | 		/* if (A == IPPROTO_HOPOPTS) goto v6advance */ | 
| 5893 | 		s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K); | 
| 5894 | 		s[i]->s.jt = NULL;	/*later*/ | 
| 5895 | 		s[i]->s.jf = NULL;	/*update in next stmt*/ | 
| 5896 | 		s[i]->s.k = IPPROTO_HOPOPTS; | 
| 5897 | 		s[fix2]->s.jf = s[i]; | 
| 5898 | 		i++; | 
| 5899 | 		/* if (A == IPPROTO_DSTOPTS) goto v6advance */ | 
| 5900 | 		s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K); | 
| 5901 | 		s[i]->s.jt = NULL;	/*later*/ | 
| 5902 | 		s[i]->s.jf = NULL;	/*update in next stmt*/ | 
| 5903 | 		s[i]->s.k = IPPROTO_DSTOPTS; | 
| 5904 | 		i++; | 
| 5905 | 		/* if (A == IPPROTO_ROUTING) goto v6advance */ | 
| 5906 | 		s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K); | 
| 5907 | 		s[i]->s.jt = NULL;	/*later*/ | 
| 5908 | 		s[i]->s.jf = NULL;	/*update in next stmt*/ | 
| 5909 | 		s[i]->s.k = IPPROTO_ROUTING; | 
| 5910 | 		i++; | 
| 5911 | 		/* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */ | 
| 5912 | 		s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K); | 
| 5913 | 		s[i]->s.jt = NULL;	/*later*/ | 
| 5914 | 		s[i]->s.jf = NULL;	/*later*/ | 
| 5915 | 		s[i]->s.k = IPPROTO_FRAGMENT; | 
| 5916 | 		fix3 = i; | 
| 5917 | 		v6end = i; | 
| 5918 | 		i++; | 
| 5919 |  | 
| 5920 | 		/* v6advance: */ | 
| 5921 | 		v6advance = i; | 
| 5922 |  | 
| 5923 | 		/* | 
| 5924 | 		 * in short, | 
| 5925 | 		 * A = P[X + packet head]; | 
| 5926 | 		 * X = X + (P[X + packet head + 1] + 1) * 8; | 
| 5927 | 		 */ | 
| 5928 | 		/* A = P[X + packet head] */ | 
| 5929 | 		s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B); | 
| 5930 | 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl; | 
| 5931 | 		i++; | 
| 5932 | 		/* MEM[reg2] = A */ | 
| 5933 | 		s[i] = new_stmt(cstate, BPF_ST); | 
| 5934 | 		s[i]->s.k = reg2; | 
| 5935 | 		i++; | 
| 5936 | 		/* A = P[X + packet head + 1]; */ | 
| 5937 | 		s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B); | 
| 5938 | 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 1; | 
| 5939 | 		i++; | 
| 5940 | 		/* A += 1 */ | 
| 5941 | 		s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K); | 
| 5942 | 		s[i]->s.k = 1; | 
| 5943 | 		i++; | 
| 5944 | 		/* A *= 8 */ | 
| 5945 | 		s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K); | 
| 5946 | 		s[i]->s.k = 8; | 
| 5947 | 		i++; | 
| 5948 | 		/* A += X */ | 
| 5949 | 		s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X); | 
| 5950 | 		s[i]->s.k = 0; | 
| 5951 | 		i++; | 
| 5952 | 		/* X = A; */ | 
| 5953 | 		s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX); | 
| 5954 | 		i++; | 
| 5955 | 		/* A = MEM[reg2] */ | 
| 5956 | 		s[i] = new_stmt(cstate, BPF_LD|BPF_MEM); | 
| 5957 | 		s[i]->s.k = reg2; | 
| 5958 | 		i++; | 
| 5959 |  | 
| 5960 | 		/* goto again; (must use BPF_JA for backward jump) */ | 
| 5961 | 		s[i] = new_stmt(cstate, BPF_JMP|BPF_JA); | 
| 5962 | 		s[i]->s.k = again - i - 1; | 
| 5963 | 		s[i - 1]->s.jf = s[i]; | 
| 5964 | 		i++; | 
| 5965 |  | 
| 5966 | 		/* fixup */ | 
| 5967 | 		for (j = v6start; j <= v6end; j++) | 
| 5968 | 			s[j]->s.jt = s[v6advance]; | 
| 5969 | 	} else { | 
| 5970 | 		/* nop */ | 
| 5971 | 		s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K); | 
| 5972 | 		s[i]->s.k = 0; | 
| 5973 | 		s[fix2]->s.jf = s[i]; | 
| 5974 | 		i++; | 
| 5975 | 	} | 
| 5976 |  | 
| 5977 | 	/* ahcheck: */ | 
| 5978 | 	ahcheck = i; | 
| 5979 | 	/* if (A == IPPROTO_AH) then fall through; else goto end; */ | 
| 5980 | 	s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K); | 
| 5981 | 	s[i]->s.jt = NULL;	/*later*/ | 
| 5982 | 	s[i]->s.jf = NULL;	/*later*/ | 
| 5983 | 	s[i]->s.k = IPPROTO_AH; | 
| 5984 | 	if (fix3) | 
| 5985 | 		s[fix3]->s.jf = s[ahcheck]; | 
| 5986 | 	fix4 = i; | 
| 5987 | 	i++; | 
| 5988 |  | 
| 5989 | 	/* | 
| 5990 | 	 * in short, | 
| 5991 | 	 * A = P[X]; | 
| 5992 | 	 * X = X + (P[X + 1] + 2) * 4; | 
| 5993 | 	 */ | 
| 5994 | 	/* A = X */ | 
| 5995 | 	s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA); | 
| 5996 | 	i++; | 
| 5997 | 	/* A = P[X + packet head]; */ | 
| 5998 | 	s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B); | 
| 5999 | 	s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl; | 
| 6000 | 	i++; | 
| 6001 | 	/* MEM[reg2] = A */ | 
| 6002 | 	s[i] = new_stmt(cstate, BPF_ST); | 
| 6003 | 	s[i]->s.k = reg2; | 
| 6004 | 	i++; | 
| 6005 | 	/* A = X */ | 
| 6006 | 	s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA); | 
| 6007 | 	i++; | 
| 6008 | 	/* A += 1 */ | 
| 6009 | 	s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K); | 
| 6010 | 	s[i]->s.k = 1; | 
| 6011 | 	i++; | 
| 6012 | 	/* X = A */ | 
| 6013 | 	s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX); | 
| 6014 | 	i++; | 
| 6015 | 	/* A = P[X + packet head] */ | 
| 6016 | 	s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B); | 
| 6017 | 	s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl; | 
| 6018 | 	i++; | 
| 6019 | 	/* A += 2 */ | 
| 6020 | 	s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K); | 
| 6021 | 	s[i]->s.k = 2; | 
| 6022 | 	i++; | 
| 6023 | 	/* A *= 4 */ | 
| 6024 | 	s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K); | 
| 6025 | 	s[i]->s.k = 4; | 
| 6026 | 	i++; | 
| 6027 | 	/* X = A; */ | 
| 6028 | 	s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX); | 
| 6029 | 	i++; | 
| 6030 | 	/* A = MEM[reg2] */ | 
| 6031 | 	s[i] = new_stmt(cstate, BPF_LD|BPF_MEM); | 
| 6032 | 	s[i]->s.k = reg2; | 
| 6033 | 	i++; | 
| 6034 |  | 
| 6035 | 	/* goto again; (must use BPF_JA for backward jump) */ | 
| 6036 | 	s[i] = new_stmt(cstate, BPF_JMP|BPF_JA); | 
| 6037 | 	s[i]->s.k = again - i - 1; | 
| 6038 | 	i++; | 
| 6039 |  | 
| 6040 | 	/* end: nop */ | 
| 6041 | 	end = i; | 
| 6042 | 	s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K); | 
| 6043 | 	s[i]->s.k = 0; | 
| 6044 | 	s[fix2]->s.jt = s[end]; | 
| 6045 | 	s[fix4]->s.jf = s[end]; | 
| 6046 | 	s[fix5]->s.jt = s[end]; | 
| 6047 | 	i++; | 
| 6048 |  | 
| 6049 | 	/* | 
| 6050 | 	 * make slist chain | 
| 6051 | 	 */ | 
| 6052 | 	max = i; | 
| 6053 | 	for (i = 0; i < max - 1; i++) | 
| 6054 | 		s[i]->next = s[i + 1]; | 
| 6055 | 	s[max - 1]->next = NULL; | 
| 6056 |  | 
| 6057 | 	/* | 
| 6058 | 	 * emit final check | 
| 6059 | 	 */ | 
| 6060 | 	b = new_block(cstate, JMP(BPF_JEQ)); | 
| 6061 | 	b->stmts = s[1];	/*remember, s[0] is dummy*/ | 
| 6062 | 	b->s.k = v; | 
| 6063 |  | 
| 6064 | 	free_reg(cstate, reg2); | 
| 6065 |  | 
| 6066 | 	gen_and(b0, b); | 
| 6067 | 	return b; | 
| 6068 | #endif | 
| 6069 | } | 
| 6070 |  | 
| 6071 | static struct block * | 
| 6072 | gen_check_802_11_data_frame(compiler_state_t *cstate) | 
| 6073 | { | 
| 6074 | 	struct slist *s; | 
| 6075 | 	struct block *b0, *b1; | 
| 6076 |  | 
| 6077 | 	/* | 
| 6078 | 	 * A data frame has the 0x08 bit (b3) in the frame control field set | 
| 6079 | 	 * and the 0x04 bit (b2) clear. | 
| 6080 | 	 */ | 
| 6081 | 	s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B); | 
| 6082 | 	b0 = new_block(cstate, JMP(BPF_JSET)); | 
| 6083 | 	b0->s.k = 0x08; | 
| 6084 | 	b0->stmts = s; | 
| 6085 |  | 
| 6086 | 	s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B); | 
| 6087 | 	b1 = new_block(cstate, JMP(BPF_JSET)); | 
| 6088 | 	b1->s.k = 0x04; | 
| 6089 | 	b1->stmts = s; | 
| 6090 | 	gen_not(b1); | 
| 6091 |  | 
| 6092 | 	gen_and(b1, b0); | 
| 6093 |  | 
| 6094 | 	return b0; | 
| 6095 | } | 
| 6096 |  | 
| 6097 | /* | 
| 6098 |  * Generate code that checks whether the packet is a packet for protocol | 
| 6099 |  * <proto> and whether the type field in that protocol's header has | 
| 6100 |  * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an | 
| 6101 |  * IP packet and checks the protocol number in the IP header against <v>. | 
| 6102 |  * | 
| 6103 |  * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks | 
| 6104 |  * against Q_IP and Q_IPV6. | 
| 6105 |  */ | 
| 6106 | static struct block * | 
| 6107 | gen_proto(compiler_state_t *cstate, int v, int proto, int dir) | 
| 6108 | { | 
| 6109 | 	struct block *b0, *b1; | 
| 6110 | #ifndef CHASE_CHAIN | 
| 6111 | 	struct block *b2; | 
| 6112 | #endif | 
| 6113 |  | 
| 6114 | 	if (dir != Q_DEFAULT) | 
| 6115 | 		bpf_error(cstate, "direction applied to 'proto'" ); | 
| 6116 |  | 
| 6117 | 	switch (proto) { | 
| 6118 | 	case Q_DEFAULT: | 
| 6119 | 		b0 = gen_proto(cstate, v, Q_IP, dir); | 
| 6120 | 		b1 = gen_proto(cstate, v, Q_IPV6, dir); | 
| 6121 | 		gen_or(b0, b1); | 
| 6122 | 		return b1; | 
| 6123 |  | 
| 6124 | 	case Q_IP: | 
| 6125 | 		/* | 
| 6126 | 		 * For FDDI, RFC 1188 says that SNAP encapsulation is used, | 
| 6127 | 		 * not LLC encapsulation with LLCSAP_IP. | 
| 6128 | 		 * | 
| 6129 | 		 * For IEEE 802 networks - which includes 802.5 token ring | 
| 6130 | 		 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042 | 
| 6131 | 		 * says that SNAP encapsulation is used, not LLC encapsulation | 
| 6132 | 		 * with LLCSAP_IP. | 
| 6133 | 		 * | 
| 6134 | 		 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and | 
| 6135 | 		 * RFC 2225 say that SNAP encapsulation is used, not LLC | 
| 6136 | 		 * encapsulation with LLCSAP_IP. | 
| 6137 | 		 * | 
| 6138 | 		 * So we always check for ETHERTYPE_IP. | 
| 6139 | 		 */ | 
| 6140 | 		b0 = gen_linktype(cstate, ETHERTYPE_IP); | 
| 6141 | #ifndef CHASE_CHAIN | 
| 6142 | 		b1 = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, (bpf_int32)v); | 
| 6143 | #else | 
| 6144 | 		b1 = gen_protochain(cstate, v, Q_IP); | 
| 6145 | #endif | 
| 6146 | 		gen_and(b0, b1); | 
| 6147 | 		return b1; | 
| 6148 |  | 
| 6149 | 	case Q_ISO: | 
| 6150 | 		switch (cstate->linktype) { | 
| 6151 |  | 
| 6152 | 		case DLT_FRELAY: | 
| 6153 | 			/* | 
| 6154 | 			 * Frame Relay packets typically have an OSI | 
| 6155 | 			 * NLPID at the beginning; "gen_linktype(cstate, LLCSAP_ISONS)" | 
| 6156 | 			 * generates code to check for all the OSI | 
| 6157 | 			 * NLPIDs, so calling it and then adding a check | 
| 6158 | 			 * for the particular NLPID for which we're | 
| 6159 | 			 * looking is bogus, as we can just check for | 
| 6160 | 			 * the NLPID. | 
| 6161 | 			 * | 
| 6162 | 			 * What we check for is the NLPID and a frame | 
| 6163 | 			 * control field value of UI, i.e. 0x03 followed | 
| 6164 | 			 * by the NLPID. | 
| 6165 | 			 * | 
| 6166 | 			 * XXX - assumes a 2-byte Frame Relay header with | 
| 6167 | 			 * DLCI and flags.  What if the address is longer? | 
| 6168 | 			 * | 
| 6169 | 			 * XXX - what about SNAP-encapsulated frames? | 
| 6170 | 			 */ | 
| 6171 | 			return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | v); | 
| 6172 | 			/*NOTREACHED*/ | 
| 6173 | 			break; | 
| 6174 |  | 
| 6175 | 		case DLT_C_HDLC: | 
| 6176 | 			/* | 
| 6177 | 			 * Cisco uses an Ethertype lookalike - for OSI, | 
| 6178 | 			 * it's 0xfefe. | 
| 6179 | 			 */ | 
| 6180 | 			b0 = gen_linktype(cstate, LLCSAP_ISONS<<8 | LLCSAP_ISONS); | 
| 6181 | 			/* OSI in C-HDLC is stuffed with a fudge byte */ | 
| 6182 | 			b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 1, BPF_B, (long)v); | 
| 6183 | 			gen_and(b0, b1); | 
| 6184 | 			return b1; | 
| 6185 |  | 
| 6186 | 		default: | 
| 6187 | 			b0 = gen_linktype(cstate, LLCSAP_ISONS); | 
| 6188 | 			b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 0, BPF_B, (long)v); | 
| 6189 | 			gen_and(b0, b1); | 
| 6190 | 			return b1; | 
| 6191 | 		} | 
| 6192 |  | 
| 6193 | 	case Q_ISIS: | 
| 6194 | 		b0 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT); | 
| 6195 | 		/* | 
| 6196 | 		 * 4 is the offset of the PDU type relative to the IS-IS | 
| 6197 | 		 * header. | 
| 6198 | 		 */ | 
| 6199 | 		b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 4, BPF_B, (long)v); | 
| 6200 | 		gen_and(b0, b1); | 
| 6201 | 		return b1; | 
| 6202 |  | 
| 6203 | 	case Q_ARP: | 
| 6204 | 		bpf_error(cstate, "arp does not encapsulate another protocol" ); | 
| 6205 | 		/* NOTREACHED */ | 
| 6206 |  | 
| 6207 | 	case Q_RARP: | 
| 6208 | 		bpf_error(cstate, "rarp does not encapsulate another protocol" ); | 
| 6209 | 		/* NOTREACHED */ | 
| 6210 |  | 
| 6211 | 	case Q_ATALK: | 
| 6212 | 		bpf_error(cstate, "atalk encapsulation is not specifiable" ); | 
| 6213 | 		/* NOTREACHED */ | 
| 6214 |  | 
| 6215 | 	case Q_DECNET: | 
| 6216 | 		bpf_error(cstate, "decnet encapsulation is not specifiable" ); | 
| 6217 | 		/* NOTREACHED */ | 
| 6218 |  | 
| 6219 | 	case Q_SCA: | 
| 6220 | 		bpf_error(cstate, "sca does not encapsulate another protocol" ); | 
| 6221 | 		/* NOTREACHED */ | 
| 6222 |  | 
| 6223 | 	case Q_LAT: | 
| 6224 | 		bpf_error(cstate, "lat does not encapsulate another protocol" ); | 
| 6225 | 		/* NOTREACHED */ | 
| 6226 |  | 
| 6227 | 	case Q_MOPRC: | 
| 6228 | 		bpf_error(cstate, "moprc does not encapsulate another protocol" ); | 
| 6229 | 		/* NOTREACHED */ | 
| 6230 |  | 
| 6231 | 	case Q_MOPDL: | 
| 6232 | 		bpf_error(cstate, "mopdl does not encapsulate another protocol" ); | 
| 6233 | 		/* NOTREACHED */ | 
| 6234 |  | 
| 6235 | 	case Q_LINK: | 
| 6236 | 		return gen_linktype(cstate, v); | 
| 6237 |  | 
| 6238 | 	case Q_UDP: | 
| 6239 | 		bpf_error(cstate, "'udp proto' is bogus" ); | 
| 6240 | 		/* NOTREACHED */ | 
| 6241 |  | 
| 6242 | 	case Q_TCP: | 
| 6243 | 		bpf_error(cstate, "'tcp proto' is bogus" ); | 
| 6244 | 		/* NOTREACHED */ | 
| 6245 |  | 
| 6246 | 	case Q_SCTP: | 
| 6247 | 		bpf_error(cstate, "'sctp proto' is bogus" ); | 
| 6248 | 		/* NOTREACHED */ | 
| 6249 |  | 
| 6250 | 	case Q_ICMP: | 
| 6251 | 		bpf_error(cstate, "'icmp proto' is bogus" ); | 
| 6252 | 		/* NOTREACHED */ | 
| 6253 |  | 
| 6254 | 	case Q_IGMP: | 
| 6255 | 		bpf_error(cstate, "'igmp proto' is bogus" ); | 
| 6256 | 		/* NOTREACHED */ | 
| 6257 |  | 
| 6258 | 	case Q_IGRP: | 
| 6259 | 		bpf_error(cstate, "'igrp proto' is bogus" ); | 
| 6260 | 		/* NOTREACHED */ | 
| 6261 |  | 
| 6262 | 	case Q_PIM: | 
| 6263 | 		bpf_error(cstate, "'pim proto' is bogus" ); | 
| 6264 | 		/* NOTREACHED */ | 
| 6265 |  | 
| 6266 | 	case Q_VRRP: | 
| 6267 | 		bpf_error(cstate, "'vrrp proto' is bogus" ); | 
| 6268 | 		/* NOTREACHED */ | 
| 6269 |  | 
| 6270 | 	case Q_CARP: | 
| 6271 | 		bpf_error(cstate, "'carp proto' is bogus" ); | 
| 6272 | 		/* NOTREACHED */ | 
| 6273 |  | 
| 6274 | 	case Q_IPV6: | 
| 6275 | 		b0 = gen_linktype(cstate, ETHERTYPE_IPV6); | 
| 6276 | #ifndef CHASE_CHAIN | 
| 6277 | 		/* | 
| 6278 | 		 * Also check for a fragment header before the final | 
| 6279 | 		 * header. | 
| 6280 | 		 */ | 
| 6281 | 		b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, IPPROTO_FRAGMENT); | 
| 6282 | 		b1 = gen_cmp(cstate, OR_LINKPL, 40, BPF_B, (bpf_int32)v); | 
| 6283 | 		gen_and(b2, b1); | 
| 6284 | 		b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, (bpf_int32)v); | 
| 6285 | 		gen_or(b2, b1); | 
| 6286 | #else | 
| 6287 | 		b1 = gen_protochain(cstate, v, Q_IPV6); | 
| 6288 | #endif | 
| 6289 | 		gen_and(b0, b1); | 
| 6290 | 		return b1; | 
| 6291 |  | 
| 6292 | 	case Q_ICMPV6: | 
| 6293 | 		bpf_error(cstate, "'icmp6 proto' is bogus" ); | 
| 6294 |  | 
| 6295 | 	case Q_AH: | 
| 6296 | 		bpf_error(cstate, "'ah proto' is bogus" ); | 
| 6297 |  | 
| 6298 | 	case Q_ESP: | 
| 6299 | 		bpf_error(cstate, "'ah proto' is bogus" ); | 
| 6300 |  | 
| 6301 | 	case Q_STP: | 
| 6302 | 		bpf_error(cstate, "'stp proto' is bogus" ); | 
| 6303 |  | 
| 6304 | 	case Q_IPX: | 
| 6305 | 		bpf_error(cstate, "'ipx proto' is bogus" ); | 
| 6306 |  | 
| 6307 | 	case Q_NETBEUI: | 
| 6308 | 		bpf_error(cstate, "'netbeui proto' is bogus" ); | 
| 6309 |  | 
| 6310 | 	case Q_RADIO: | 
| 6311 | 		bpf_error(cstate, "'radio proto' is bogus" ); | 
| 6312 |  | 
| 6313 | 	default: | 
| 6314 | 		abort(); | 
| 6315 | 		/* NOTREACHED */ | 
| 6316 | 	} | 
| 6317 | 	/* NOTREACHED */ | 
| 6318 | } | 
| 6319 |  | 
| 6320 | struct block * | 
| 6321 | gen_scode(compiler_state_t *cstate, const char *name, struct qual q) | 
| 6322 | { | 
| 6323 | 	int proto = q.proto; | 
| 6324 | 	int dir = q.dir; | 
| 6325 | 	int tproto; | 
| 6326 | 	u_char *eaddr; | 
| 6327 | 	bpf_u_int32 mask, addr; | 
| 6328 | 	struct addrinfo *res, *res0; | 
| 6329 | 	struct sockaddr_in *sin4; | 
| 6330 | #ifdef INET6 | 
| 6331 | 	int tproto6; | 
| 6332 | 	struct sockaddr_in6 *sin6; | 
| 6333 | 	struct in6_addr mask128; | 
| 6334 | #endif /*INET6*/ | 
| 6335 | 	struct block *b, *tmp; | 
| 6336 | 	int port, real_proto; | 
| 6337 | 	int port1, port2; | 
| 6338 |  | 
| 6339 | 	switch (q.addr) { | 
| 6340 |  | 
| 6341 | 	case Q_NET: | 
| 6342 | 		addr = pcap_nametonetaddr(name); | 
| 6343 | 		if (addr == 0) | 
| 6344 | 			bpf_error(cstate, "unknown network '%s'" , name); | 
| 6345 | 		/* Left justify network addr and calculate its network mask */ | 
| 6346 | 		mask = 0xffffffff; | 
| 6347 | 		while (addr && (addr & 0xff000000) == 0) { | 
| 6348 | 			addr <<= 8; | 
| 6349 | 			mask <<= 8; | 
| 6350 | 		} | 
| 6351 | 		return gen_host(cstate, addr, mask, proto, dir, q.addr); | 
| 6352 |  | 
| 6353 | 	case Q_DEFAULT: | 
| 6354 | 	case Q_HOST: | 
| 6355 | 		if (proto == Q_LINK) { | 
| 6356 | 			switch (cstate->linktype) { | 
| 6357 |  | 
| 6358 | 			case DLT_EN10MB: | 
| 6359 | 			case DLT_NETANALYZER: | 
| 6360 | 			case DLT_NETANALYZER_TRANSPARENT: | 
| 6361 | 				eaddr = pcap_ether_hostton(name); | 
| 6362 | 				if (eaddr == NULL) | 
| 6363 | 					bpf_error(cstate, | 
| 6364 | 					    "unknown ether host '%s'" , name); | 
| 6365 | 				tmp = gen_prevlinkhdr_check(cstate); | 
| 6366 | 				b = gen_ehostop(cstate, eaddr, dir); | 
| 6367 | 				if (tmp != NULL) | 
| 6368 | 					gen_and(tmp, b); | 
| 6369 | 				free(eaddr); | 
| 6370 | 				return b; | 
| 6371 |  | 
| 6372 | 			case DLT_FDDI: | 
| 6373 | 				eaddr = pcap_ether_hostton(name); | 
| 6374 | 				if (eaddr == NULL) | 
| 6375 | 					bpf_error(cstate, | 
| 6376 | 					    "unknown FDDI host '%s'" , name); | 
| 6377 | 				b = gen_fhostop(cstate, eaddr, dir); | 
| 6378 | 				free(eaddr); | 
| 6379 | 				return b; | 
| 6380 |  | 
| 6381 | 			case DLT_IEEE802: | 
| 6382 | 				eaddr = pcap_ether_hostton(name); | 
| 6383 | 				if (eaddr == NULL) | 
| 6384 | 					bpf_error(cstate, | 
| 6385 | 					    "unknown token ring host '%s'" , name); | 
| 6386 | 				b = gen_thostop(cstate, eaddr, dir); | 
| 6387 | 				free(eaddr); | 
| 6388 | 				return b; | 
| 6389 |  | 
| 6390 | 			case DLT_IEEE802_11: | 
| 6391 | 			case DLT_PRISM_HEADER: | 
| 6392 | 			case DLT_IEEE802_11_RADIO_AVS: | 
| 6393 | 			case DLT_IEEE802_11_RADIO: | 
| 6394 | 			case DLT_PPI: | 
| 6395 | 				eaddr = pcap_ether_hostton(name); | 
| 6396 | 				if (eaddr == NULL) | 
| 6397 | 					bpf_error(cstate, | 
| 6398 | 					    "unknown 802.11 host '%s'" , name); | 
| 6399 | 				b = gen_wlanhostop(cstate, eaddr, dir); | 
| 6400 | 				free(eaddr); | 
| 6401 | 				return b; | 
| 6402 |  | 
| 6403 | 			case DLT_IP_OVER_FC: | 
| 6404 | 				eaddr = pcap_ether_hostton(name); | 
| 6405 | 				if (eaddr == NULL) | 
| 6406 | 					bpf_error(cstate, | 
| 6407 | 					    "unknown Fibre Channel host '%s'" , name); | 
| 6408 | 				b = gen_ipfchostop(cstate, eaddr, dir); | 
| 6409 | 				free(eaddr); | 
| 6410 | 				return b; | 
| 6411 | 			} | 
| 6412 |  | 
| 6413 | 			bpf_error(cstate, "only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name" ); | 
| 6414 | 		} else if (proto == Q_DECNET) { | 
| 6415 | 			unsigned short dn_addr; | 
| 6416 |  | 
| 6417 | 			if (!__pcap_nametodnaddr(name, &dn_addr)) { | 
| 6418 | #ifdef	DECNETLIB | 
| 6419 | 				bpf_error(cstate, "unknown decnet host name '%s'\n" , name); | 
| 6420 | #else | 
| 6421 | 				bpf_error(cstate, "decnet name support not included, '%s' cannot be translated\n" , | 
| 6422 | 					name); | 
| 6423 | #endif | 
| 6424 | 			} | 
| 6425 | 			/* | 
| 6426 | 			 * I don't think DECNET hosts can be multihomed, so | 
| 6427 | 			 * there is no need to build up a list of addresses | 
| 6428 | 			 */ | 
| 6429 | 			return (gen_host(cstate, dn_addr, 0, proto, dir, q.addr)); | 
| 6430 | 		} else { | 
| 6431 | #ifdef INET6 | 
| 6432 | 			memset(&mask128, 0xff, sizeof(mask128)); | 
| 6433 | #endif | 
| 6434 | 			res0 = res = pcap_nametoaddrinfo(name); | 
| 6435 | 			if (res == NULL) | 
| 6436 | 				bpf_error(cstate, "unknown host '%s'" , name); | 
| 6437 | 			cstate->ai = res; | 
| 6438 | 			b = tmp = NULL; | 
| 6439 | 			tproto = proto; | 
| 6440 | #ifdef INET6 | 
| 6441 | 			tproto6 = proto; | 
| 6442 | #endif | 
| 6443 | 			if (cstate->off_linktype.constant_part == OFFSET_NOT_SET && | 
| 6444 | 			    tproto == Q_DEFAULT) { | 
| 6445 | 				tproto = Q_IP; | 
| 6446 | #ifdef INET6 | 
| 6447 | 				tproto6 = Q_IPV6; | 
| 6448 | #endif | 
| 6449 | 			} | 
| 6450 | 			for (res = res0; res; res = res->ai_next) { | 
| 6451 | 				switch (res->ai_family) { | 
| 6452 | 				case AF_INET: | 
| 6453 | #ifdef INET6 | 
| 6454 | 					if (tproto == Q_IPV6) | 
| 6455 | 						continue; | 
| 6456 | #endif | 
| 6457 |  | 
| 6458 | 					sin4 = (struct sockaddr_in *) | 
| 6459 | 						res->ai_addr; | 
| 6460 | 					tmp = gen_host(cstate, ntohl(sin4->sin_addr.s_addr), | 
| 6461 | 						0xffffffff, tproto, dir, q.addr); | 
| 6462 | 					break; | 
| 6463 | #ifdef INET6 | 
| 6464 | 				case AF_INET6: | 
| 6465 | 					if (tproto6 == Q_IP) | 
| 6466 | 						continue; | 
| 6467 |  | 
| 6468 | 					sin6 = (struct sockaddr_in6 *) | 
| 6469 | 						res->ai_addr; | 
| 6470 | 					tmp = gen_host6(cstate, &sin6->sin6_addr, | 
| 6471 | 						&mask128, tproto6, dir, q.addr); | 
| 6472 | 					break; | 
| 6473 | #endif | 
| 6474 | 				default: | 
| 6475 | 					continue; | 
| 6476 | 				} | 
| 6477 | 				if (b) | 
| 6478 | 					gen_or(b, tmp); | 
| 6479 | 				b = tmp; | 
| 6480 | 			} | 
| 6481 | 			cstate->ai = NULL; | 
| 6482 | 			freeaddrinfo(res0); | 
| 6483 | 			if (b == NULL) { | 
| 6484 | 				bpf_error(cstate, "unknown host '%s'%s" , name, | 
| 6485 | 				    (proto == Q_DEFAULT) | 
| 6486 | 					? ""  | 
| 6487 | 					: " for specified address family" ); | 
| 6488 | 			} | 
| 6489 | 			return b; | 
| 6490 | 		} | 
| 6491 |  | 
| 6492 | 	case Q_PORT: | 
| 6493 | 		if (proto != Q_DEFAULT && | 
| 6494 | 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP) | 
| 6495 | 			bpf_error(cstate, "illegal qualifier of 'port'" ); | 
| 6496 | 		if (pcap_nametoport(name, &port, &real_proto) == 0) | 
| 6497 | 			bpf_error(cstate, "unknown port '%s'" , name); | 
| 6498 | 		if (proto == Q_UDP) { | 
| 6499 | 			if (real_proto == IPPROTO_TCP) | 
| 6500 | 				bpf_error(cstate, "port '%s' is tcp" , name); | 
| 6501 | 			else if (real_proto == IPPROTO_SCTP) | 
| 6502 | 				bpf_error(cstate, "port '%s' is sctp" , name); | 
| 6503 | 			else | 
| 6504 | 				/* override PROTO_UNDEF */ | 
| 6505 | 				real_proto = IPPROTO_UDP; | 
| 6506 | 		} | 
| 6507 | 		if (proto == Q_TCP) { | 
| 6508 | 			if (real_proto == IPPROTO_UDP) | 
| 6509 | 				bpf_error(cstate, "port '%s' is udp" , name); | 
| 6510 |  | 
| 6511 | 			else if (real_proto == IPPROTO_SCTP) | 
| 6512 | 				bpf_error(cstate, "port '%s' is sctp" , name); | 
| 6513 | 			else | 
| 6514 | 				/* override PROTO_UNDEF */ | 
| 6515 | 				real_proto = IPPROTO_TCP; | 
| 6516 | 		} | 
| 6517 | 		if (proto == Q_SCTP) { | 
| 6518 | 			if (real_proto == IPPROTO_UDP) | 
| 6519 | 				bpf_error(cstate, "port '%s' is udp" , name); | 
| 6520 |  | 
| 6521 | 			else if (real_proto == IPPROTO_TCP) | 
| 6522 | 				bpf_error(cstate, "port '%s' is tcp" , name); | 
| 6523 | 			else | 
| 6524 | 				/* override PROTO_UNDEF */ | 
| 6525 | 				real_proto = IPPROTO_SCTP; | 
| 6526 | 		} | 
| 6527 | 		if (port < 0) | 
| 6528 | 			bpf_error(cstate, "illegal port number %d < 0" , port); | 
| 6529 | 		if (port > 65535) | 
| 6530 | 			bpf_error(cstate, "illegal port number %d > 65535" , port); | 
| 6531 | 		b = gen_port(cstate, port, real_proto, dir); | 
| 6532 | 		gen_or(gen_port6(cstate, port, real_proto, dir), b); | 
| 6533 | 		return b; | 
| 6534 |  | 
| 6535 | 	case Q_PORTRANGE: | 
| 6536 | 		if (proto != Q_DEFAULT && | 
| 6537 | 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP) | 
| 6538 | 			bpf_error(cstate, "illegal qualifier of 'portrange'" ); | 
| 6539 | 		if (pcap_nametoportrange(name, &port1, &port2, &real_proto) == 0) | 
| 6540 | 			bpf_error(cstate, "unknown port in range '%s'" , name); | 
| 6541 | 		if (proto == Q_UDP) { | 
| 6542 | 			if (real_proto == IPPROTO_TCP) | 
| 6543 | 				bpf_error(cstate, "port in range '%s' is tcp" , name); | 
| 6544 | 			else if (real_proto == IPPROTO_SCTP) | 
| 6545 | 				bpf_error(cstate, "port in range '%s' is sctp" , name); | 
| 6546 | 			else | 
| 6547 | 				/* override PROTO_UNDEF */ | 
| 6548 | 				real_proto = IPPROTO_UDP; | 
| 6549 | 		} | 
| 6550 | 		if (proto == Q_TCP) { | 
| 6551 | 			if (real_proto == IPPROTO_UDP) | 
| 6552 | 				bpf_error(cstate, "port in range '%s' is udp" , name); | 
| 6553 | 			else if (real_proto == IPPROTO_SCTP) | 
| 6554 | 				bpf_error(cstate, "port in range '%s' is sctp" , name); | 
| 6555 | 			else | 
| 6556 | 				/* override PROTO_UNDEF */ | 
| 6557 | 				real_proto = IPPROTO_TCP; | 
| 6558 | 		} | 
| 6559 | 		if (proto == Q_SCTP) { | 
| 6560 | 			if (real_proto == IPPROTO_UDP) | 
| 6561 | 				bpf_error(cstate, "port in range '%s' is udp" , name); | 
| 6562 | 			else if (real_proto == IPPROTO_TCP) | 
| 6563 | 				bpf_error(cstate, "port in range '%s' is tcp" , name); | 
| 6564 | 			else | 
| 6565 | 				/* override PROTO_UNDEF */ | 
| 6566 | 				real_proto = IPPROTO_SCTP; | 
| 6567 | 		} | 
| 6568 | 		if (port1 < 0) | 
| 6569 | 			bpf_error(cstate, "illegal port number %d < 0" , port1); | 
| 6570 | 		if (port1 > 65535) | 
| 6571 | 			bpf_error(cstate, "illegal port number %d > 65535" , port1); | 
| 6572 | 		if (port2 < 0) | 
| 6573 | 			bpf_error(cstate, "illegal port number %d < 0" , port2); | 
| 6574 | 		if (port2 > 65535) | 
| 6575 | 			bpf_error(cstate, "illegal port number %d > 65535" , port2); | 
| 6576 |  | 
| 6577 | 		b = gen_portrange(cstate, port1, port2, real_proto, dir); | 
| 6578 | 		gen_or(gen_portrange6(cstate, port1, port2, real_proto, dir), b); | 
| 6579 | 		return b; | 
| 6580 |  | 
| 6581 | 	case Q_GATEWAY: | 
| 6582 | #ifndef INET6 | 
| 6583 | 		eaddr = pcap_ether_hostton(name); | 
| 6584 | 		if (eaddr == NULL) | 
| 6585 | 			bpf_error(cstate, "unknown ether host: %s" , name); | 
| 6586 |  | 
| 6587 | 		res = pcap_nametoaddrinfo(name); | 
| 6588 | 		cstate->ai = res; | 
| 6589 | 		if (res == NULL) | 
| 6590 | 			bpf_error(cstate, "unknown host '%s'" , name); | 
| 6591 | 		b = gen_gateway(cstate, eaddr, res, proto, dir); | 
| 6592 | 		cstate->ai = NULL; | 
| 6593 | 		freeaddrinfo(res); | 
| 6594 | 		if (b == NULL) | 
| 6595 | 			bpf_error(cstate, "unknown host '%s'" , name); | 
| 6596 | 		return b; | 
| 6597 | #else | 
| 6598 | 		bpf_error(cstate, "'gateway' not supported in this configuration" ); | 
| 6599 | #endif /*INET6*/ | 
| 6600 |  | 
| 6601 | 	case Q_PROTO: | 
| 6602 | 		real_proto = lookup_proto(cstate, name, proto); | 
| 6603 | 		if (real_proto >= 0) | 
| 6604 | 			return gen_proto(cstate, real_proto, proto, dir); | 
| 6605 | 		else | 
| 6606 | 			bpf_error(cstate, "unknown protocol: %s" , name); | 
| 6607 |  | 
| 6608 | 	case Q_PROTOCHAIN: | 
| 6609 | 		real_proto = lookup_proto(cstate, name, proto); | 
| 6610 | 		if (real_proto >= 0) | 
| 6611 | 			return gen_protochain(cstate, real_proto, proto, dir); | 
| 6612 | 		else | 
| 6613 | 			bpf_error(cstate, "unknown protocol: %s" , name); | 
| 6614 |  | 
| 6615 | 	case Q_UNDEF: | 
| 6616 | 		syntax(cstate); | 
| 6617 | 		/* NOTREACHED */ | 
| 6618 | 	} | 
| 6619 | 	abort(); | 
| 6620 | 	/* NOTREACHED */ | 
| 6621 | } | 
| 6622 |  | 
| 6623 | struct block * | 
| 6624 | gen_mcode(compiler_state_t *cstate, const char *s1, const char *s2, | 
| 6625 |     unsigned int masklen, struct qual q) | 
| 6626 | { | 
| 6627 | 	register int nlen, mlen; | 
| 6628 | 	bpf_u_int32 n, m; | 
| 6629 |  | 
| 6630 | 	nlen = __pcap_atoin(s1, &n); | 
| 6631 | 	/* Promote short ipaddr */ | 
| 6632 | 	n <<= 32 - nlen; | 
| 6633 |  | 
| 6634 | 	if (s2 != NULL) { | 
| 6635 | 		mlen = __pcap_atoin(s2, &m); | 
| 6636 | 		/* Promote short ipaddr */ | 
| 6637 | 		m <<= 32 - mlen; | 
| 6638 | 		if ((n & ~m) != 0) | 
| 6639 | 			bpf_error(cstate, "non-network bits set in \"%s mask %s\"" , | 
| 6640 | 			    s1, s2); | 
| 6641 | 	} else { | 
| 6642 | 		/* Convert mask len to mask */ | 
| 6643 | 		if (masklen > 32) | 
| 6644 | 			bpf_error(cstate, "mask length must be <= 32" ); | 
| 6645 | 		if (masklen == 0) { | 
| 6646 | 			/* | 
| 6647 | 			 * X << 32 is not guaranteed by C to be 0; it's | 
| 6648 | 			 * undefined. | 
| 6649 | 			 */ | 
| 6650 | 			m = 0; | 
| 6651 | 		} else | 
| 6652 | 			m = 0xffffffff << (32 - masklen); | 
| 6653 | 		if ((n & ~m) != 0) | 
| 6654 | 			bpf_error(cstate, "non-network bits set in \"%s/%d\"" , | 
| 6655 | 			    s1, masklen); | 
| 6656 | 	} | 
| 6657 |  | 
| 6658 | 	switch (q.addr) { | 
| 6659 |  | 
| 6660 | 	case Q_NET: | 
| 6661 | 		return gen_host(cstate, n, m, q.proto, q.dir, q.addr); | 
| 6662 |  | 
| 6663 | 	default: | 
| 6664 | 		bpf_error(cstate, "Mask syntax for networks only" ); | 
| 6665 | 		/* NOTREACHED */ | 
| 6666 | 	} | 
| 6667 | 	/* NOTREACHED */ | 
| 6668 | } | 
| 6669 |  | 
| 6670 | struct block * | 
| 6671 | gen_ncode(compiler_state_t *cstate, const char *s, bpf_u_int32 v, struct qual q) | 
| 6672 | { | 
| 6673 | 	bpf_u_int32 mask; | 
| 6674 | 	int proto = q.proto; | 
| 6675 | 	int dir = q.dir; | 
| 6676 | 	register int vlen; | 
| 6677 |  | 
| 6678 | 	if (s == NULL) | 
| 6679 | 		vlen = 32; | 
| 6680 | 	else if (q.proto == Q_DECNET) { | 
| 6681 | 		vlen = __pcap_atodn(s, &v); | 
| 6682 | 		if (vlen == 0) | 
| 6683 | 			bpf_error(cstate, "malformed decnet address '%s'" , s); | 
| 6684 | 	} else | 
| 6685 | 		vlen = __pcap_atoin(s, &v); | 
| 6686 |  | 
| 6687 | 	switch (q.addr) { | 
| 6688 |  | 
| 6689 | 	case Q_DEFAULT: | 
| 6690 | 	case Q_HOST: | 
| 6691 | 	case Q_NET: | 
| 6692 | 		if (proto == Q_DECNET) | 
| 6693 | 			return gen_host(cstate, v, 0, proto, dir, q.addr); | 
| 6694 | 		else if (proto == Q_LINK) { | 
| 6695 | 			bpf_error(cstate, "illegal link layer address" ); | 
| 6696 | 		} else { | 
| 6697 | 			mask = 0xffffffff; | 
| 6698 | 			if (s == NULL && q.addr == Q_NET) { | 
| 6699 | 				/* Promote short net number */ | 
| 6700 | 				while (v && (v & 0xff000000) == 0) { | 
| 6701 | 					v <<= 8; | 
| 6702 | 					mask <<= 8; | 
| 6703 | 				} | 
| 6704 | 			} else { | 
| 6705 | 				/* Promote short ipaddr */ | 
| 6706 | 				v <<= 32 - vlen; | 
| 6707 | 				mask <<= 32 - vlen ; | 
| 6708 | 			} | 
| 6709 | 			return gen_host(cstate, v, mask, proto, dir, q.addr); | 
| 6710 | 		} | 
| 6711 |  | 
| 6712 | 	case Q_PORT: | 
| 6713 | 		if (proto == Q_UDP) | 
| 6714 | 			proto = IPPROTO_UDP; | 
| 6715 | 		else if (proto == Q_TCP) | 
| 6716 | 			proto = IPPROTO_TCP; | 
| 6717 | 		else if (proto == Q_SCTP) | 
| 6718 | 			proto = IPPROTO_SCTP; | 
| 6719 | 		else if (proto == Q_DEFAULT) | 
| 6720 | 			proto = PROTO_UNDEF; | 
| 6721 | 		else | 
| 6722 | 			bpf_error(cstate, "illegal qualifier of 'port'" ); | 
| 6723 |  | 
| 6724 | 		if (v > 65535) | 
| 6725 | 			bpf_error(cstate, "illegal port number %u > 65535" , v); | 
| 6726 |  | 
| 6727 | 	    { | 
| 6728 | 		struct block *b; | 
| 6729 | 		b = gen_port(cstate, (int)v, proto, dir); | 
| 6730 | 		gen_or(gen_port6(cstate, (int)v, proto, dir), b); | 
| 6731 | 		return b; | 
| 6732 | 	    } | 
| 6733 |  | 
| 6734 | 	case Q_PORTRANGE: | 
| 6735 | 		if (proto == Q_UDP) | 
| 6736 | 			proto = IPPROTO_UDP; | 
| 6737 | 		else if (proto == Q_TCP) | 
| 6738 | 			proto = IPPROTO_TCP; | 
| 6739 | 		else if (proto == Q_SCTP) | 
| 6740 | 			proto = IPPROTO_SCTP; | 
| 6741 | 		else if (proto == Q_DEFAULT) | 
| 6742 | 			proto = PROTO_UNDEF; | 
| 6743 | 		else | 
| 6744 | 			bpf_error(cstate, "illegal qualifier of 'portrange'" ); | 
| 6745 |  | 
| 6746 | 		if (v > 65535) | 
| 6747 | 			bpf_error(cstate, "illegal port number %u > 65535" , v); | 
| 6748 |  | 
| 6749 | 	    { | 
| 6750 | 		struct block *b; | 
| 6751 | 		b = gen_portrange(cstate, (int)v, (int)v, proto, dir); | 
| 6752 | 		gen_or(gen_portrange6(cstate, (int)v, (int)v, proto, dir), b); | 
| 6753 | 		return b; | 
| 6754 | 	    } | 
| 6755 |  | 
| 6756 | 	case Q_GATEWAY: | 
| 6757 | 		bpf_error(cstate, "'gateway' requires a name" ); | 
| 6758 | 		/* NOTREACHED */ | 
| 6759 |  | 
| 6760 | 	case Q_PROTO: | 
| 6761 | 		return gen_proto(cstate, (int)v, proto, dir); | 
| 6762 |  | 
| 6763 | 	case Q_PROTOCHAIN: | 
| 6764 | 		return gen_protochain(cstate, (int)v, proto, dir); | 
| 6765 |  | 
| 6766 | 	case Q_UNDEF: | 
| 6767 | 		syntax(cstate); | 
| 6768 | 		/* NOTREACHED */ | 
| 6769 |  | 
| 6770 | 	default: | 
| 6771 | 		abort(); | 
| 6772 | 		/* NOTREACHED */ | 
| 6773 | 	} | 
| 6774 | 	/* NOTREACHED */ | 
| 6775 | } | 
| 6776 |  | 
| 6777 | #ifdef INET6 | 
| 6778 | struct block * | 
| 6779 | gen_mcode6(compiler_state_t *cstate, const char *s1, const char *s2, | 
| 6780 |     unsigned int masklen, struct qual q) | 
| 6781 | { | 
| 6782 | 	struct addrinfo *res; | 
| 6783 | 	struct in6_addr *addr; | 
| 6784 | 	struct in6_addr mask; | 
| 6785 | 	struct block *b; | 
| 6786 | 	uint32_t *a, *m; | 
| 6787 |  | 
| 6788 | 	if (s2) | 
| 6789 | 		bpf_error(cstate, "no mask %s supported" , s2); | 
| 6790 |  | 
| 6791 | 	res = pcap_nametoaddrinfo(s1); | 
| 6792 | 	if (!res) | 
| 6793 | 		bpf_error(cstate, "invalid ip6 address %s" , s1); | 
| 6794 | 	cstate->ai = res; | 
| 6795 | 	if (res->ai_next) | 
| 6796 | 		bpf_error(cstate, "%s resolved to multiple address" , s1); | 
| 6797 | 	addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr; | 
| 6798 |  | 
| 6799 | 	if (sizeof(mask) * 8 < masklen) | 
| 6800 | 		bpf_error(cstate, "mask length must be <= %u" , (unsigned int)(sizeof(mask) * 8)); | 
| 6801 | 	memset(&mask, 0, sizeof(mask)); | 
| 6802 | 	memset(&mask, 0xff, masklen / 8); | 
| 6803 | 	if (masklen % 8) { | 
| 6804 | 		mask.s6_addr[masklen / 8] = | 
| 6805 | 			(0xff << (8 - masklen % 8)) & 0xff; | 
| 6806 | 	} | 
| 6807 |  | 
| 6808 | 	a = (uint32_t *)addr; | 
| 6809 | 	m = (uint32_t *)&mask; | 
| 6810 | 	if ((a[0] & ~m[0]) || (a[1] & ~m[1]) | 
| 6811 | 	 || (a[2] & ~m[2]) || (a[3] & ~m[3])) { | 
| 6812 | 		bpf_error(cstate, "non-network bits set in \"%s/%d\"" , s1, masklen); | 
| 6813 | 	} | 
| 6814 |  | 
| 6815 | 	switch (q.addr) { | 
| 6816 |  | 
| 6817 | 	case Q_DEFAULT: | 
| 6818 | 	case Q_HOST: | 
| 6819 | 		if (masklen != 128) | 
| 6820 | 			bpf_error(cstate, "Mask syntax for networks only" ); | 
| 6821 | 		/* FALLTHROUGH */ | 
| 6822 |  | 
| 6823 | 	case Q_NET: | 
| 6824 | 		b = gen_host6(cstate, addr, &mask, q.proto, q.dir, q.addr); | 
| 6825 | 		cstate->ai = NULL; | 
| 6826 | 		freeaddrinfo(res); | 
| 6827 | 		return b; | 
| 6828 |  | 
| 6829 | 	default: | 
| 6830 | 		bpf_error(cstate, "invalid qualifier against IPv6 address" ); | 
| 6831 | 		/* NOTREACHED */ | 
| 6832 | 	} | 
| 6833 | } | 
| 6834 | #endif /*INET6*/ | 
| 6835 |  | 
| 6836 | struct block * | 
| 6837 | gen_ecode(compiler_state_t *cstate, const u_char *eaddr, struct qual q) | 
| 6838 | { | 
| 6839 | 	struct block *b, *tmp; | 
| 6840 |  | 
| 6841 | 	if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) { | 
| 6842 | 		switch (cstate->linktype) { | 
| 6843 | 		case DLT_EN10MB: | 
| 6844 | 		case DLT_NETANALYZER: | 
| 6845 | 		case DLT_NETANALYZER_TRANSPARENT: | 
| 6846 | 			tmp = gen_prevlinkhdr_check(cstate); | 
| 6847 | 			b = gen_ehostop(cstate, eaddr, (int)q.dir); | 
| 6848 | 			if (tmp != NULL) | 
| 6849 | 				gen_and(tmp, b); | 
| 6850 | 			return b; | 
| 6851 | 		case DLT_FDDI: | 
| 6852 | 			return gen_fhostop(cstate, eaddr, (int)q.dir); | 
| 6853 | 		case DLT_IEEE802: | 
| 6854 | 			return gen_thostop(cstate, eaddr, (int)q.dir); | 
| 6855 | 		case DLT_IEEE802_11: | 
| 6856 | 		case DLT_PRISM_HEADER: | 
| 6857 | 		case DLT_IEEE802_11_RADIO_AVS: | 
| 6858 | 		case DLT_IEEE802_11_RADIO: | 
| 6859 | 		case DLT_PPI: | 
| 6860 | 			return gen_wlanhostop(cstate, eaddr, (int)q.dir); | 
| 6861 | 		case DLT_IP_OVER_FC: | 
| 6862 | 			return gen_ipfchostop(cstate, eaddr, (int)q.dir); | 
| 6863 | 		default: | 
| 6864 | 			bpf_error(cstate, "ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel" ); | 
| 6865 | 			break; | 
| 6866 | 		} | 
| 6867 | 	} | 
| 6868 | 	bpf_error(cstate, "ethernet address used in non-ether expression" ); | 
| 6869 | 	/* NOTREACHED */ | 
| 6870 | } | 
| 6871 |  | 
| 6872 | void | 
| 6873 | sappend(struct slist *s0, struct slist *s1) | 
| 6874 | { | 
| 6875 | 	/* | 
| 6876 | 	 * This is definitely not the best way to do this, but the | 
| 6877 | 	 * lists will rarely get long. | 
| 6878 | 	 */ | 
| 6879 | 	while (s0->next) | 
| 6880 | 		s0 = s0->next; | 
| 6881 | 	s0->next = s1; | 
| 6882 | } | 
| 6883 |  | 
| 6884 | static struct slist * | 
| 6885 | xfer_to_x(compiler_state_t *cstate, struct arth *a) | 
| 6886 | { | 
| 6887 | 	struct slist *s; | 
| 6888 |  | 
| 6889 | 	s = new_stmt(cstate, BPF_LDX|BPF_MEM); | 
| 6890 | 	s->s.k = a->regno; | 
| 6891 | 	return s; | 
| 6892 | } | 
| 6893 |  | 
| 6894 | static struct slist * | 
| 6895 | xfer_to_a(compiler_state_t *cstate, struct arth *a) | 
| 6896 | { | 
| 6897 | 	struct slist *s; | 
| 6898 |  | 
| 6899 | 	s = new_stmt(cstate, BPF_LD|BPF_MEM); | 
| 6900 | 	s->s.k = a->regno; | 
| 6901 | 	return s; | 
| 6902 | } | 
| 6903 |  | 
| 6904 | /* | 
| 6905 |  * Modify "index" to use the value stored into its register as an | 
| 6906 |  * offset relative to the beginning of the header for the protocol | 
| 6907 |  * "proto", and allocate a register and put an item "size" bytes long | 
| 6908 |  * (1, 2, or 4) at that offset into that register, making it the register | 
| 6909 |  * for "index". | 
| 6910 |  */ | 
| 6911 | struct arth * | 
| 6912 | gen_load(compiler_state_t *cstate, int proto, struct arth *inst, int size) | 
| 6913 | { | 
| 6914 | 	struct slist *s, *tmp; | 
| 6915 | 	struct block *b; | 
| 6916 | 	int regno = alloc_reg(cstate); | 
| 6917 |  | 
| 6918 | 	free_reg(cstate, inst->regno); | 
| 6919 | 	switch (size) { | 
| 6920 |  | 
| 6921 | 	default: | 
| 6922 | 		bpf_error(cstate, "data size must be 1, 2, or 4" ); | 
| 6923 |  | 
| 6924 | 	case 1: | 
| 6925 | 		size = BPF_B; | 
| 6926 | 		break; | 
| 6927 |  | 
| 6928 | 	case 2: | 
| 6929 | 		size = BPF_H; | 
| 6930 | 		break; | 
| 6931 |  | 
| 6932 | 	case 4: | 
| 6933 | 		size = BPF_W; | 
| 6934 | 		break; | 
| 6935 | 	} | 
| 6936 | 	switch (proto) { | 
| 6937 | 	default: | 
| 6938 | 		bpf_error(cstate, "unsupported index operation" ); | 
| 6939 |  | 
| 6940 | 	case Q_RADIO: | 
| 6941 | 		/* | 
| 6942 | 		 * The offset is relative to the beginning of the packet | 
| 6943 | 		 * data, if we have a radio header.  (If we don't, this | 
| 6944 | 		 * is an error.) | 
| 6945 | 		 */ | 
| 6946 | 		if (cstate->linktype != DLT_IEEE802_11_RADIO_AVS && | 
| 6947 | 		    cstate->linktype != DLT_IEEE802_11_RADIO && | 
| 6948 | 		    cstate->linktype != DLT_PRISM_HEADER) | 
| 6949 | 			bpf_error(cstate, "radio information not present in capture" ); | 
| 6950 |  | 
| 6951 | 		/* | 
| 6952 | 		 * Load into the X register the offset computed into the | 
| 6953 | 		 * register specified by "index". | 
| 6954 | 		 */ | 
| 6955 | 		s = xfer_to_x(cstate, inst); | 
| 6956 |  | 
| 6957 | 		/* | 
| 6958 | 		 * Load the item at that offset. | 
| 6959 | 		 */ | 
| 6960 | 		tmp = new_stmt(cstate, BPF_LD|BPF_IND|size); | 
| 6961 | 		sappend(s, tmp); | 
| 6962 | 		sappend(inst->s, s); | 
| 6963 | 		break; | 
| 6964 |  | 
| 6965 | 	case Q_LINK: | 
| 6966 | 		/* | 
| 6967 | 		 * The offset is relative to the beginning of | 
| 6968 | 		 * the link-layer header. | 
| 6969 | 		 * | 
| 6970 | 		 * XXX - what about ATM LANE?  Should the index be | 
| 6971 | 		 * relative to the beginning of the AAL5 frame, so | 
| 6972 | 		 * that 0 refers to the beginning of the LE Control | 
| 6973 | 		 * field, or relative to the beginning of the LAN | 
| 6974 | 		 * frame, so that 0 refers, for Ethernet LANE, to | 
| 6975 | 		 * the beginning of the destination address? | 
| 6976 | 		 */ | 
| 6977 | 		s = gen_abs_offset_varpart(cstate, &cstate->off_linkhdr); | 
| 6978 |  | 
| 6979 | 		/* | 
| 6980 | 		 * If "s" is non-null, it has code to arrange that the | 
| 6981 | 		 * X register contains the length of the prefix preceding | 
| 6982 | 		 * the link-layer header.  Add to it the offset computed | 
| 6983 | 		 * into the register specified by "index", and move that | 
| 6984 | 		 * into the X register.  Otherwise, just load into the X | 
| 6985 | 		 * register the offset computed into the register specified | 
| 6986 | 		 * by "index". | 
| 6987 | 		 */ | 
| 6988 | 		if (s != NULL) { | 
| 6989 | 			sappend(s, xfer_to_a(cstate, inst)); | 
| 6990 | 			sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X)); | 
| 6991 | 			sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX)); | 
| 6992 | 		} else | 
| 6993 | 			s = xfer_to_x(cstate, inst); | 
| 6994 |  | 
| 6995 | 		/* | 
| 6996 | 		 * Load the item at the sum of the offset we've put in the | 
| 6997 | 		 * X register and the offset of the start of the link | 
| 6998 | 		 * layer header (which is 0 if the radio header is | 
| 6999 | 		 * variable-length; that header length is what we put | 
| 7000 | 		 * into the X register and then added to the index). | 
| 7001 | 		 */ | 
| 7002 | 		tmp = new_stmt(cstate, BPF_LD|BPF_IND|size); | 
| 7003 | 		tmp->s.k = cstate->off_linkhdr.constant_part; | 
| 7004 | 		sappend(s, tmp); | 
| 7005 | 		sappend(inst->s, s); | 
| 7006 | 		break; | 
| 7007 |  | 
| 7008 | 	case Q_IP: | 
| 7009 | 	case Q_ARP: | 
| 7010 | 	case Q_RARP: | 
| 7011 | 	case Q_ATALK: | 
| 7012 | 	case Q_DECNET: | 
| 7013 | 	case Q_SCA: | 
| 7014 | 	case Q_LAT: | 
| 7015 | 	case Q_MOPRC: | 
| 7016 | 	case Q_MOPDL: | 
| 7017 | 	case Q_IPV6: | 
| 7018 | 		/* | 
| 7019 | 		 * The offset is relative to the beginning of | 
| 7020 | 		 * the network-layer header. | 
| 7021 | 		 * XXX - are there any cases where we want | 
| 7022 | 		 * cstate->off_nl_nosnap? | 
| 7023 | 		 */ | 
| 7024 | 		s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl); | 
| 7025 |  | 
| 7026 | 		/* | 
| 7027 | 		 * If "s" is non-null, it has code to arrange that the | 
| 7028 | 		 * X register contains the variable part of the offset | 
| 7029 | 		 * of the link-layer payload.  Add to it the offset | 
| 7030 | 		 * computed into the register specified by "index", | 
| 7031 | 		 * and move that into the X register.  Otherwise, just | 
| 7032 | 		 * load into the X register the offset computed into | 
| 7033 | 		 * the register specified by "index". | 
| 7034 | 		 */ | 
| 7035 | 		if (s != NULL) { | 
| 7036 | 			sappend(s, xfer_to_a(cstate, inst)); | 
| 7037 | 			sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X)); | 
| 7038 | 			sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX)); | 
| 7039 | 		} else | 
| 7040 | 			s = xfer_to_x(cstate, inst); | 
| 7041 |  | 
| 7042 | 		/* | 
| 7043 | 		 * Load the item at the sum of the offset we've put in the | 
| 7044 | 		 * X register, the offset of the start of the network | 
| 7045 | 		 * layer header from the beginning of the link-layer | 
| 7046 | 		 * payload, and the constant part of the offset of the | 
| 7047 | 		 * start of the link-layer payload. | 
| 7048 | 		 */ | 
| 7049 | 		tmp = new_stmt(cstate, BPF_LD|BPF_IND|size); | 
| 7050 | 		tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl; | 
| 7051 | 		sappend(s, tmp); | 
| 7052 | 		sappend(inst->s, s); | 
| 7053 |  | 
| 7054 | 		/* | 
| 7055 | 		 * Do the computation only if the packet contains | 
| 7056 | 		 * the protocol in question. | 
| 7057 | 		 */ | 
| 7058 | 		b = gen_proto_abbrev(cstate, proto); | 
| 7059 | 		if (inst->b) | 
| 7060 | 			gen_and(inst->b, b); | 
| 7061 | 		inst->b = b; | 
| 7062 | 		break; | 
| 7063 |  | 
| 7064 | 	case Q_SCTP: | 
| 7065 | 	case Q_TCP: | 
| 7066 | 	case Q_UDP: | 
| 7067 | 	case Q_ICMP: | 
| 7068 | 	case Q_IGMP: | 
| 7069 | 	case Q_IGRP: | 
| 7070 | 	case Q_PIM: | 
| 7071 | 	case Q_VRRP: | 
| 7072 | 	case Q_CARP: | 
| 7073 | 		/* | 
| 7074 | 		 * The offset is relative to the beginning of | 
| 7075 | 		 * the transport-layer header. | 
| 7076 | 		 * | 
| 7077 | 		 * Load the X register with the length of the IPv4 header | 
| 7078 | 		 * (plus the offset of the link-layer header, if it's | 
| 7079 | 		 * a variable-length header), in bytes. | 
| 7080 | 		 * | 
| 7081 | 		 * XXX - are there any cases where we want | 
| 7082 | 		 * cstate->off_nl_nosnap? | 
| 7083 | 		 * XXX - we should, if we're built with | 
| 7084 | 		 * IPv6 support, generate code to load either | 
| 7085 | 		 * IPv4, IPv6, or both, as appropriate. | 
| 7086 | 		 */ | 
| 7087 | 		s = gen_loadx_iphdrlen(cstate); | 
| 7088 |  | 
| 7089 | 		/* | 
| 7090 | 		 * The X register now contains the sum of the variable | 
| 7091 | 		 * part of the offset of the link-layer payload and the | 
| 7092 | 		 * length of the network-layer header. | 
| 7093 | 		 * | 
| 7094 | 		 * Load into the A register the offset relative to | 
| 7095 | 		 * the beginning of the transport layer header, | 
| 7096 | 		 * add the X register to that, move that to the | 
| 7097 | 		 * X register, and load with an offset from the | 
| 7098 | 		 * X register equal to the sum of the constant part of | 
| 7099 | 		 * the offset of the link-layer payload and the offset, | 
| 7100 | 		 * relative to the beginning of the link-layer payload, | 
| 7101 | 		 * of the network-layer header. | 
| 7102 | 		 */ | 
| 7103 | 		sappend(s, xfer_to_a(cstate, inst)); | 
| 7104 | 		sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X)); | 
| 7105 | 		sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX)); | 
| 7106 | 		sappend(s, tmp = new_stmt(cstate, BPF_LD|BPF_IND|size)); | 
| 7107 | 		tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl; | 
| 7108 | 		sappend(inst->s, s); | 
| 7109 |  | 
| 7110 | 		/* | 
| 7111 | 		 * Do the computation only if the packet contains | 
| 7112 | 		 * the protocol in question - which is true only | 
| 7113 | 		 * if this is an IP datagram and is the first or | 
| 7114 | 		 * only fragment of that datagram. | 
| 7115 | 		 */ | 
| 7116 | 		gen_and(gen_proto_abbrev(cstate, proto), b = gen_ipfrag(cstate)); | 
| 7117 | 		if (inst->b) | 
| 7118 | 			gen_and(inst->b, b); | 
| 7119 | 		gen_and(gen_proto_abbrev(cstate, Q_IP), b); | 
| 7120 | 		inst->b = b; | 
| 7121 | 		break; | 
| 7122 | 	case Q_ICMPV6: | 
| 7123 |         /* | 
| 7124 |         * Do the computation only if the packet contains | 
| 7125 |         * the protocol in question. | 
| 7126 |         */ | 
| 7127 |         b = gen_proto_abbrev(cstate, Q_IPV6); | 
| 7128 |         if (inst->b) { | 
| 7129 |             gen_and(inst->b, b); | 
| 7130 |         } | 
| 7131 |         inst->b = b; | 
| 7132 |  | 
| 7133 |         /* | 
| 7134 |         * Check if we have an icmp6 next header | 
| 7135 |         */ | 
| 7136 |         b = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, 58); | 
| 7137 |         if (inst->b) { | 
| 7138 |             gen_and(inst->b, b); | 
| 7139 |         } | 
| 7140 |         inst->b = b; | 
| 7141 |  | 
| 7142 |  | 
| 7143 |         s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl); | 
| 7144 |         /* | 
| 7145 |         * If "s" is non-null, it has code to arrange that the | 
| 7146 |         * X register contains the variable part of the offset | 
| 7147 |         * of the link-layer payload.  Add to it the offset | 
| 7148 |         * computed into the register specified by "index", | 
| 7149 |         * and move that into the X register.  Otherwise, just | 
| 7150 |         * load into the X register the offset computed into | 
| 7151 |         * the register specified by "index". | 
| 7152 |         */ | 
| 7153 |         if (s != NULL) { | 
| 7154 |             sappend(s, xfer_to_a(cstate, inst)); | 
| 7155 |             sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X)); | 
| 7156 |             sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX)); | 
| 7157 |         } else { | 
| 7158 |             s = xfer_to_x(cstate, inst); | 
| 7159 |         } | 
| 7160 |  | 
| 7161 |         /* | 
| 7162 |         * Load the item at the sum of the offset we've put in the | 
| 7163 |         * X register, the offset of the start of the network | 
| 7164 |         * layer header from the beginning of the link-layer | 
| 7165 |         * payload, and the constant part of the offset of the | 
| 7166 |         * start of the link-layer payload. | 
| 7167 |         */ | 
| 7168 |         tmp = new_stmt(cstate, BPF_LD|BPF_IND|size); | 
| 7169 |         tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 40; | 
| 7170 |  | 
| 7171 |         sappend(s, tmp); | 
| 7172 |         sappend(inst->s, s); | 
| 7173 |  | 
| 7174 |         break; | 
| 7175 | 	} | 
| 7176 | 	inst->regno = regno; | 
| 7177 | 	s = new_stmt(cstate, BPF_ST); | 
| 7178 | 	s->s.k = regno; | 
| 7179 | 	sappend(inst->s, s); | 
| 7180 |  | 
| 7181 | 	return inst; | 
| 7182 | } | 
| 7183 |  | 
| 7184 | struct block * | 
| 7185 | gen_relation(compiler_state_t *cstate, int code, struct arth *a0, | 
| 7186 |     struct arth *a1, int reversed) | 
| 7187 | { | 
| 7188 | 	struct slist *s0, *s1, *s2; | 
| 7189 | 	struct block *b, *tmp; | 
| 7190 |  | 
| 7191 | 	s0 = xfer_to_x(cstate, a1); | 
| 7192 | 	s1 = xfer_to_a(cstate, a0); | 
| 7193 | 	if (code == BPF_JEQ) { | 
| 7194 | 		s2 = new_stmt(cstate, BPF_ALU|BPF_SUB|BPF_X); | 
| 7195 | 		b = new_block(cstate, JMP(code)); | 
| 7196 | 		sappend(s1, s2); | 
| 7197 | 	} | 
| 7198 | 	else | 
| 7199 | 		b = new_block(cstate, BPF_JMP|code|BPF_X); | 
| 7200 | 	if (reversed) | 
| 7201 | 		gen_not(b); | 
| 7202 |  | 
| 7203 | 	sappend(s0, s1); | 
| 7204 | 	sappend(a1->s, s0); | 
| 7205 | 	sappend(a0->s, a1->s); | 
| 7206 |  | 
| 7207 | 	b->stmts = a0->s; | 
| 7208 |  | 
| 7209 | 	free_reg(cstate, a0->regno); | 
| 7210 | 	free_reg(cstate, a1->regno); | 
| 7211 |  | 
| 7212 | 	/* 'and' together protocol checks */ | 
| 7213 | 	if (a0->b) { | 
| 7214 | 		if (a1->b) { | 
| 7215 | 			gen_and(a0->b, tmp = a1->b); | 
| 7216 | 		} | 
| 7217 | 		else | 
| 7218 | 			tmp = a0->b; | 
| 7219 | 	} else | 
| 7220 | 		tmp = a1->b; | 
| 7221 |  | 
| 7222 | 	if (tmp) | 
| 7223 | 		gen_and(tmp, b); | 
| 7224 |  | 
| 7225 | 	return b; | 
| 7226 | } | 
| 7227 |  | 
| 7228 | struct arth * | 
| 7229 | gen_loadlen(compiler_state_t *cstate) | 
| 7230 | { | 
| 7231 | 	int regno = alloc_reg(cstate); | 
| 7232 | 	struct arth *a = (struct arth *)newchunk(cstate, sizeof(*a)); | 
| 7233 | 	struct slist *s; | 
| 7234 |  | 
| 7235 | 	s = new_stmt(cstate, BPF_LD|BPF_LEN); | 
| 7236 | 	s->next = new_stmt(cstate, BPF_ST); | 
| 7237 | 	s->next->s.k = regno; | 
| 7238 | 	a->s = s; | 
| 7239 | 	a->regno = regno; | 
| 7240 |  | 
| 7241 | 	return a; | 
| 7242 | } | 
| 7243 |  | 
| 7244 | struct arth * | 
| 7245 | gen_loadi(compiler_state_t *cstate, int val) | 
| 7246 | { | 
| 7247 | 	struct arth *a; | 
| 7248 | 	struct slist *s; | 
| 7249 | 	int reg; | 
| 7250 |  | 
| 7251 | 	a = (struct arth *)newchunk(cstate, sizeof(*a)); | 
| 7252 |  | 
| 7253 | 	reg = alloc_reg(cstate); | 
| 7254 |  | 
| 7255 | 	s = new_stmt(cstate, BPF_LD|BPF_IMM); | 
| 7256 | 	s->s.k = val; | 
| 7257 | 	s->next = new_stmt(cstate, BPF_ST); | 
| 7258 | 	s->next->s.k = reg; | 
| 7259 | 	a->s = s; | 
| 7260 | 	a->regno = reg; | 
| 7261 |  | 
| 7262 | 	return a; | 
| 7263 | } | 
| 7264 |  | 
| 7265 | struct arth * | 
| 7266 | gen_neg(compiler_state_t *cstate, struct arth *a) | 
| 7267 | { | 
| 7268 | 	struct slist *s; | 
| 7269 |  | 
| 7270 | 	s = xfer_to_a(cstate, a); | 
| 7271 | 	sappend(a->s, s); | 
| 7272 | 	s = new_stmt(cstate, BPF_ALU|BPF_NEG); | 
| 7273 | 	s->s.k = 0; | 
| 7274 | 	sappend(a->s, s); | 
| 7275 | 	s = new_stmt(cstate, BPF_ST); | 
| 7276 | 	s->s.k = a->regno; | 
| 7277 | 	sappend(a->s, s); | 
| 7278 |  | 
| 7279 | 	return a; | 
| 7280 | } | 
| 7281 |  | 
| 7282 | struct arth * | 
| 7283 | gen_arth(compiler_state_t *cstate, int code, struct arth *a0, | 
| 7284 |     struct arth *a1) | 
| 7285 | { | 
| 7286 | 	struct slist *s0, *s1, *s2; | 
| 7287 |  | 
| 7288 | 	/* | 
| 7289 | 	 * Disallow division by, or modulus by, zero; we do this here | 
| 7290 | 	 * so that it gets done even if the optimizer is disabled. | 
| 7291 | 	 */ | 
| 7292 | 	if (code == BPF_DIV) { | 
| 7293 | 		if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0) | 
| 7294 | 			bpf_error(cstate, "division by zero" ); | 
| 7295 | 	} else if (code == BPF_MOD) { | 
| 7296 | 		if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0) | 
| 7297 | 			bpf_error(cstate, "modulus by zero" ); | 
| 7298 | 	} | 
| 7299 | 	s0 = xfer_to_x(cstate, a1); | 
| 7300 | 	s1 = xfer_to_a(cstate, a0); | 
| 7301 | 	s2 = new_stmt(cstate, BPF_ALU|BPF_X|code); | 
| 7302 |  | 
| 7303 | 	sappend(s1, s2); | 
| 7304 | 	sappend(s0, s1); | 
| 7305 | 	sappend(a1->s, s0); | 
| 7306 | 	sappend(a0->s, a1->s); | 
| 7307 |  | 
| 7308 | 	free_reg(cstate, a0->regno); | 
| 7309 | 	free_reg(cstate, a1->regno); | 
| 7310 |  | 
| 7311 | 	s0 = new_stmt(cstate, BPF_ST); | 
| 7312 | 	a0->regno = s0->s.k = alloc_reg(cstate); | 
| 7313 | 	sappend(a0->s, s0); | 
| 7314 |  | 
| 7315 | 	return a0; | 
| 7316 | } | 
| 7317 |  | 
| 7318 | /* | 
| 7319 |  * Initialize the table of used registers and the current register. | 
| 7320 |  */ | 
| 7321 | static void | 
| 7322 | init_regs(compiler_state_t *cstate) | 
| 7323 | { | 
| 7324 | 	cstate->curreg = 0; | 
| 7325 | 	memset(cstate->regused, 0, sizeof cstate->regused); | 
| 7326 | } | 
| 7327 |  | 
| 7328 | /* | 
| 7329 |  * Return the next free register. | 
| 7330 |  */ | 
| 7331 | static int | 
| 7332 | alloc_reg(compiler_state_t *cstate) | 
| 7333 | { | 
| 7334 | 	int n = BPF_MEMWORDS; | 
| 7335 |  | 
| 7336 | 	while (--n >= 0) { | 
| 7337 | 		if (cstate->regused[cstate->curreg]) | 
| 7338 | 			cstate->curreg = (cstate->curreg + 1) % BPF_MEMWORDS; | 
| 7339 | 		else { | 
| 7340 | 			cstate->regused[cstate->curreg] = 1; | 
| 7341 | 			return cstate->curreg; | 
| 7342 | 		} | 
| 7343 | 	} | 
| 7344 | 	bpf_error(cstate, "too many registers needed to evaluate expression" ); | 
| 7345 | 	/* NOTREACHED */ | 
| 7346 | } | 
| 7347 |  | 
| 7348 | /* | 
| 7349 |  * Return a register to the table so it can | 
| 7350 |  * be used later. | 
| 7351 |  */ | 
| 7352 | static void | 
| 7353 | free_reg(compiler_state_t *cstate, int n) | 
| 7354 | { | 
| 7355 | 	cstate->regused[n] = 0; | 
| 7356 | } | 
| 7357 |  | 
| 7358 | static struct block * | 
| 7359 | gen_len(compiler_state_t *cstate, int jmp, int n) | 
| 7360 | { | 
| 7361 | 	struct slist *s; | 
| 7362 | 	struct block *b; | 
| 7363 |  | 
| 7364 | 	s = new_stmt(cstate, BPF_LD|BPF_LEN); | 
| 7365 | 	b = new_block(cstate, JMP(jmp)); | 
| 7366 | 	b->stmts = s; | 
| 7367 | 	b->s.k = n; | 
| 7368 |  | 
| 7369 | 	return b; | 
| 7370 | } | 
| 7371 |  | 
| 7372 | struct block * | 
| 7373 | gen_greater(compiler_state_t *cstate, int n) | 
| 7374 | { | 
| 7375 | 	return gen_len(cstate, BPF_JGE, n); | 
| 7376 | } | 
| 7377 |  | 
| 7378 | /* | 
| 7379 |  * Actually, this is less than or equal. | 
| 7380 |  */ | 
| 7381 | struct block * | 
| 7382 | gen_less(compiler_state_t *cstate, int n) | 
| 7383 | { | 
| 7384 | 	struct block *b; | 
| 7385 |  | 
| 7386 | 	b = gen_len(cstate, BPF_JGT, n); | 
| 7387 | 	gen_not(b); | 
| 7388 |  | 
| 7389 | 	return b; | 
| 7390 | } | 
| 7391 |  | 
| 7392 | /* | 
| 7393 |  * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to | 
| 7394 |  * the beginning of the link-layer header. | 
| 7395 |  * XXX - that means you can't test values in the radiotap header, but | 
| 7396 |  * as that header is difficult if not impossible to parse generally | 
| 7397 |  * without a loop, that might not be a severe problem.  A new keyword | 
| 7398 |  * "radio" could be added for that, although what you'd really want | 
| 7399 |  * would be a way of testing particular radio header values, which | 
| 7400 |  * would generate code appropriate to the radio header in question. | 
| 7401 |  */ | 
| 7402 | struct block * | 
| 7403 | gen_byteop(compiler_state_t *cstate, int op, int idx, int val) | 
| 7404 | { | 
| 7405 | 	struct block *b; | 
| 7406 | 	struct slist *s; | 
| 7407 |  | 
| 7408 | 	switch (op) { | 
| 7409 | 	default: | 
| 7410 | 		abort(); | 
| 7411 |  | 
| 7412 | 	case '=': | 
| 7413 | 		return gen_cmp(cstate, OR_LINKHDR, (u_int)idx, BPF_B, (bpf_int32)val); | 
| 7414 |  | 
| 7415 | 	case '<': | 
| 7416 | 		b = gen_cmp_lt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, (bpf_int32)val); | 
| 7417 | 		return b; | 
| 7418 |  | 
| 7419 | 	case '>': | 
| 7420 | 		b = gen_cmp_gt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, (bpf_int32)val); | 
| 7421 | 		return b; | 
| 7422 |  | 
| 7423 | 	case '|': | 
| 7424 | 		s = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_K); | 
| 7425 | 		break; | 
| 7426 |  | 
| 7427 | 	case '&': | 
| 7428 | 		s = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K); | 
| 7429 | 		break; | 
| 7430 | 	} | 
| 7431 | 	s->s.k = val; | 
| 7432 | 	b = new_block(cstate, JMP(BPF_JEQ)); | 
| 7433 | 	b->stmts = s; | 
| 7434 | 	gen_not(b); | 
| 7435 |  | 
| 7436 | 	return b; | 
| 7437 | } | 
| 7438 |  | 
| 7439 | static const u_char abroadcast[] = { 0x0 }; | 
| 7440 |  | 
| 7441 | struct block * | 
| 7442 | gen_broadcast(compiler_state_t *cstate, int proto) | 
| 7443 | { | 
| 7444 | 	bpf_u_int32 hostmask; | 
| 7445 | 	struct block *b0, *b1, *b2; | 
| 7446 | 	static const u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; | 
| 7447 |  | 
| 7448 | 	switch (proto) { | 
| 7449 |  | 
| 7450 | 	case Q_DEFAULT: | 
| 7451 | 	case Q_LINK: | 
| 7452 | 		switch (cstate->linktype) { | 
| 7453 | 		case DLT_ARCNET: | 
| 7454 | 		case DLT_ARCNET_LINUX: | 
| 7455 | 			return gen_ahostop(cstate, abroadcast, Q_DST); | 
| 7456 | 		case DLT_EN10MB: | 
| 7457 | 		case DLT_NETANALYZER: | 
| 7458 | 		case DLT_NETANALYZER_TRANSPARENT: | 
| 7459 | 			b1 = gen_prevlinkhdr_check(cstate); | 
| 7460 | 			b0 = gen_ehostop(cstate, ebroadcast, Q_DST); | 
| 7461 | 			if (b1 != NULL) | 
| 7462 | 				gen_and(b1, b0); | 
| 7463 | 			return b0; | 
| 7464 | 		case DLT_FDDI: | 
| 7465 | 			return gen_fhostop(cstate, ebroadcast, Q_DST); | 
| 7466 | 		case DLT_IEEE802: | 
| 7467 | 			return gen_thostop(cstate, ebroadcast, Q_DST); | 
| 7468 | 		case DLT_IEEE802_11: | 
| 7469 | 		case DLT_PRISM_HEADER: | 
| 7470 | 		case DLT_IEEE802_11_RADIO_AVS: | 
| 7471 | 		case DLT_IEEE802_11_RADIO: | 
| 7472 | 		case DLT_PPI: | 
| 7473 | 			return gen_wlanhostop(cstate, ebroadcast, Q_DST); | 
| 7474 | 		case DLT_IP_OVER_FC: | 
| 7475 | 			return gen_ipfchostop(cstate, ebroadcast, Q_DST); | 
| 7476 | 		default: | 
| 7477 | 			bpf_error(cstate, "not a broadcast link" ); | 
| 7478 | 		} | 
| 7479 | 		break; | 
| 7480 |  | 
| 7481 | 	case Q_IP: | 
| 7482 | 		/* | 
| 7483 | 		 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff) | 
| 7484 | 		 * as an indication that we don't know the netmask, and fail | 
| 7485 | 		 * in that case. | 
| 7486 | 		 */ | 
| 7487 | 		if (cstate->netmask == PCAP_NETMASK_UNKNOWN) | 
| 7488 | 			bpf_error(cstate, "netmask not known, so 'ip broadcast' not supported" ); | 
| 7489 | 		b0 = gen_linktype(cstate, ETHERTYPE_IP); | 
| 7490 | 		hostmask = ~cstate->netmask; | 
| 7491 | 		b1 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W, (bpf_int32)0, hostmask); | 
| 7492 | 		b2 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W, | 
| 7493 | 			      (bpf_int32)(~0 & hostmask), hostmask); | 
| 7494 | 		gen_or(b1, b2); | 
| 7495 | 		gen_and(b0, b2); | 
| 7496 | 		return b2; | 
| 7497 | 	} | 
| 7498 | 	bpf_error(cstate, "only link-layer/IP broadcast filters supported" ); | 
| 7499 | 	/* NOTREACHED */ | 
| 7500 | } | 
| 7501 |  | 
| 7502 | /* | 
| 7503 |  * Generate code to test the low-order bit of a MAC address (that's | 
| 7504 |  * the bottom bit of the *first* byte). | 
| 7505 |  */ | 
| 7506 | static struct block * | 
| 7507 | gen_mac_multicast(compiler_state_t *cstate, int offset) | 
| 7508 | { | 
| 7509 | 	register struct block *b0; | 
| 7510 | 	register struct slist *s; | 
| 7511 |  | 
| 7512 | 	/* link[offset] & 1 != 0 */ | 
| 7513 | 	s = gen_load_a(cstate, OR_LINKHDR, offset, BPF_B); | 
| 7514 | 	b0 = new_block(cstate, JMP(BPF_JSET)); | 
| 7515 | 	b0->s.k = 1; | 
| 7516 | 	b0->stmts = s; | 
| 7517 | 	return b0; | 
| 7518 | } | 
| 7519 |  | 
| 7520 | struct block * | 
| 7521 | gen_multicast(compiler_state_t *cstate, int proto) | 
| 7522 | { | 
| 7523 | 	register struct block *b0, *b1, *b2; | 
| 7524 | 	register struct slist *s; | 
| 7525 |  | 
| 7526 | 	switch (proto) { | 
| 7527 |  | 
| 7528 | 	case Q_DEFAULT: | 
| 7529 | 	case Q_LINK: | 
| 7530 | 		switch (cstate->linktype) { | 
| 7531 | 		case DLT_ARCNET: | 
| 7532 | 		case DLT_ARCNET_LINUX: | 
| 7533 | 			/* all ARCnet multicasts use the same address */ | 
| 7534 | 			return gen_ahostop(cstate, abroadcast, Q_DST); | 
| 7535 | 		case DLT_EN10MB: | 
| 7536 | 		case DLT_NETANALYZER: | 
| 7537 | 		case DLT_NETANALYZER_TRANSPARENT: | 
| 7538 | 			b1 = gen_prevlinkhdr_check(cstate); | 
| 7539 | 			/* ether[0] & 1 != 0 */ | 
| 7540 | 			b0 = gen_mac_multicast(cstate, 0); | 
| 7541 | 			if (b1 != NULL) | 
| 7542 | 				gen_and(b1, b0); | 
| 7543 | 			return b0; | 
| 7544 | 		case DLT_FDDI: | 
| 7545 | 			/* | 
| 7546 | 			 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX | 
| 7547 | 			 * | 
| 7548 | 			 * XXX - was that referring to bit-order issues? | 
| 7549 | 			 */ | 
| 7550 | 			/* fddi[1] & 1 != 0 */ | 
| 7551 | 			return gen_mac_multicast(cstate, 1); | 
| 7552 | 		case DLT_IEEE802: | 
| 7553 | 			/* tr[2] & 1 != 0 */ | 
| 7554 | 			return gen_mac_multicast(cstate, 2); | 
| 7555 | 		case DLT_IEEE802_11: | 
| 7556 | 		case DLT_PRISM_HEADER: | 
| 7557 | 		case DLT_IEEE802_11_RADIO_AVS: | 
| 7558 | 		case DLT_IEEE802_11_RADIO: | 
| 7559 | 		case DLT_PPI: | 
| 7560 | 			/* | 
| 7561 | 			 * Oh, yuk. | 
| 7562 | 			 * | 
| 7563 | 			 *	For control frames, there is no DA. | 
| 7564 | 			 * | 
| 7565 | 			 *	For management frames, DA is at an | 
| 7566 | 			 *	offset of 4 from the beginning of | 
| 7567 | 			 *	the packet. | 
| 7568 | 			 * | 
| 7569 | 			 *	For data frames, DA is at an offset | 
| 7570 | 			 *	of 4 from the beginning of the packet | 
| 7571 | 			 *	if To DS is clear and at an offset of | 
| 7572 | 			 *	16 from the beginning of the packet | 
| 7573 | 			 *	if To DS is set. | 
| 7574 | 			 */ | 
| 7575 |  | 
| 7576 | 			/* | 
| 7577 | 			 * Generate the tests to be done for data frames. | 
| 7578 | 			 * | 
| 7579 | 			 * First, check for To DS set, i.e. "link[1] & 0x01". | 
| 7580 | 			 */ | 
| 7581 | 			s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B); | 
| 7582 | 			b1 = new_block(cstate, JMP(BPF_JSET)); | 
| 7583 | 			b1->s.k = 0x01;	/* To DS */ | 
| 7584 | 			b1->stmts = s; | 
| 7585 |  | 
| 7586 | 			/* | 
| 7587 | 			 * If To DS is set, the DA is at 16. | 
| 7588 | 			 */ | 
| 7589 | 			b0 = gen_mac_multicast(cstate, 16); | 
| 7590 | 			gen_and(b1, b0); | 
| 7591 |  | 
| 7592 | 			/* | 
| 7593 | 			 * Now, check for To DS not set, i.e. check | 
| 7594 | 			 * "!(link[1] & 0x01)". | 
| 7595 | 			 */ | 
| 7596 | 			s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B); | 
| 7597 | 			b2 = new_block(cstate, JMP(BPF_JSET)); | 
| 7598 | 			b2->s.k = 0x01;	/* To DS */ | 
| 7599 | 			b2->stmts = s; | 
| 7600 | 			gen_not(b2); | 
| 7601 |  | 
| 7602 | 			/* | 
| 7603 | 			 * If To DS is not set, the DA is at 4. | 
| 7604 | 			 */ | 
| 7605 | 			b1 = gen_mac_multicast(cstate, 4); | 
| 7606 | 			gen_and(b2, b1); | 
| 7607 |  | 
| 7608 | 			/* | 
| 7609 | 			 * Now OR together the last two checks.  That gives | 
| 7610 | 			 * the complete set of checks for data frames. | 
| 7611 | 			 */ | 
| 7612 | 			gen_or(b1, b0); | 
| 7613 |  | 
| 7614 | 			/* | 
| 7615 | 			 * Now check for a data frame. | 
| 7616 | 			 * I.e, check "link[0] & 0x08". | 
| 7617 | 			 */ | 
| 7618 | 			s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B); | 
| 7619 | 			b1 = new_block(cstate, JMP(BPF_JSET)); | 
| 7620 | 			b1->s.k = 0x08; | 
| 7621 | 			b1->stmts = s; | 
| 7622 |  | 
| 7623 | 			/* | 
| 7624 | 			 * AND that with the checks done for data frames. | 
| 7625 | 			 */ | 
| 7626 | 			gen_and(b1, b0); | 
| 7627 |  | 
| 7628 | 			/* | 
| 7629 | 			 * If the high-order bit of the type value is 0, this | 
| 7630 | 			 * is a management frame. | 
| 7631 | 			 * I.e, check "!(link[0] & 0x08)". | 
| 7632 | 			 */ | 
| 7633 | 			s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B); | 
| 7634 | 			b2 = new_block(cstate, JMP(BPF_JSET)); | 
| 7635 | 			b2->s.k = 0x08; | 
| 7636 | 			b2->stmts = s; | 
| 7637 | 			gen_not(b2); | 
| 7638 |  | 
| 7639 | 			/* | 
| 7640 | 			 * For management frames, the DA is at 4. | 
| 7641 | 			 */ | 
| 7642 | 			b1 = gen_mac_multicast(cstate, 4); | 
| 7643 | 			gen_and(b2, b1); | 
| 7644 |  | 
| 7645 | 			/* | 
| 7646 | 			 * OR that with the checks done for data frames. | 
| 7647 | 			 * That gives the checks done for management and | 
| 7648 | 			 * data frames. | 
| 7649 | 			 */ | 
| 7650 | 			gen_or(b1, b0); | 
| 7651 |  | 
| 7652 | 			/* | 
| 7653 | 			 * If the low-order bit of the type value is 1, | 
| 7654 | 			 * this is either a control frame or a frame | 
| 7655 | 			 * with a reserved type, and thus not a | 
| 7656 | 			 * frame with an SA. | 
| 7657 | 			 * | 
| 7658 | 			 * I.e., check "!(link[0] & 0x04)". | 
| 7659 | 			 */ | 
| 7660 | 			s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B); | 
| 7661 | 			b1 = new_block(cstate, JMP(BPF_JSET)); | 
| 7662 | 			b1->s.k = 0x04; | 
| 7663 | 			b1->stmts = s; | 
| 7664 | 			gen_not(b1); | 
| 7665 |  | 
| 7666 | 			/* | 
| 7667 | 			 * AND that with the checks for data and management | 
| 7668 | 			 * frames. | 
| 7669 | 			 */ | 
| 7670 | 			gen_and(b1, b0); | 
| 7671 | 			return b0; | 
| 7672 | 		case DLT_IP_OVER_FC: | 
| 7673 | 			b0 = gen_mac_multicast(cstate, 2); | 
| 7674 | 			return b0; | 
| 7675 | 		default: | 
| 7676 | 			break; | 
| 7677 | 		} | 
| 7678 | 		/* Link not known to support multicasts */ | 
| 7679 | 		break; | 
| 7680 |  | 
| 7681 | 	case Q_IP: | 
| 7682 | 		b0 = gen_linktype(cstate, ETHERTYPE_IP); | 
| 7683 | 		b1 = gen_cmp_ge(cstate, OR_LINKPL, 16, BPF_B, (bpf_int32)224); | 
| 7684 | 		gen_and(b0, b1); | 
| 7685 | 		return b1; | 
| 7686 |  | 
| 7687 | 	case Q_IPV6: | 
| 7688 | 		b0 = gen_linktype(cstate, ETHERTYPE_IPV6); | 
| 7689 | 		b1 = gen_cmp(cstate, OR_LINKPL, 24, BPF_B, (bpf_int32)255); | 
| 7690 | 		gen_and(b0, b1); | 
| 7691 | 		return b1; | 
| 7692 | 	} | 
| 7693 | 	bpf_error(cstate, "link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel" ); | 
| 7694 | 	/* NOTREACHED */ | 
| 7695 | } | 
| 7696 |  | 
| 7697 | /* | 
| 7698 |  * Filter on inbound (dir == 0) or outbound (dir == 1) traffic. | 
| 7699 |  * Outbound traffic is sent by this machine, while inbound traffic is | 
| 7700 |  * sent by a remote machine (and may include packets destined for a | 
| 7701 |  * unicast or multicast link-layer address we are not subscribing to). | 
| 7702 |  * These are the same definitions implemented by pcap_setdirection(). | 
| 7703 |  * Capturing only unicast traffic destined for this host is probably | 
| 7704 |  * better accomplished using a higher-layer filter. | 
| 7705 |  */ | 
| 7706 | struct block * | 
| 7707 | gen_inbound(compiler_state_t *cstate, int dir) | 
| 7708 | { | 
| 7709 | 	register struct block *b0; | 
| 7710 |  | 
| 7711 | 	/* | 
| 7712 | 	 * Only some data link types support inbound/outbound qualifiers. | 
| 7713 | 	 */ | 
| 7714 | 	switch (cstate->linktype) { | 
| 7715 | 	case DLT_SLIP: | 
| 7716 | 		b0 = gen_relation(cstate, BPF_JEQ, | 
| 7717 | 			  gen_load(cstate, Q_LINK, gen_loadi(cstate, 0), 1), | 
| 7718 | 			  gen_loadi(cstate, 0), | 
| 7719 | 			  dir); | 
| 7720 | 		break; | 
| 7721 |  | 
| 7722 | 	case DLT_IPNET: | 
| 7723 | 		if (dir) { | 
| 7724 | 			/* match outgoing packets */ | 
| 7725 | 			b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, IPNET_OUTBOUND); | 
| 7726 | 		} else { | 
| 7727 | 			/* match incoming packets */ | 
| 7728 | 			b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, IPNET_INBOUND); | 
| 7729 | 		} | 
| 7730 | 		break; | 
| 7731 |  | 
| 7732 | 	case DLT_LINUX_SLL: | 
| 7733 | 		/* match outgoing packets */ | 
| 7734 | 		b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_H, LINUX_SLL_OUTGOING); | 
| 7735 | 		if (!dir) { | 
| 7736 | 			/* to filter on inbound traffic, invert the match */ | 
| 7737 | 			gen_not(b0); | 
| 7738 | 		} | 
| 7739 | 		break; | 
| 7740 |  | 
| 7741 | #ifdef HAVE_NET_PFVAR_H | 
| 7742 | 	case DLT_PFLOG: | 
| 7743 | 		b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, dir), BPF_B, | 
| 7744 | 		    (bpf_int32)((dir == 0) ? PF_IN : PF_OUT)); | 
| 7745 | 		break; | 
| 7746 | #endif | 
| 7747 |  | 
| 7748 | 	case DLT_PPP_PPPD: | 
| 7749 | 		if (dir) { | 
| 7750 | 			/* match outgoing packets */ | 
| 7751 | 			b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, PPP_PPPD_OUT); | 
| 7752 | 		} else { | 
| 7753 | 			/* match incoming packets */ | 
| 7754 | 			b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, PPP_PPPD_IN); | 
| 7755 | 		} | 
| 7756 | 		break; | 
| 7757 |  | 
| 7758 |         case DLT_JUNIPER_MFR: | 
| 7759 |         case DLT_JUNIPER_MLFR: | 
| 7760 |         case DLT_JUNIPER_MLPPP: | 
| 7761 | 	case DLT_JUNIPER_ATM1: | 
| 7762 | 	case DLT_JUNIPER_ATM2: | 
| 7763 | 	case DLT_JUNIPER_PPPOE: | 
| 7764 | 	case DLT_JUNIPER_PPPOE_ATM: | 
| 7765 |         case DLT_JUNIPER_GGSN: | 
| 7766 |         case DLT_JUNIPER_ES: | 
| 7767 |         case DLT_JUNIPER_MONITOR: | 
| 7768 |         case DLT_JUNIPER_SERVICES: | 
| 7769 |         case DLT_JUNIPER_ETHER: | 
| 7770 |         case DLT_JUNIPER_PPP: | 
| 7771 |         case DLT_JUNIPER_FRELAY: | 
| 7772 |         case DLT_JUNIPER_CHDLC: | 
| 7773 |         case DLT_JUNIPER_VP: | 
| 7774 |         case DLT_JUNIPER_ST: | 
| 7775 |         case DLT_JUNIPER_ISM: | 
| 7776 |         case DLT_JUNIPER_VS: | 
| 7777 |         case DLT_JUNIPER_SRX_E2E: | 
| 7778 |         case DLT_JUNIPER_FIBRECHANNEL: | 
| 7779 | 	case DLT_JUNIPER_ATM_CEMIC: | 
| 7780 |  | 
| 7781 | 		/* juniper flags (including direction) are stored | 
| 7782 | 		 * the byte after the 3-byte magic number */ | 
| 7783 | 		if (dir) { | 
| 7784 | 			/* match outgoing packets */ | 
| 7785 | 			b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, 0, 0x01); | 
| 7786 | 		} else { | 
| 7787 | 			/* match incoming packets */ | 
| 7788 | 			b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, 1, 0x01); | 
| 7789 | 		} | 
| 7790 | 		break; | 
| 7791 |  | 
| 7792 | 	default: | 
| 7793 | 		/* | 
| 7794 | 		 * If we have packet meta-data indicating a direction, | 
| 7795 | 		 * and that metadata can be checked by BPF code, check | 
| 7796 | 		 * it.  Otherwise, give up, as this link-layer type has | 
| 7797 | 		 * nothing in the packet data. | 
| 7798 | 		 * | 
| 7799 | 		 * Currently, the only platform where a BPF filter can | 
| 7800 | 		 * check that metadata is Linux with the in-kernel | 
| 7801 | 		 * BPF interpreter.  If other packet capture mechanisms | 
| 7802 | 		 * and BPF filters also supported this, it would be | 
| 7803 | 		 * nice.  It would be even better if they made that | 
| 7804 | 		 * metadata available so that we could provide it | 
| 7805 | 		 * with newer capture APIs, allowing it to be saved | 
| 7806 | 		 * in pcapng files. | 
| 7807 | 		 */ | 
| 7808 | #if defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) | 
| 7809 | 		/* | 
| 7810 | 		 * This is Linux with PF_PACKET support. | 
| 7811 | 		 * If this is a *live* capture, we can look at | 
| 7812 | 		 * special meta-data in the filter expression; | 
| 7813 | 		 * if it's a savefile, we can't. | 
| 7814 | 		 */ | 
| 7815 | 		if (cstate->bpf_pcap->rfile != NULL) { | 
| 7816 | 			/* We have a FILE *, so this is a savefile */ | 
| 7817 | 			bpf_error(cstate, "inbound/outbound not supported on linktype %d when reading savefiles" , | 
| 7818 | 			    cstate->linktype); | 
| 7819 | 			b0 = NULL; | 
| 7820 | 			/* NOTREACHED */ | 
| 7821 | 		} | 
| 7822 | 		/* match outgoing packets */ | 
| 7823 | 		b0 = gen_cmp(cstate, OR_LINKHDR, SKF_AD_OFF + SKF_AD_PKTTYPE, BPF_H, | 
| 7824 | 		             PACKET_OUTGOING); | 
| 7825 | 		if (!dir) { | 
| 7826 | 			/* to filter on inbound traffic, invert the match */ | 
| 7827 | 			gen_not(b0); | 
| 7828 | 		} | 
| 7829 | #else /* defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */ | 
| 7830 | 		bpf_error(cstate, "inbound/outbound not supported on linktype %d" , | 
| 7831 | 		    cstate->linktype); | 
| 7832 | 		/* NOTREACHED */ | 
| 7833 | #endif /* defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */ | 
| 7834 | 	} | 
| 7835 | 	return (b0); | 
| 7836 | } | 
| 7837 |  | 
| 7838 | #ifdef HAVE_NET_PFVAR_H | 
| 7839 | /* PF firewall log matched interface */ | 
| 7840 | struct block * | 
| 7841 | gen_pf_ifname(compiler_state_t *cstate, const char *ifname) | 
| 7842 | { | 
| 7843 | 	struct block *b0; | 
| 7844 | 	u_int len, off; | 
| 7845 |  | 
| 7846 | 	if (cstate->linktype != DLT_PFLOG) { | 
| 7847 | 		bpf_error(cstate, "ifname supported only on PF linktype" ); | 
| 7848 | 		/* NOTREACHED */ | 
| 7849 | 	} | 
| 7850 | 	len = sizeof(((struct pfloghdr *)0)->ifname); | 
| 7851 | 	off = offsetof(struct pfloghdr, ifname); | 
| 7852 | 	if (strlen(ifname) >= len) { | 
| 7853 | 		bpf_error(cstate, "ifname interface names can only be %d characters" , | 
| 7854 | 		    len-1); | 
| 7855 | 		/* NOTREACHED */ | 
| 7856 | 	} | 
| 7857 | 	b0 = gen_bcmp(cstate, OR_LINKHDR, off, strlen(ifname), (const u_char *)ifname); | 
| 7858 | 	return (b0); | 
| 7859 | } | 
| 7860 |  | 
| 7861 | /* PF firewall log ruleset name */ | 
| 7862 | struct block * | 
| 7863 | gen_pf_ruleset(compiler_state_t *cstate, char *ruleset) | 
| 7864 | { | 
| 7865 | 	struct block *b0; | 
| 7866 |  | 
| 7867 | 	if (cstate->linktype != DLT_PFLOG) { | 
| 7868 | 		bpf_error(cstate, "ruleset supported only on PF linktype" ); | 
| 7869 | 		/* NOTREACHED */ | 
| 7870 | 	} | 
| 7871 |  | 
| 7872 | 	if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) { | 
| 7873 | 		bpf_error(cstate, "ruleset names can only be %ld characters" , | 
| 7874 | 		    (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1)); | 
| 7875 | 		/* NOTREACHED */ | 
| 7876 | 	} | 
| 7877 |  | 
| 7878 | 	b0 = gen_bcmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, ruleset), | 
| 7879 | 	    strlen(ruleset), (const u_char *)ruleset); | 
| 7880 | 	return (b0); | 
| 7881 | } | 
| 7882 |  | 
| 7883 | /* PF firewall log rule number */ | 
| 7884 | struct block * | 
| 7885 | gen_pf_rnr(compiler_state_t *cstate, int rnr) | 
| 7886 | { | 
| 7887 | 	struct block *b0; | 
| 7888 |  | 
| 7889 | 	if (cstate->linktype != DLT_PFLOG) { | 
| 7890 | 		bpf_error(cstate, "rnr supported only on PF linktype" ); | 
| 7891 | 		/* NOTREACHED */ | 
| 7892 | 	} | 
| 7893 |  | 
| 7894 | 	b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, rulenr), BPF_W, | 
| 7895 | 		 (bpf_int32)rnr); | 
| 7896 | 	return (b0); | 
| 7897 | } | 
| 7898 |  | 
| 7899 | /* PF firewall log sub-rule number */ | 
| 7900 | struct block * | 
| 7901 | gen_pf_srnr(compiler_state_t *cstate, int srnr) | 
| 7902 | { | 
| 7903 | 	struct block *b0; | 
| 7904 |  | 
| 7905 | 	if (cstate->linktype != DLT_PFLOG) { | 
| 7906 | 		bpf_error(cstate, "srnr supported only on PF linktype" ); | 
| 7907 | 		/* NOTREACHED */ | 
| 7908 | 	} | 
| 7909 |  | 
| 7910 | 	b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, subrulenr), BPF_W, | 
| 7911 | 	    (bpf_int32)srnr); | 
| 7912 | 	return (b0); | 
| 7913 | } | 
| 7914 |  | 
| 7915 | /* PF firewall log reason code */ | 
| 7916 | struct block * | 
| 7917 | gen_pf_reason(compiler_state_t *cstate, int reason) | 
| 7918 | { | 
| 7919 | 	struct block *b0; | 
| 7920 |  | 
| 7921 | 	if (cstate->linktype != DLT_PFLOG) { | 
| 7922 | 		bpf_error(cstate, "reason supported only on PF linktype" ); | 
| 7923 | 		/* NOTREACHED */ | 
| 7924 | 	} | 
| 7925 |  | 
| 7926 | 	b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, reason), BPF_B, | 
| 7927 | 	    (bpf_int32)reason); | 
| 7928 | 	return (b0); | 
| 7929 | } | 
| 7930 |  | 
| 7931 | /* PF firewall log action */ | 
| 7932 | struct block * | 
| 7933 | gen_pf_action(compiler_state_t *cstate, int action) | 
| 7934 | { | 
| 7935 | 	struct block *b0; | 
| 7936 |  | 
| 7937 | 	if (cstate->linktype != DLT_PFLOG) { | 
| 7938 | 		bpf_error(cstate, "action supported only on PF linktype" ); | 
| 7939 | 		/* NOTREACHED */ | 
| 7940 | 	} | 
| 7941 |  | 
| 7942 | 	b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, action), BPF_B, | 
| 7943 | 	    (bpf_int32)action); | 
| 7944 | 	return (b0); | 
| 7945 | } | 
| 7946 | #else /* !HAVE_NET_PFVAR_H */ | 
| 7947 | struct block * | 
| 7948 | gen_pf_ifname(compiler_state_t *cstate, const char *ifname _U_) | 
| 7949 | { | 
| 7950 | 	bpf_error(cstate, "libpcap was compiled without pf support" ); | 
| 7951 | 	/* NOTREACHED */ | 
| 7952 | } | 
| 7953 |  | 
| 7954 | struct block * | 
| 7955 | gen_pf_ruleset(compiler_state_t *cstate, char *ruleset _U_) | 
| 7956 | { | 
| 7957 | 	bpf_error(cstate, "libpcap was compiled on a machine without pf support" ); | 
| 7958 | 	/* NOTREACHED */ | 
| 7959 | } | 
| 7960 |  | 
| 7961 | struct block * | 
| 7962 | gen_pf_rnr(compiler_state_t *cstate, int rnr _U_) | 
| 7963 | { | 
| 7964 | 	bpf_error(cstate, "libpcap was compiled on a machine without pf support" ); | 
| 7965 | 	/* NOTREACHED */ | 
| 7966 | } | 
| 7967 |  | 
| 7968 | struct block * | 
| 7969 | gen_pf_srnr(compiler_state_t *cstate, int srnr _U_) | 
| 7970 | { | 
| 7971 | 	bpf_error(cstate, "libpcap was compiled on a machine without pf support" ); | 
| 7972 | 	/* NOTREACHED */ | 
| 7973 | } | 
| 7974 |  | 
| 7975 | struct block * | 
| 7976 | gen_pf_reason(compiler_state_t *cstate, int reason _U_) | 
| 7977 | { | 
| 7978 | 	bpf_error(cstate, "libpcap was compiled on a machine without pf support" ); | 
| 7979 | 	/* NOTREACHED */ | 
| 7980 | } | 
| 7981 |  | 
| 7982 | struct block * | 
| 7983 | gen_pf_action(compiler_state_t *cstate, int action _U_) | 
| 7984 | { | 
| 7985 | 	bpf_error(cstate, "libpcap was compiled on a machine without pf support" ); | 
| 7986 | 	/* NOTREACHED */ | 
| 7987 | } | 
| 7988 | #endif /* HAVE_NET_PFVAR_H */ | 
| 7989 |  | 
| 7990 | /* IEEE 802.11 wireless header */ | 
| 7991 | struct block * | 
| 7992 | gen_p80211_type(compiler_state_t *cstate, int type, int mask) | 
| 7993 | { | 
| 7994 | 	struct block *b0; | 
| 7995 |  | 
| 7996 | 	switch (cstate->linktype) { | 
| 7997 |  | 
| 7998 | 	case DLT_IEEE802_11: | 
| 7999 | 	case DLT_PRISM_HEADER: | 
| 8000 | 	case DLT_IEEE802_11_RADIO_AVS: | 
| 8001 | 	case DLT_IEEE802_11_RADIO: | 
| 8002 | 		b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, (bpf_int32)type, | 
| 8003 | 		    (bpf_int32)mask); | 
| 8004 | 		break; | 
| 8005 |  | 
| 8006 | 	default: | 
| 8007 | 		bpf_error(cstate, "802.11 link-layer types supported only on 802.11" ); | 
| 8008 | 		/* NOTREACHED */ | 
| 8009 | 	} | 
| 8010 |  | 
| 8011 | 	return (b0); | 
| 8012 | } | 
| 8013 |  | 
| 8014 | struct block * | 
| 8015 | gen_p80211_fcdir(compiler_state_t *cstate, int fcdir) | 
| 8016 | { | 
| 8017 | 	struct block *b0; | 
| 8018 |  | 
| 8019 | 	switch (cstate->linktype) { | 
| 8020 |  | 
| 8021 | 	case DLT_IEEE802_11: | 
| 8022 | 	case DLT_PRISM_HEADER: | 
| 8023 | 	case DLT_IEEE802_11_RADIO_AVS: | 
| 8024 | 	case DLT_IEEE802_11_RADIO: | 
| 8025 | 		break; | 
| 8026 |  | 
| 8027 | 	default: | 
| 8028 | 		bpf_error(cstate, "frame direction supported only with 802.11 headers" ); | 
| 8029 | 		/* NOTREACHED */ | 
| 8030 | 	} | 
| 8031 |  | 
| 8032 | 	b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B, (bpf_int32)fcdir, | 
| 8033 | 		(bpf_u_int32)IEEE80211_FC1_DIR_MASK); | 
| 8034 |  | 
| 8035 | 	return (b0); | 
| 8036 | } | 
| 8037 |  | 
| 8038 | struct block * | 
| 8039 | gen_acode(compiler_state_t *cstate, const u_char *eaddr, struct qual q) | 
| 8040 | { | 
| 8041 | 	switch (cstate->linktype) { | 
| 8042 |  | 
| 8043 | 	case DLT_ARCNET: | 
| 8044 | 	case DLT_ARCNET_LINUX: | 
| 8045 | 		if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && | 
| 8046 | 		    q.proto == Q_LINK) | 
| 8047 | 			return (gen_ahostop(cstate, eaddr, (int)q.dir)); | 
| 8048 | 		else { | 
| 8049 | 			bpf_error(cstate, "ARCnet address used in non-arc expression" ); | 
| 8050 | 			/* NOTREACHED */ | 
| 8051 | 		} | 
| 8052 | 		break; | 
| 8053 |  | 
| 8054 | 	default: | 
| 8055 | 		bpf_error(cstate, "aid supported only on ARCnet" ); | 
| 8056 | 		/* NOTREACHED */ | 
| 8057 | 	} | 
| 8058 | } | 
| 8059 |  | 
| 8060 | static struct block * | 
| 8061 | gen_ahostop(compiler_state_t *cstate, const u_char *eaddr, int dir) | 
| 8062 | { | 
| 8063 | 	register struct block *b0, *b1; | 
| 8064 |  | 
| 8065 | 	switch (dir) { | 
| 8066 | 	/* src comes first, different from Ethernet */ | 
| 8067 | 	case Q_SRC: | 
| 8068 | 		return gen_bcmp(cstate, OR_LINKHDR, 0, 1, eaddr); | 
| 8069 |  | 
| 8070 | 	case Q_DST: | 
| 8071 | 		return gen_bcmp(cstate, OR_LINKHDR, 1, 1, eaddr); | 
| 8072 |  | 
| 8073 | 	case Q_AND: | 
| 8074 | 		b0 = gen_ahostop(cstate, eaddr, Q_SRC); | 
| 8075 | 		b1 = gen_ahostop(cstate, eaddr, Q_DST); | 
| 8076 | 		gen_and(b0, b1); | 
| 8077 | 		return b1; | 
| 8078 |  | 
| 8079 | 	case Q_DEFAULT: | 
| 8080 | 	case Q_OR: | 
| 8081 | 		b0 = gen_ahostop(cstate, eaddr, Q_SRC); | 
| 8082 | 		b1 = gen_ahostop(cstate, eaddr, Q_DST); | 
| 8083 | 		gen_or(b0, b1); | 
| 8084 | 		return b1; | 
| 8085 |  | 
| 8086 | 	case Q_ADDR1: | 
| 8087 | 		bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11" ); | 
| 8088 | 		break; | 
| 8089 |  | 
| 8090 | 	case Q_ADDR2: | 
| 8091 | 		bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11" ); | 
| 8092 | 		break; | 
| 8093 |  | 
| 8094 | 	case Q_ADDR3: | 
| 8095 | 		bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11" ); | 
| 8096 | 		break; | 
| 8097 |  | 
| 8098 | 	case Q_ADDR4: | 
| 8099 | 		bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11" ); | 
| 8100 | 		break; | 
| 8101 |  | 
| 8102 | 	case Q_RA: | 
| 8103 | 		bpf_error(cstate, "'ra' is only supported on 802.11" ); | 
| 8104 | 		break; | 
| 8105 |  | 
| 8106 | 	case Q_TA: | 
| 8107 | 		bpf_error(cstate, "'ta' is only supported on 802.11" ); | 
| 8108 | 		break; | 
| 8109 | 	} | 
| 8110 | 	abort(); | 
| 8111 | 	/* NOTREACHED */ | 
| 8112 | } | 
| 8113 |  | 
| 8114 | static struct block * | 
| 8115 | gen_vlan_tpid_test(compiler_state_t *cstate) | 
| 8116 | { | 
| 8117 | 	struct block *b0, *b1; | 
| 8118 |  | 
| 8119 | 	/* check for VLAN, including QinQ */ | 
| 8120 | 	b0 = gen_linktype(cstate, ETHERTYPE_8021Q); | 
| 8121 | 	b1 = gen_linktype(cstate, ETHERTYPE_8021AD); | 
| 8122 | 	gen_or(b0,b1); | 
| 8123 | 	b0 = b1; | 
| 8124 | 	b1 = gen_linktype(cstate, ETHERTYPE_8021QINQ); | 
| 8125 | 	gen_or(b0,b1); | 
| 8126 |  | 
| 8127 | 	return b1; | 
| 8128 | } | 
| 8129 |  | 
| 8130 | static struct block * | 
| 8131 | gen_vlan_vid_test(compiler_state_t *cstate, int vlan_num) | 
| 8132 | { | 
| 8133 | 	return gen_mcmp(cstate, OR_LINKPL, 0, BPF_H, (bpf_int32)vlan_num, 0x0fff); | 
| 8134 | } | 
| 8135 |  | 
| 8136 | static struct block * | 
| 8137 | gen_vlan_no_bpf_extensions(compiler_state_t *cstate, int vlan_num) | 
| 8138 | { | 
| 8139 | 	struct block *b0, *b1; | 
| 8140 |  | 
| 8141 | 	b0 = gen_vlan_tpid_test(cstate); | 
| 8142 |  | 
| 8143 | 	if (vlan_num >= 0) { | 
| 8144 | 		b1 = gen_vlan_vid_test(cstate, vlan_num); | 
| 8145 | 		gen_and(b0, b1); | 
| 8146 | 		b0 = b1; | 
| 8147 | 	} | 
| 8148 |  | 
| 8149 | 	/* | 
| 8150 | 	 * Both payload and link header type follow the VLAN tags so that | 
| 8151 | 	 * both need to be updated. | 
| 8152 | 	 */ | 
| 8153 | 	cstate->off_linkpl.constant_part += 4; | 
| 8154 | 	cstate->off_linktype.constant_part += 4; | 
| 8155 |  | 
| 8156 | 	return b0; | 
| 8157 | } | 
| 8158 |  | 
| 8159 | #if defined(SKF_AD_VLAN_TAG_PRESENT) | 
| 8160 | /* add v to variable part of off */ | 
| 8161 | static void | 
| 8162 | gen_vlan_vloffset_add(compiler_state_t *cstate, bpf_abs_offset *off, int v, struct slist *s) | 
| 8163 | { | 
| 8164 | 	struct slist *s2; | 
| 8165 |  | 
| 8166 | 	if (!off->is_variable) | 
| 8167 | 		off->is_variable = 1; | 
| 8168 | 	if (off->reg == -1) | 
| 8169 | 		off->reg = alloc_reg(cstate); | 
| 8170 |  | 
| 8171 | 	s2 = new_stmt(cstate, BPF_LD|BPF_MEM); | 
| 8172 | 	s2->s.k = off->reg; | 
| 8173 | 	sappend(s, s2); | 
| 8174 | 	s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM); | 
| 8175 | 	s2->s.k = v; | 
| 8176 | 	sappend(s, s2); | 
| 8177 | 	s2 = new_stmt(cstate, BPF_ST); | 
| 8178 | 	s2->s.k = off->reg; | 
| 8179 | 	sappend(s, s2); | 
| 8180 | } | 
| 8181 |  | 
| 8182 | /* | 
| 8183 |  * patch block b_tpid (VLAN TPID test) to update variable parts of link payload | 
| 8184 |  * and link type offsets first | 
| 8185 |  */ | 
| 8186 | static void | 
| 8187 | gen_vlan_patch_tpid_test(compiler_state_t *cstate, struct block *b_tpid) | 
| 8188 | { | 
| 8189 | 	struct slist s; | 
| 8190 |  | 
| 8191 | 	/* offset determined at run time, shift variable part */ | 
| 8192 | 	s.next = NULL; | 
| 8193 | 	cstate->is_vlan_vloffset = 1; | 
| 8194 | 	gen_vlan_vloffset_add(cstate, &cstate->off_linkpl, 4, &s); | 
| 8195 | 	gen_vlan_vloffset_add(cstate, &cstate->off_linktype, 4, &s); | 
| 8196 |  | 
| 8197 | 	/* we get a pointer to a chain of or-ed blocks, patch first of them */ | 
| 8198 | 	sappend(s.next, b_tpid->head->stmts); | 
| 8199 | 	b_tpid->head->stmts = s.next; | 
| 8200 | } | 
| 8201 |  | 
| 8202 | /* | 
| 8203 |  * patch block b_vid (VLAN id test) to load VID value either from packet | 
| 8204 |  * metadata (using BPF extensions) if SKF_AD_VLAN_TAG_PRESENT is true | 
| 8205 |  */ | 
| 8206 | static void | 
| 8207 | gen_vlan_patch_vid_test(compiler_state_t *cstate, struct block *b_vid) | 
| 8208 | { | 
| 8209 | 	struct slist *s, *s2, *sjeq; | 
| 8210 | 	unsigned cnt; | 
| 8211 |  | 
| 8212 | 	s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS); | 
| 8213 | 	s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT; | 
| 8214 |  | 
| 8215 | 	/* true -> next instructions, false -> beginning of b_vid */ | 
| 8216 | 	sjeq = new_stmt(cstate, JMP(BPF_JEQ)); | 
| 8217 | 	sjeq->s.k = 1; | 
| 8218 | 	sjeq->s.jf = b_vid->stmts; | 
| 8219 | 	sappend(s, sjeq); | 
| 8220 |  | 
| 8221 | 	s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS); | 
| 8222 | 	s2->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG; | 
| 8223 | 	sappend(s, s2); | 
| 8224 | 	sjeq->s.jt = s2; | 
| 8225 |  | 
| 8226 | 	/* jump to the test in b_vid (bypass loading VID from packet data) */ | 
| 8227 | 	cnt = 0; | 
| 8228 | 	for (s2 = b_vid->stmts; s2; s2 = s2->next) | 
| 8229 | 		cnt++; | 
| 8230 | 	s2 = new_stmt(cstate, JMP(BPF_JA)); | 
| 8231 | 	s2->s.k = cnt; | 
| 8232 | 	sappend(s, s2); | 
| 8233 |  | 
| 8234 | 	/* insert our statements at the beginning of b_vid */ | 
| 8235 | 	sappend(s, b_vid->stmts); | 
| 8236 | 	b_vid->stmts = s; | 
| 8237 | } | 
| 8238 |  | 
| 8239 | /* | 
| 8240 |  * Generate check for "vlan" or "vlan <id>" on systems with support for BPF | 
| 8241 |  * extensions.  Even if kernel supports VLAN BPF extensions, (outermost) VLAN | 
| 8242 |  * tag can be either in metadata or in packet data; therefore if the | 
| 8243 |  * SKF_AD_VLAN_TAG_PRESENT test is negative, we need to check link | 
| 8244 |  * header for VLAN tag. As the decision is done at run time, we need | 
| 8245 |  * update variable part of the offsets | 
| 8246 |  */ | 
| 8247 | static struct block * | 
| 8248 | gen_vlan_bpf_extensions(compiler_state_t *cstate, int vlan_num) | 
| 8249 | { | 
| 8250 |         struct block *b0, *b_tpid, *b_vid = NULL; | 
| 8251 |         struct slist *s; | 
| 8252 |  | 
| 8253 |         /* generate new filter code based on extracting packet | 
| 8254 |          * metadata */ | 
| 8255 |         s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS); | 
| 8256 |         s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT; | 
| 8257 |  | 
| 8258 |         b0 = new_block(cstate, JMP(BPF_JEQ)); | 
| 8259 |         b0->stmts = s; | 
| 8260 |         b0->s.k = 1; | 
| 8261 |  | 
| 8262 | 	/* | 
| 8263 | 	 * This is tricky. We need to insert the statements updating variable | 
| 8264 | 	 * parts of offsets before the the traditional TPID and VID tests so | 
| 8265 | 	 * that they are called whenever SKF_AD_VLAN_TAG_PRESENT fails but | 
| 8266 | 	 * we do not want this update to affect those checks. That's why we | 
| 8267 | 	 * generate both test blocks first and insert the statements updating | 
| 8268 | 	 * variable parts of both offsets after that. This wouldn't work if | 
| 8269 | 	 * there already were variable length link header when entering this | 
| 8270 | 	 * function but gen_vlan_bpf_extensions() isn't called in that case. | 
| 8271 | 	 */ | 
| 8272 | 	b_tpid = gen_vlan_tpid_test(cstate); | 
| 8273 | 	if (vlan_num >= 0) | 
| 8274 | 		b_vid = gen_vlan_vid_test(cstate, vlan_num); | 
| 8275 |  | 
| 8276 | 	gen_vlan_patch_tpid_test(cstate, b_tpid); | 
| 8277 | 	gen_or(b0, b_tpid); | 
| 8278 | 	b0 = b_tpid; | 
| 8279 |  | 
| 8280 | 	if (vlan_num >= 0) { | 
| 8281 | 		gen_vlan_patch_vid_test(cstate, b_vid); | 
| 8282 | 		gen_and(b0, b_vid); | 
| 8283 | 		b0 = b_vid; | 
| 8284 | 	} | 
| 8285 |  | 
| 8286 |         return b0; | 
| 8287 | } | 
| 8288 | #endif | 
| 8289 |  | 
| 8290 | /* | 
| 8291 |  * support IEEE 802.1Q VLAN trunk over ethernet | 
| 8292 |  */ | 
| 8293 | struct block * | 
| 8294 | gen_vlan(compiler_state_t *cstate, int vlan_num) | 
| 8295 | { | 
| 8296 | 	struct	block	*b0; | 
| 8297 |  | 
| 8298 | 	/* can't check for VLAN-encapsulated packets inside MPLS */ | 
| 8299 | 	if (cstate->label_stack_depth > 0) | 
| 8300 | 		bpf_error(cstate, "no VLAN match after MPLS" ); | 
| 8301 |  | 
| 8302 | 	/* | 
| 8303 | 	 * Check for a VLAN packet, and then change the offsets to point | 
| 8304 | 	 * to the type and data fields within the VLAN packet.  Just | 
| 8305 | 	 * increment the offsets, so that we can support a hierarchy, e.g. | 
| 8306 | 	 * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within | 
| 8307 | 	 * VLAN 100. | 
| 8308 | 	 * | 
| 8309 | 	 * XXX - this is a bit of a kludge.  If we were to split the | 
| 8310 | 	 * compiler into a parser that parses an expression and | 
| 8311 | 	 * generates an expression tree, and a code generator that | 
| 8312 | 	 * takes an expression tree (which could come from our | 
| 8313 | 	 * parser or from some other parser) and generates BPF code, | 
| 8314 | 	 * we could perhaps make the offsets parameters of routines | 
| 8315 | 	 * and, in the handler for an "AND" node, pass to subnodes | 
| 8316 | 	 * other than the VLAN node the adjusted offsets. | 
| 8317 | 	 * | 
| 8318 | 	 * This would mean that "vlan" would, instead of changing the | 
| 8319 | 	 * behavior of *all* tests after it, change only the behavior | 
| 8320 | 	 * of tests ANDed with it.  That would change the documented | 
| 8321 | 	 * semantics of "vlan", which might break some expressions. | 
| 8322 | 	 * However, it would mean that "(vlan and ip) or ip" would check | 
| 8323 | 	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than | 
| 8324 | 	 * checking only for VLAN-encapsulated IP, so that could still | 
| 8325 | 	 * be considered worth doing; it wouldn't break expressions | 
| 8326 | 	 * that are of the form "vlan and ..." or "vlan N and ...", | 
| 8327 | 	 * which I suspect are the most common expressions involving | 
| 8328 | 	 * "vlan".  "vlan or ..." doesn't necessarily do what the user | 
| 8329 | 	 * would really want, now, as all the "or ..." tests would | 
| 8330 | 	 * be done assuming a VLAN, even though the "or" could be viewed | 
| 8331 | 	 * as meaning "or, if this isn't a VLAN packet...". | 
| 8332 | 	 */ | 
| 8333 | 	switch (cstate->linktype) { | 
| 8334 |  | 
| 8335 | 	case DLT_EN10MB: | 
| 8336 | 	case DLT_NETANALYZER: | 
| 8337 | 	case DLT_NETANALYZER_TRANSPARENT: | 
| 8338 | #if defined(SKF_AD_VLAN_TAG_PRESENT) | 
| 8339 | 		/* Verify that this is the outer part of the packet and | 
| 8340 | 		 * not encapsulated somehow. */ | 
| 8341 | 		if (cstate->vlan_stack_depth == 0 && !cstate->off_linkhdr.is_variable && | 
| 8342 | 		    cstate->off_linkhdr.constant_part == | 
| 8343 | 		    cstate->off_outermostlinkhdr.constant_part) { | 
| 8344 | 			/* | 
| 8345 | 			 * Do we need special VLAN handling? | 
| 8346 | 			 */ | 
| 8347 | 			if (cstate->bpf_pcap->bpf_codegen_flags & BPF_SPECIAL_VLAN_HANDLING) | 
| 8348 | 				b0 = gen_vlan_bpf_extensions(cstate, vlan_num); | 
| 8349 | 			else | 
| 8350 | 				b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num); | 
| 8351 | 		} else | 
| 8352 | #endif | 
| 8353 | 			b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num); | 
| 8354 |                 break; | 
| 8355 |  | 
| 8356 | 	case DLT_IEEE802_11: | 
| 8357 | 	case DLT_PRISM_HEADER: | 
| 8358 | 	case DLT_IEEE802_11_RADIO_AVS: | 
| 8359 | 	case DLT_IEEE802_11_RADIO: | 
| 8360 | 		b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num); | 
| 8361 | 		break; | 
| 8362 |  | 
| 8363 | 	default: | 
| 8364 | 		bpf_error(cstate, "no VLAN support for data link type %d" , | 
| 8365 | 		      cstate->linktype); | 
| 8366 | 		/*NOTREACHED*/ | 
| 8367 | 	} | 
| 8368 |  | 
| 8369 |         cstate->vlan_stack_depth++; | 
| 8370 |  | 
| 8371 | 	return (b0); | 
| 8372 | } | 
| 8373 |  | 
| 8374 | /* | 
| 8375 |  * support for MPLS | 
| 8376 |  */ | 
| 8377 | struct block * | 
| 8378 | gen_mpls(compiler_state_t *cstate, int label_num) | 
| 8379 | { | 
| 8380 | 	struct	block	*b0, *b1; | 
| 8381 |  | 
| 8382 |         if (cstate->label_stack_depth > 0) { | 
| 8383 |             /* just match the bottom-of-stack bit clear */ | 
| 8384 |             b0 = gen_mcmp(cstate, OR_PREVMPLSHDR, 2, BPF_B, 0, 0x01); | 
| 8385 |         } else { | 
| 8386 |             /* | 
| 8387 |              * We're not in an MPLS stack yet, so check the link-layer | 
| 8388 |              * type against MPLS. | 
| 8389 |              */ | 
| 8390 |             switch (cstate->linktype) { | 
| 8391 |  | 
| 8392 |             case DLT_C_HDLC: /* fall through */ | 
| 8393 |             case DLT_EN10MB: | 
| 8394 |             case DLT_NETANALYZER: | 
| 8395 |             case DLT_NETANALYZER_TRANSPARENT: | 
| 8396 |                     b0 = gen_linktype(cstate, ETHERTYPE_MPLS); | 
| 8397 |                     break; | 
| 8398 |  | 
| 8399 |             case DLT_PPP: | 
| 8400 |                     b0 = gen_linktype(cstate, PPP_MPLS_UCAST); | 
| 8401 |                     break; | 
| 8402 |  | 
| 8403 |                     /* FIXME add other DLT_s ... | 
| 8404 |                      * for Frame-Relay/and ATM this may get messy due to SNAP headers | 
| 8405 |                      * leave it for now */ | 
| 8406 |  | 
| 8407 |             default: | 
| 8408 |                     bpf_error(cstate, "no MPLS support for data link type %d" , | 
| 8409 |                           cstate->linktype); | 
| 8410 |                     /*NOTREACHED*/ | 
| 8411 |                     break; | 
| 8412 |             } | 
| 8413 |         } | 
| 8414 |  | 
| 8415 | 	/* If a specific MPLS label is requested, check it */ | 
| 8416 | 	if (label_num >= 0) { | 
| 8417 | 		label_num = label_num << 12; /* label is shifted 12 bits on the wire */ | 
| 8418 | 		b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W, (bpf_int32)label_num, | 
| 8419 | 		    0xfffff000); /* only compare the first 20 bits */ | 
| 8420 | 		gen_and(b0, b1); | 
| 8421 | 		b0 = b1; | 
| 8422 | 	} | 
| 8423 |  | 
| 8424 |         /* | 
| 8425 |          * Change the offsets to point to the type and data fields within | 
| 8426 |          * the MPLS packet.  Just increment the offsets, so that we | 
| 8427 |          * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to | 
| 8428 |          * capture packets with an outer label of 100000 and an inner | 
| 8429 |          * label of 1024. | 
| 8430 |          * | 
| 8431 |          * Increment the MPLS stack depth as well; this indicates that | 
| 8432 |          * we're checking MPLS-encapsulated headers, to make sure higher | 
| 8433 |          * level code generators don't try to match against IP-related | 
| 8434 |          * protocols such as Q_ARP, Q_RARP etc. | 
| 8435 |          * | 
| 8436 |          * XXX - this is a bit of a kludge.  See comments in gen_vlan(). | 
| 8437 |          */ | 
| 8438 |         cstate->off_nl_nosnap += 4; | 
| 8439 |         cstate->off_nl += 4; | 
| 8440 |         cstate->label_stack_depth++; | 
| 8441 | 	return (b0); | 
| 8442 | } | 
| 8443 |  | 
| 8444 | /* | 
| 8445 |  * Support PPPOE discovery and session. | 
| 8446 |  */ | 
| 8447 | struct block * | 
| 8448 | gen_pppoed(compiler_state_t *cstate) | 
| 8449 | { | 
| 8450 | 	/* check for PPPoE discovery */ | 
| 8451 | 	return gen_linktype(cstate, (bpf_int32)ETHERTYPE_PPPOED); | 
| 8452 | } | 
| 8453 |  | 
| 8454 | struct block * | 
| 8455 | gen_pppoes(compiler_state_t *cstate, int sess_num) | 
| 8456 | { | 
| 8457 | 	struct block *b0, *b1; | 
| 8458 |  | 
| 8459 | 	/* | 
| 8460 | 	 * Test against the PPPoE session link-layer type. | 
| 8461 | 	 */ | 
| 8462 | 	b0 = gen_linktype(cstate, (bpf_int32)ETHERTYPE_PPPOES); | 
| 8463 |  | 
| 8464 | 	/* If a specific session is requested, check PPPoE session id */ | 
| 8465 | 	if (sess_num >= 0) { | 
| 8466 | 		b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W, | 
| 8467 | 		    (bpf_int32)sess_num, 0x0000ffff); | 
| 8468 | 		gen_and(b0, b1); | 
| 8469 | 		b0 = b1; | 
| 8470 | 	} | 
| 8471 |  | 
| 8472 | 	/* | 
| 8473 | 	 * Change the offsets to point to the type and data fields within | 
| 8474 | 	 * the PPP packet, and note that this is PPPoE rather than | 
| 8475 | 	 * raw PPP. | 
| 8476 | 	 * | 
| 8477 | 	 * XXX - this is a bit of a kludge.  If we were to split the | 
| 8478 | 	 * compiler into a parser that parses an expression and | 
| 8479 | 	 * generates an expression tree, and a code generator that | 
| 8480 | 	 * takes an expression tree (which could come from our | 
| 8481 | 	 * parser or from some other parser) and generates BPF code, | 
| 8482 | 	 * we could perhaps make the offsets parameters of routines | 
| 8483 | 	 * and, in the handler for an "AND" node, pass to subnodes | 
| 8484 | 	 * other than the PPPoE node the adjusted offsets. | 
| 8485 | 	 * | 
| 8486 | 	 * This would mean that "pppoes" would, instead of changing the | 
| 8487 | 	 * behavior of *all* tests after it, change only the behavior | 
| 8488 | 	 * of tests ANDed with it.  That would change the documented | 
| 8489 | 	 * semantics of "pppoes", which might break some expressions. | 
| 8490 | 	 * However, it would mean that "(pppoes and ip) or ip" would check | 
| 8491 | 	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than | 
| 8492 | 	 * checking only for VLAN-encapsulated IP, so that could still | 
| 8493 | 	 * be considered worth doing; it wouldn't break expressions | 
| 8494 | 	 * that are of the form "pppoes and ..." which I suspect are the | 
| 8495 | 	 * most common expressions involving "pppoes".  "pppoes or ..." | 
| 8496 | 	 * doesn't necessarily do what the user would really want, now, | 
| 8497 | 	 * as all the "or ..." tests would be done assuming PPPoE, even | 
| 8498 | 	 * though the "or" could be viewed as meaning "or, if this isn't | 
| 8499 | 	 * a PPPoE packet...". | 
| 8500 | 	 * | 
| 8501 | 	 * The "network-layer" protocol is PPPoE, which has a 6-byte | 
| 8502 | 	 * PPPoE header, followed by a PPP packet. | 
| 8503 | 	 * | 
| 8504 | 	 * There is no HDLC encapsulation for the PPP packet (it's | 
| 8505 | 	 * encapsulated in PPPoES instead), so the link-layer type | 
| 8506 | 	 * starts at the first byte of the PPP packet.  For PPPoE, | 
| 8507 | 	 * that offset is relative to the beginning of the total | 
| 8508 | 	 * link-layer payload, including any 802.2 LLC header, so | 
| 8509 | 	 * it's 6 bytes past cstate->off_nl. | 
| 8510 | 	 */ | 
| 8511 | 	PUSH_LINKHDR(cstate, DLT_PPP, cstate->off_linkpl.is_variable, | 
| 8512 | 	    cstate->off_linkpl.constant_part + cstate->off_nl + 6, /* 6 bytes past the PPPoE header */ | 
| 8513 | 	    cstate->off_linkpl.reg); | 
| 8514 |  | 
| 8515 | 	cstate->off_linktype = cstate->off_linkhdr; | 
| 8516 | 	cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 2; | 
| 8517 |  | 
| 8518 | 	cstate->off_nl = 0; | 
| 8519 | 	cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */ | 
| 8520 |  | 
| 8521 | 	return b0; | 
| 8522 | } | 
| 8523 |  | 
| 8524 | /* Check that this is Geneve and the VNI is correct if | 
| 8525 |  * specified. Parameterized to handle both IPv4 and IPv6. */ | 
| 8526 | static struct block * | 
| 8527 | gen_geneve_check(compiler_state_t *cstate, | 
| 8528 |     struct block *(*gen_portfn)(compiler_state_t *, int, int, int), | 
| 8529 |     enum e_offrel offrel, int vni) | 
| 8530 | { | 
| 8531 | 	struct block *b0, *b1; | 
| 8532 |  | 
| 8533 | 	b0 = gen_portfn(cstate, GENEVE_PORT, IPPROTO_UDP, Q_DST); | 
| 8534 |  | 
| 8535 | 	/* Check that we are operating on version 0. Otherwise, we | 
| 8536 | 	 * can't decode the rest of the fields. The version is 2 bits | 
| 8537 | 	 * in the first byte of the Geneve header. */ | 
| 8538 | 	b1 = gen_mcmp(cstate, offrel, 8, BPF_B, (bpf_int32)0, 0xc0); | 
| 8539 | 	gen_and(b0, b1); | 
| 8540 | 	b0 = b1; | 
| 8541 |  | 
| 8542 | 	if (vni >= 0) { | 
| 8543 | 		vni <<= 8; /* VNI is in the upper 3 bytes */ | 
| 8544 | 		b1 = gen_mcmp(cstate, offrel, 12, BPF_W, (bpf_int32)vni, | 
| 8545 | 			      0xffffff00); | 
| 8546 | 		gen_and(b0, b1); | 
| 8547 | 		b0 = b1; | 
| 8548 | 	} | 
| 8549 |  | 
| 8550 | 	return b0; | 
| 8551 | } | 
| 8552 |  | 
| 8553 | /* The IPv4 and IPv6 Geneve checks need to do two things: | 
| 8554 |  * - Verify that this actually is Geneve with the right VNI. | 
| 8555 |  * - Place the IP header length (plus variable link prefix if | 
| 8556 |  *   needed) into register A to be used later to compute | 
| 8557 |  *   the inner packet offsets. */ | 
| 8558 | static struct block * | 
| 8559 | gen_geneve4(compiler_state_t *cstate, int vni) | 
| 8560 | { | 
| 8561 | 	struct block *b0, *b1; | 
| 8562 | 	struct slist *s, *s1; | 
| 8563 |  | 
| 8564 | 	b0 = gen_geneve_check(cstate, gen_port, OR_TRAN_IPV4, vni); | 
| 8565 |  | 
| 8566 | 	/* Load the IP header length into A. */ | 
| 8567 | 	s = gen_loadx_iphdrlen(cstate); | 
| 8568 |  | 
| 8569 | 	s1 = new_stmt(cstate, BPF_MISC|BPF_TXA); | 
| 8570 | 	sappend(s, s1); | 
| 8571 |  | 
| 8572 | 	/* Forcibly append these statements to the true condition | 
| 8573 | 	 * of the protocol check by creating a new block that is | 
| 8574 | 	 * always true and ANDing them. */ | 
| 8575 | 	b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X); | 
| 8576 | 	b1->stmts = s; | 
| 8577 | 	b1->s.k = 0; | 
| 8578 |  | 
| 8579 | 	gen_and(b0, b1); | 
| 8580 |  | 
| 8581 | 	return b1; | 
| 8582 | } | 
| 8583 |  | 
| 8584 | static struct block * | 
| 8585 | gen_geneve6(compiler_state_t *cstate, int vni) | 
| 8586 | { | 
| 8587 | 	struct block *b0, *b1; | 
| 8588 | 	struct slist *s, *s1; | 
| 8589 |  | 
| 8590 | 	b0 = gen_geneve_check(cstate, gen_port6, OR_TRAN_IPV6, vni); | 
| 8591 |  | 
| 8592 | 	/* Load the IP header length. We need to account for a | 
| 8593 | 	 * variable length link prefix if there is one. */ | 
| 8594 | 	s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl); | 
| 8595 | 	if (s) { | 
| 8596 | 		s1 = new_stmt(cstate, BPF_LD|BPF_IMM); | 
| 8597 | 		s1->s.k = 40; | 
| 8598 | 		sappend(s, s1); | 
| 8599 |  | 
| 8600 | 		s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X); | 
| 8601 | 		s1->s.k = 0; | 
| 8602 | 		sappend(s, s1); | 
| 8603 | 	} else { | 
| 8604 | 		s = new_stmt(cstate, BPF_LD|BPF_IMM); | 
| 8605 | 		s->s.k = 40; | 
| 8606 | 	} | 
| 8607 |  | 
| 8608 | 	/* Forcibly append these statements to the true condition | 
| 8609 | 	 * of the protocol check by creating a new block that is | 
| 8610 | 	 * always true and ANDing them. */ | 
| 8611 | 	s1 = new_stmt(cstate, BPF_MISC|BPF_TAX); | 
| 8612 | 	sappend(s, s1); | 
| 8613 |  | 
| 8614 | 	b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X); | 
| 8615 | 	b1->stmts = s; | 
| 8616 | 	b1->s.k = 0; | 
| 8617 |  | 
| 8618 | 	gen_and(b0, b1); | 
| 8619 |  | 
| 8620 | 	return b1; | 
| 8621 | } | 
| 8622 |  | 
| 8623 | /* We need to store three values based on the Geneve header:: | 
| 8624 |  * - The offset of the linktype. | 
| 8625 |  * - The offset of the end of the Geneve header. | 
| 8626 |  * - The offset of the end of the encapsulated MAC header. */ | 
| 8627 | static struct slist * | 
| 8628 | gen_geneve_offsets(compiler_state_t *cstate) | 
| 8629 | { | 
| 8630 | 	struct slist *s, *s1, *s_proto; | 
| 8631 |  | 
| 8632 | 	/* First we need to calculate the offset of the Geneve header | 
| 8633 | 	 * itself. This is composed of the IP header previously calculated | 
| 8634 | 	 * (include any variable link prefix) and stored in A plus the | 
| 8635 | 	 * fixed sized headers (fixed link prefix, MAC length, and UDP | 
| 8636 | 	 * header). */ | 
| 8637 | 	s = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K); | 
| 8638 | 	s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 8; | 
| 8639 |  | 
| 8640 | 	/* Stash this in X since we'll need it later. */ | 
| 8641 | 	s1 = new_stmt(cstate, BPF_MISC|BPF_TAX); | 
| 8642 | 	sappend(s, s1); | 
| 8643 |  | 
| 8644 | 	/* The EtherType in Geneve is 2 bytes in. Calculate this and | 
| 8645 | 	 * store it. */ | 
| 8646 | 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K); | 
| 8647 | 	s1->s.k = 2; | 
| 8648 | 	sappend(s, s1); | 
| 8649 |  | 
| 8650 | 	cstate->off_linktype.reg = alloc_reg(cstate); | 
| 8651 | 	cstate->off_linktype.is_variable = 1; | 
| 8652 | 	cstate->off_linktype.constant_part = 0; | 
| 8653 |  | 
| 8654 | 	s1 = new_stmt(cstate, BPF_ST); | 
| 8655 | 	s1->s.k = cstate->off_linktype.reg; | 
| 8656 | 	sappend(s, s1); | 
| 8657 |  | 
| 8658 | 	/* Load the Geneve option length and mask and shift to get the | 
| 8659 | 	 * number of bytes. It is stored in the first byte of the Geneve | 
| 8660 | 	 * header. */ | 
| 8661 | 	s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B); | 
| 8662 | 	s1->s.k = 0; | 
| 8663 | 	sappend(s, s1); | 
| 8664 |  | 
| 8665 | 	s1 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K); | 
| 8666 | 	s1->s.k = 0x3f; | 
| 8667 | 	sappend(s, s1); | 
| 8668 |  | 
| 8669 | 	s1 = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K); | 
| 8670 | 	s1->s.k = 4; | 
| 8671 | 	sappend(s, s1); | 
| 8672 |  | 
| 8673 | 	/* Add in the rest of the Geneve base header. */ | 
| 8674 | 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K); | 
| 8675 | 	s1->s.k = 8; | 
| 8676 | 	sappend(s, s1); | 
| 8677 |  | 
| 8678 | 	/* Add the Geneve header length to its offset and store. */ | 
| 8679 | 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X); | 
| 8680 | 	s1->s.k = 0; | 
| 8681 | 	sappend(s, s1); | 
| 8682 |  | 
| 8683 | 	/* Set the encapsulated type as Ethernet. Even though we may | 
| 8684 | 	 * not actually have Ethernet inside there are two reasons this | 
| 8685 | 	 * is useful: | 
| 8686 | 	 * - The linktype field is always in EtherType format regardless | 
| 8687 | 	 *   of whether it is in Geneve or an inner Ethernet frame. | 
| 8688 | 	 * - The only link layer that we have specific support for is | 
| 8689 | 	 *   Ethernet. We will confirm that the packet actually is | 
| 8690 | 	 *   Ethernet at runtime before executing these checks. */ | 
| 8691 | 	PUSH_LINKHDR(cstate, DLT_EN10MB, 1, 0, alloc_reg(cstate)); | 
| 8692 |  | 
| 8693 | 	s1 = new_stmt(cstate, BPF_ST); | 
| 8694 | 	s1->s.k = cstate->off_linkhdr.reg; | 
| 8695 | 	sappend(s, s1); | 
| 8696 |  | 
| 8697 | 	/* Calculate whether we have an Ethernet header or just raw IP/ | 
| 8698 | 	 * MPLS/etc. If we have Ethernet, advance the end of the MAC offset | 
| 8699 | 	 * and linktype by 14 bytes so that the network header can be found | 
| 8700 | 	 * seamlessly. Otherwise, keep what we've calculated already. */ | 
| 8701 |  | 
| 8702 | 	/* We have a bare jmp so we can't use the optimizer. */ | 
| 8703 | 	cstate->no_optimize = 1; | 
| 8704 |  | 
| 8705 | 	/* Load the EtherType in the Geneve header, 2 bytes in. */ | 
| 8706 | 	s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_H); | 
| 8707 | 	s1->s.k = 2; | 
| 8708 | 	sappend(s, s1); | 
| 8709 |  | 
| 8710 | 	/* Load X with the end of the Geneve header. */ | 
| 8711 | 	s1 = new_stmt(cstate, BPF_LDX|BPF_MEM); | 
| 8712 | 	s1->s.k = cstate->off_linkhdr.reg; | 
| 8713 | 	sappend(s, s1); | 
| 8714 |  | 
| 8715 | 	/* Check if the EtherType is Transparent Ethernet Bridging. At the | 
| 8716 | 	 * end of this check, we should have the total length in X. In | 
| 8717 | 	 * the non-Ethernet case, it's already there. */ | 
| 8718 | 	s_proto = new_stmt(cstate, JMP(BPF_JEQ)); | 
| 8719 | 	s_proto->s.k = ETHERTYPE_TEB; | 
| 8720 | 	sappend(s, s_proto); | 
| 8721 |  | 
| 8722 | 	s1 = new_stmt(cstate, BPF_MISC|BPF_TXA); | 
| 8723 | 	sappend(s, s1); | 
| 8724 | 	s_proto->s.jt = s1; | 
| 8725 |  | 
| 8726 | 	/* Since this is Ethernet, use the EtherType of the payload | 
| 8727 | 	 * directly as the linktype. Overwrite what we already have. */ | 
| 8728 | 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K); | 
| 8729 | 	s1->s.k = 12; | 
| 8730 | 	sappend(s, s1); | 
| 8731 |  | 
| 8732 | 	s1 = new_stmt(cstate, BPF_ST); | 
| 8733 | 	s1->s.k = cstate->off_linktype.reg; | 
| 8734 | 	sappend(s, s1); | 
| 8735 |  | 
| 8736 | 	/* Advance two bytes further to get the end of the Ethernet | 
| 8737 | 	 * header. */ | 
| 8738 | 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K); | 
| 8739 | 	s1->s.k = 2; | 
| 8740 | 	sappend(s, s1); | 
| 8741 |  | 
| 8742 | 	/* Move the result to X. */ | 
| 8743 | 	s1 = new_stmt(cstate, BPF_MISC|BPF_TAX); | 
| 8744 | 	sappend(s, s1); | 
| 8745 |  | 
| 8746 | 	/* Store the final result of our linkpl calculation. */ | 
| 8747 | 	cstate->off_linkpl.reg = alloc_reg(cstate); | 
| 8748 | 	cstate->off_linkpl.is_variable = 1; | 
| 8749 | 	cstate->off_linkpl.constant_part = 0; | 
| 8750 |  | 
| 8751 | 	s1 = new_stmt(cstate, BPF_STX); | 
| 8752 | 	s1->s.k = cstate->off_linkpl.reg; | 
| 8753 | 	sappend(s, s1); | 
| 8754 | 	s_proto->s.jf = s1; | 
| 8755 |  | 
| 8756 | 	cstate->off_nl = 0; | 
| 8757 |  | 
| 8758 | 	return s; | 
| 8759 | } | 
| 8760 |  | 
| 8761 | /* Check to see if this is a Geneve packet. */ | 
| 8762 | struct block * | 
| 8763 | gen_geneve(compiler_state_t *cstate, int vni) | 
| 8764 | { | 
| 8765 | 	struct block *b0, *b1; | 
| 8766 | 	struct slist *s; | 
| 8767 |  | 
| 8768 | 	b0 = gen_geneve4(cstate, vni); | 
| 8769 | 	b1 = gen_geneve6(cstate, vni); | 
| 8770 |  | 
| 8771 | 	gen_or(b0, b1); | 
| 8772 | 	b0 = b1; | 
| 8773 |  | 
| 8774 | 	/* Later filters should act on the payload of the Geneve frame, | 
| 8775 | 	 * update all of the header pointers. Attach this code so that | 
| 8776 | 	 * it gets executed in the event that the Geneve filter matches. */ | 
| 8777 | 	s = gen_geneve_offsets(cstate); | 
| 8778 |  | 
| 8779 | 	b1 = gen_true(cstate); | 
| 8780 | 	sappend(s, b1->stmts); | 
| 8781 | 	b1->stmts = s; | 
| 8782 |  | 
| 8783 | 	gen_and(b0, b1); | 
| 8784 |  | 
| 8785 | 	cstate->is_geneve = 1; | 
| 8786 |  | 
| 8787 | 	return b1; | 
| 8788 | } | 
| 8789 |  | 
| 8790 | /* Check that the encapsulated frame has a link layer header | 
| 8791 |  * for Ethernet filters. */ | 
| 8792 | static struct block * | 
| 8793 | gen_geneve_ll_check(compiler_state_t *cstate) | 
| 8794 | { | 
| 8795 | 	struct block *b0; | 
| 8796 | 	struct slist *s, *s1; | 
| 8797 |  | 
| 8798 | 	/* The easiest way to see if there is a link layer present | 
| 8799 | 	 * is to check if the link layer header and payload are not | 
| 8800 | 	 * the same. */ | 
| 8801 |  | 
| 8802 | 	/* Geneve always generates pure variable offsets so we can | 
| 8803 | 	 * compare only the registers. */ | 
| 8804 | 	s = new_stmt(cstate, BPF_LD|BPF_MEM); | 
| 8805 | 	s->s.k = cstate->off_linkhdr.reg; | 
| 8806 |  | 
| 8807 | 	s1 = new_stmt(cstate, BPF_LDX|BPF_MEM); | 
| 8808 | 	s1->s.k = cstate->off_linkpl.reg; | 
| 8809 | 	sappend(s, s1); | 
| 8810 |  | 
| 8811 | 	b0 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X); | 
| 8812 | 	b0->stmts = s; | 
| 8813 | 	b0->s.k = 0; | 
| 8814 | 	gen_not(b0); | 
| 8815 |  | 
| 8816 | 	return b0; | 
| 8817 | } | 
| 8818 |  | 
| 8819 | struct block * | 
| 8820 | gen_atmfield_code(compiler_state_t *cstate, int atmfield, bpf_int32 jvalue, | 
| 8821 |     bpf_u_int32 jtype, int reverse) | 
| 8822 | { | 
| 8823 | 	struct block *b0; | 
| 8824 |  | 
| 8825 | 	switch (atmfield) { | 
| 8826 |  | 
| 8827 | 	case A_VPI: | 
| 8828 | 		if (!cstate->is_atm) | 
| 8829 | 			bpf_error(cstate, "'vpi' supported only on raw ATM" ); | 
| 8830 | 		if (cstate->off_vpi == OFFSET_NOT_SET) | 
| 8831 | 			abort(); | 
| 8832 | 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vpi, BPF_B, 0xffffffff, jtype, | 
| 8833 | 		    reverse, jvalue); | 
| 8834 | 		break; | 
| 8835 |  | 
| 8836 | 	case A_VCI: | 
| 8837 | 		if (!cstate->is_atm) | 
| 8838 | 			bpf_error(cstate, "'vci' supported only on raw ATM" ); | 
| 8839 | 		if (cstate->off_vci == OFFSET_NOT_SET) | 
| 8840 | 			abort(); | 
| 8841 | 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vci, BPF_H, 0xffffffff, jtype, | 
| 8842 | 		    reverse, jvalue); | 
| 8843 | 		break; | 
| 8844 |  | 
| 8845 | 	case A_PROTOTYPE: | 
| 8846 | 		if (cstate->off_proto == OFFSET_NOT_SET) | 
| 8847 | 			abort();	/* XXX - this isn't on FreeBSD */ | 
| 8848 | 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B, 0x0f, jtype, | 
| 8849 | 		    reverse, jvalue); | 
| 8850 | 		break; | 
| 8851 |  | 
| 8852 | 	case A_MSGTYPE: | 
| 8853 | 		if (cstate->off_payload == OFFSET_NOT_SET) | 
| 8854 | 			abort(); | 
| 8855 | 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_payload + MSG_TYPE_POS, BPF_B, | 
| 8856 | 		    0xffffffff, jtype, reverse, jvalue); | 
| 8857 | 		break; | 
| 8858 |  | 
| 8859 | 	case A_CALLREFTYPE: | 
| 8860 | 		if (!cstate->is_atm) | 
| 8861 | 			bpf_error(cstate, "'callref' supported only on raw ATM" ); | 
| 8862 | 		if (cstate->off_proto == OFFSET_NOT_SET) | 
| 8863 | 			abort(); | 
| 8864 | 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B, 0xffffffff, | 
| 8865 | 		    jtype, reverse, jvalue); | 
| 8866 | 		break; | 
| 8867 |  | 
| 8868 | 	default: | 
| 8869 | 		abort(); | 
| 8870 | 	} | 
| 8871 | 	return b0; | 
| 8872 | } | 
| 8873 |  | 
| 8874 | struct block * | 
| 8875 | gen_atmtype_abbrev(compiler_state_t *cstate, int type) | 
| 8876 | { | 
| 8877 | 	struct block *b0, *b1; | 
| 8878 |  | 
| 8879 | 	switch (type) { | 
| 8880 |  | 
| 8881 | 	case A_METAC: | 
| 8882 | 		/* Get all packets in Meta signalling Circuit */ | 
| 8883 | 		if (!cstate->is_atm) | 
| 8884 | 			bpf_error(cstate, "'metac' supported only on raw ATM" ); | 
| 8885 | 		b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0); | 
| 8886 | 		b1 = gen_atmfield_code(cstate, A_VCI, 1, BPF_JEQ, 0); | 
| 8887 | 		gen_and(b0, b1); | 
| 8888 | 		break; | 
| 8889 |  | 
| 8890 | 	case A_BCC: | 
| 8891 | 		/* Get all packets in Broadcast Circuit*/ | 
| 8892 | 		if (!cstate->is_atm) | 
| 8893 | 			bpf_error(cstate, "'bcc' supported only on raw ATM" ); | 
| 8894 | 		b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0); | 
| 8895 | 		b1 = gen_atmfield_code(cstate, A_VCI, 2, BPF_JEQ, 0); | 
| 8896 | 		gen_and(b0, b1); | 
| 8897 | 		break; | 
| 8898 |  | 
| 8899 | 	case A_OAMF4SC: | 
| 8900 | 		/* Get all cells in Segment OAM F4 circuit*/ | 
| 8901 | 		if (!cstate->is_atm) | 
| 8902 | 			bpf_error(cstate, "'oam4sc' supported only on raw ATM" ); | 
| 8903 | 		b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0); | 
| 8904 | 		b1 = gen_atmfield_code(cstate, A_VCI, 3, BPF_JEQ, 0); | 
| 8905 | 		gen_and(b0, b1); | 
| 8906 | 		break; | 
| 8907 |  | 
| 8908 | 	case A_OAMF4EC: | 
| 8909 | 		/* Get all cells in End-to-End OAM F4 Circuit*/ | 
| 8910 | 		if (!cstate->is_atm) | 
| 8911 | 			bpf_error(cstate, "'oam4ec' supported only on raw ATM" ); | 
| 8912 | 		b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0); | 
| 8913 | 		b1 = gen_atmfield_code(cstate, A_VCI, 4, BPF_JEQ, 0); | 
| 8914 | 		gen_and(b0, b1); | 
| 8915 | 		break; | 
| 8916 |  | 
| 8917 | 	case A_SC: | 
| 8918 | 		/*  Get all packets in connection Signalling Circuit */ | 
| 8919 | 		if (!cstate->is_atm) | 
| 8920 | 			bpf_error(cstate, "'sc' supported only on raw ATM" ); | 
| 8921 | 		b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0); | 
| 8922 | 		b1 = gen_atmfield_code(cstate, A_VCI, 5, BPF_JEQ, 0); | 
| 8923 | 		gen_and(b0, b1); | 
| 8924 | 		break; | 
| 8925 |  | 
| 8926 | 	case A_ILMIC: | 
| 8927 | 		/* Get all packets in ILMI Circuit */ | 
| 8928 | 		if (!cstate->is_atm) | 
| 8929 | 			bpf_error(cstate, "'ilmic' supported only on raw ATM" ); | 
| 8930 | 		b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0); | 
| 8931 | 		b1 = gen_atmfield_code(cstate, A_VCI, 16, BPF_JEQ, 0); | 
| 8932 | 		gen_and(b0, b1); | 
| 8933 | 		break; | 
| 8934 |  | 
| 8935 | 	case A_LANE: | 
| 8936 | 		/* Get all LANE packets */ | 
| 8937 | 		if (!cstate->is_atm) | 
| 8938 | 			bpf_error(cstate, "'lane' supported only on raw ATM" ); | 
| 8939 | 		b1 = gen_atmfield_code(cstate, A_PROTOTYPE, PT_LANE, BPF_JEQ, 0); | 
| 8940 |  | 
| 8941 | 		/* | 
| 8942 | 		 * Arrange that all subsequent tests assume LANE | 
| 8943 | 		 * rather than LLC-encapsulated packets, and set | 
| 8944 | 		 * the offsets appropriately for LANE-encapsulated | 
| 8945 | 		 * Ethernet. | 
| 8946 | 		 * | 
| 8947 | 		 * We assume LANE means Ethernet, not Token Ring. | 
| 8948 | 		 */ | 
| 8949 | 		PUSH_LINKHDR(cstate, DLT_EN10MB, 0, | 
| 8950 | 		    cstate->off_payload + 2,	/* Ethernet header */ | 
| 8951 | 		    -1); | 
| 8952 | 		cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12; | 
| 8953 | 		cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14;	/* Ethernet */ | 
| 8954 | 		cstate->off_nl = 0;			/* Ethernet II */ | 
| 8955 | 		cstate->off_nl_nosnap = 3;		/* 802.3+802.2 */ | 
| 8956 | 		break; | 
| 8957 |  | 
| 8958 | 	case A_LLC: | 
| 8959 | 		/* Get all LLC-encapsulated packets */ | 
| 8960 | 		if (!cstate->is_atm) | 
| 8961 | 			bpf_error(cstate, "'llc' supported only on raw ATM" ); | 
| 8962 | 		b1 = gen_atmfield_code(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0); | 
| 8963 | 		cstate->linktype = cstate->prevlinktype; | 
| 8964 | 		break; | 
| 8965 |  | 
| 8966 | 	default: | 
| 8967 | 		abort(); | 
| 8968 | 	} | 
| 8969 | 	return b1; | 
| 8970 | } | 
| 8971 |  | 
| 8972 | /* | 
| 8973 |  * Filtering for MTP2 messages based on li value | 
| 8974 |  * FISU, length is null | 
| 8975 |  * LSSU, length is 1 or 2 | 
| 8976 |  * MSU, length is 3 or more | 
| 8977 |  * For MTP2_HSL, sequences are on 2 bytes, and length on 9 bits | 
| 8978 |  */ | 
| 8979 | struct block * | 
| 8980 | gen_mtp2type_abbrev(compiler_state_t *cstate, int type) | 
| 8981 | { | 
| 8982 | 	struct block *b0, *b1; | 
| 8983 |  | 
| 8984 | 	switch (type) { | 
| 8985 |  | 
| 8986 | 	case M_FISU: | 
| 8987 | 		if ( (cstate->linktype != DLT_MTP2) && | 
| 8988 | 		     (cstate->linktype != DLT_ERF) && | 
| 8989 | 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) ) | 
| 8990 | 			bpf_error(cstate, "'fisu' supported only on MTP2" ); | 
| 8991 | 		/* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */ | 
| 8992 | 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B, 0x3f, BPF_JEQ, 0, 0); | 
| 8993 | 		break; | 
| 8994 |  | 
| 8995 | 	case M_LSSU: | 
| 8996 | 		if ( (cstate->linktype != DLT_MTP2) && | 
| 8997 | 		     (cstate->linktype != DLT_ERF) && | 
| 8998 | 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) ) | 
| 8999 | 			bpf_error(cstate, "'lssu' supported only on MTP2" ); | 
| 9000 | 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B, 0x3f, BPF_JGT, 1, 2); | 
| 9001 | 		b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B, 0x3f, BPF_JGT, 0, 0); | 
| 9002 | 		gen_and(b1, b0); | 
| 9003 | 		break; | 
| 9004 |  | 
| 9005 | 	case M_MSU: | 
| 9006 | 		if ( (cstate->linktype != DLT_MTP2) && | 
| 9007 | 		     (cstate->linktype != DLT_ERF) && | 
| 9008 | 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) ) | 
| 9009 | 			bpf_error(cstate, "'msu' supported only on MTP2" ); | 
| 9010 | 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B, 0x3f, BPF_JGT, 0, 2); | 
| 9011 | 		break; | 
| 9012 |  | 
| 9013 | 	case MH_FISU: | 
| 9014 | 		if ( (cstate->linktype != DLT_MTP2) && | 
| 9015 | 		     (cstate->linktype != DLT_ERF) && | 
| 9016 | 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) ) | 
| 9017 | 			bpf_error(cstate, "'hfisu' supported only on MTP2_HSL" ); | 
| 9018 | 		/* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */ | 
| 9019 | 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H, 0xff80, BPF_JEQ, 0, 0); | 
| 9020 | 		break; | 
| 9021 |  | 
| 9022 | 	case MH_LSSU: | 
| 9023 | 		if ( (cstate->linktype != DLT_MTP2) && | 
| 9024 | 		     (cstate->linktype != DLT_ERF) && | 
| 9025 | 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) ) | 
| 9026 | 			bpf_error(cstate, "'hlssu' supported only on MTP2_HSL" ); | 
| 9027 | 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H, 0xff80, BPF_JGT, 1, 0x0100); | 
| 9028 | 		b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H, 0xff80, BPF_JGT, 0, 0); | 
| 9029 | 		gen_and(b1, b0); | 
| 9030 | 		break; | 
| 9031 |  | 
| 9032 | 	case MH_MSU: | 
| 9033 | 		if ( (cstate->linktype != DLT_MTP2) && | 
| 9034 | 		     (cstate->linktype != DLT_ERF) && | 
| 9035 | 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) ) | 
| 9036 | 			bpf_error(cstate, "'hmsu' supported only on MTP2_HSL" ); | 
| 9037 | 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H, 0xff80, BPF_JGT, 0, 0x0100); | 
| 9038 | 		break; | 
| 9039 |  | 
| 9040 | 	default: | 
| 9041 | 		abort(); | 
| 9042 | 	} | 
| 9043 | 	return b0; | 
| 9044 | } | 
| 9045 |  | 
| 9046 | struct block * | 
| 9047 | gen_mtp3field_code(compiler_state_t *cstate, int mtp3field, bpf_u_int32 jvalue, | 
| 9048 |     bpf_u_int32 jtype, int reverse) | 
| 9049 | { | 
| 9050 | 	struct block *b0; | 
| 9051 | 	bpf_u_int32 val1 , val2 , val3; | 
| 9052 | 	u_int newoff_sio = cstate->off_sio; | 
| 9053 | 	u_int newoff_opc = cstate->off_opc; | 
| 9054 | 	u_int newoff_dpc = cstate->off_dpc; | 
| 9055 | 	u_int newoff_sls = cstate->off_sls; | 
| 9056 |  | 
| 9057 | 	switch (mtp3field) { | 
| 9058 |  | 
| 9059 | 	case MH_SIO: | 
| 9060 | 		newoff_sio += 3; /* offset for MTP2_HSL */ | 
| 9061 | 		/* FALLTHROUGH */ | 
| 9062 |  | 
| 9063 | 	case M_SIO: | 
| 9064 | 		if (cstate->off_sio == OFFSET_NOT_SET) | 
| 9065 | 			bpf_error(cstate, "'sio' supported only on SS7" ); | 
| 9066 | 		/* sio coded on 1 byte so max value 255 */ | 
| 9067 | 		if(jvalue > 255) | 
| 9068 | 		        bpf_error(cstate, "sio value %u too big; max value = 255" , | 
| 9069 | 		            jvalue); | 
| 9070 | 		b0 = gen_ncmp(cstate, OR_PACKET, newoff_sio, BPF_B, 0xffffffff, | 
| 9071 | 		    (u_int)jtype, reverse, (u_int)jvalue); | 
| 9072 | 		break; | 
| 9073 |  | 
| 9074 | 	case MH_OPC: | 
| 9075 | 		newoff_opc+=3; | 
| 9076 |         case M_OPC: | 
| 9077 | 	        if (cstate->off_opc == OFFSET_NOT_SET) | 
| 9078 | 			bpf_error(cstate, "'opc' supported only on SS7" ); | 
| 9079 | 		/* opc coded on 14 bits so max value 16383 */ | 
| 9080 | 		if (jvalue > 16383) | 
| 9081 | 		        bpf_error(cstate, "opc value %u too big; max value = 16383" , | 
| 9082 | 		            jvalue); | 
| 9083 | 		/* the following instructions are made to convert jvalue | 
| 9084 | 		 * to the form used to write opc in an ss7 message*/ | 
| 9085 | 		val1 = jvalue & 0x00003c00; | 
| 9086 | 		val1 = val1 >>10; | 
| 9087 | 		val2 = jvalue & 0x000003fc; | 
| 9088 | 		val2 = val2 <<6; | 
| 9089 | 		val3 = jvalue & 0x00000003; | 
| 9090 | 		val3 = val3 <<22; | 
| 9091 | 		jvalue = val1 + val2 + val3; | 
| 9092 | 		b0 = gen_ncmp(cstate, OR_PACKET, newoff_opc, BPF_W, 0x00c0ff0f, | 
| 9093 | 		    (u_int)jtype, reverse, (u_int)jvalue); | 
| 9094 | 		break; | 
| 9095 |  | 
| 9096 | 	case MH_DPC: | 
| 9097 | 		newoff_dpc += 3; | 
| 9098 | 		/* FALLTHROUGH */ | 
| 9099 |  | 
| 9100 | 	case M_DPC: | 
| 9101 | 	        if (cstate->off_dpc == OFFSET_NOT_SET) | 
| 9102 | 			bpf_error(cstate, "'dpc' supported only on SS7" ); | 
| 9103 | 		/* dpc coded on 14 bits so max value 16383 */ | 
| 9104 | 		if (jvalue > 16383) | 
| 9105 | 		        bpf_error(cstate, "dpc value %u too big; max value = 16383" , | 
| 9106 | 		            jvalue); | 
| 9107 | 		/* the following instructions are made to convert jvalue | 
| 9108 | 		 * to the forme used to write dpc in an ss7 message*/ | 
| 9109 | 		val1 = jvalue & 0x000000ff; | 
| 9110 | 		val1 = val1 << 24; | 
| 9111 | 		val2 = jvalue & 0x00003f00; | 
| 9112 | 		val2 = val2 << 8; | 
| 9113 | 		jvalue = val1 + val2; | 
| 9114 | 		b0 = gen_ncmp(cstate, OR_PACKET, newoff_dpc, BPF_W, 0xff3f0000, | 
| 9115 | 		    (u_int)jtype, reverse, (u_int)jvalue); | 
| 9116 | 		break; | 
| 9117 |  | 
| 9118 | 	case MH_SLS: | 
| 9119 | 	  newoff_sls+=3; | 
| 9120 | 	case M_SLS: | 
| 9121 | 	        if (cstate->off_sls == OFFSET_NOT_SET) | 
| 9122 | 			bpf_error(cstate, "'sls' supported only on SS7" ); | 
| 9123 | 		/* sls coded on 4 bits so max value 15 */ | 
| 9124 | 		if (jvalue > 15) | 
| 9125 | 		         bpf_error(cstate, "sls value %u too big; max value = 15" , | 
| 9126 | 		             jvalue); | 
| 9127 | 		/* the following instruction is made to convert jvalue | 
| 9128 | 		 * to the forme used to write sls in an ss7 message*/ | 
| 9129 | 		jvalue = jvalue << 4; | 
| 9130 | 		b0 = gen_ncmp(cstate, OR_PACKET, newoff_sls, BPF_B, 0xf0, | 
| 9131 | 		    (u_int)jtype,reverse, (u_int)jvalue); | 
| 9132 | 		break; | 
| 9133 |  | 
| 9134 | 	default: | 
| 9135 | 		abort(); | 
| 9136 | 	} | 
| 9137 | 	return b0; | 
| 9138 | } | 
| 9139 |  | 
| 9140 | static struct block * | 
| 9141 | gen_msg_abbrev(compiler_state_t *cstate, int type) | 
| 9142 | { | 
| 9143 | 	struct block *b1; | 
| 9144 |  | 
| 9145 | 	/* | 
| 9146 | 	 * Q.2931 signalling protocol messages for handling virtual circuits | 
| 9147 | 	 * establishment and teardown | 
| 9148 | 	 */ | 
| 9149 | 	switch (type) { | 
| 9150 |  | 
| 9151 | 	case A_SETUP: | 
| 9152 | 		b1 = gen_atmfield_code(cstate, A_MSGTYPE, SETUP, BPF_JEQ, 0); | 
| 9153 | 		break; | 
| 9154 |  | 
| 9155 | 	case A_CALLPROCEED: | 
| 9156 | 		b1 = gen_atmfield_code(cstate, A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0); | 
| 9157 | 		break; | 
| 9158 |  | 
| 9159 | 	case A_CONNECT: | 
| 9160 | 		b1 = gen_atmfield_code(cstate, A_MSGTYPE, CONNECT, BPF_JEQ, 0); | 
| 9161 | 		break; | 
| 9162 |  | 
| 9163 | 	case A_CONNECTACK: | 
| 9164 | 		b1 = gen_atmfield_code(cstate, A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0); | 
| 9165 | 		break; | 
| 9166 |  | 
| 9167 | 	case A_RELEASE: | 
| 9168 | 		b1 = gen_atmfield_code(cstate, A_MSGTYPE, RELEASE, BPF_JEQ, 0); | 
| 9169 | 		break; | 
| 9170 |  | 
| 9171 | 	case A_RELEASE_DONE: | 
| 9172 | 		b1 = gen_atmfield_code(cstate, A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0); | 
| 9173 | 		break; | 
| 9174 |  | 
| 9175 | 	default: | 
| 9176 | 		abort(); | 
| 9177 | 	} | 
| 9178 | 	return b1; | 
| 9179 | } | 
| 9180 |  | 
| 9181 | struct block * | 
| 9182 | gen_atmmulti_abbrev(compiler_state_t *cstate, int type) | 
| 9183 | { | 
| 9184 | 	struct block *b0, *b1; | 
| 9185 |  | 
| 9186 | 	switch (type) { | 
| 9187 |  | 
| 9188 | 	case A_OAM: | 
| 9189 | 		if (!cstate->is_atm) | 
| 9190 | 			bpf_error(cstate, "'oam' supported only on raw ATM" ); | 
| 9191 | 		b1 = gen_atmmulti_abbrev(cstate, A_OAMF4); | 
| 9192 | 		break; | 
| 9193 |  | 
| 9194 | 	case A_OAMF4: | 
| 9195 | 		if (!cstate->is_atm) | 
| 9196 | 			bpf_error(cstate, "'oamf4' supported only on raw ATM" ); | 
| 9197 | 		/* OAM F4 type */ | 
| 9198 | 		b0 = gen_atmfield_code(cstate, A_VCI, 3, BPF_JEQ, 0); | 
| 9199 | 		b1 = gen_atmfield_code(cstate, A_VCI, 4, BPF_JEQ, 0); | 
| 9200 | 		gen_or(b0, b1); | 
| 9201 | 		b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0); | 
| 9202 | 		gen_and(b0, b1); | 
| 9203 | 		break; | 
| 9204 |  | 
| 9205 | 	case A_CONNECTMSG: | 
| 9206 | 		/* | 
| 9207 | 		 * Get Q.2931 signalling messages for switched | 
| 9208 | 		 * virtual connection | 
| 9209 | 		 */ | 
| 9210 | 		if (!cstate->is_atm) | 
| 9211 | 			bpf_error(cstate, "'connectmsg' supported only on raw ATM" ); | 
| 9212 | 		b0 = gen_msg_abbrev(cstate, A_SETUP); | 
| 9213 | 		b1 = gen_msg_abbrev(cstate, A_CALLPROCEED); | 
| 9214 | 		gen_or(b0, b1); | 
| 9215 | 		b0 = gen_msg_abbrev(cstate, A_CONNECT); | 
| 9216 | 		gen_or(b0, b1); | 
| 9217 | 		b0 = gen_msg_abbrev(cstate, A_CONNECTACK); | 
| 9218 | 		gen_or(b0, b1); | 
| 9219 | 		b0 = gen_msg_abbrev(cstate, A_RELEASE); | 
| 9220 | 		gen_or(b0, b1); | 
| 9221 | 		b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE); | 
| 9222 | 		gen_or(b0, b1); | 
| 9223 | 		b0 = gen_atmtype_abbrev(cstate, A_SC); | 
| 9224 | 		gen_and(b0, b1); | 
| 9225 | 		break; | 
| 9226 |  | 
| 9227 | 	case A_METACONNECT: | 
| 9228 | 		if (!cstate->is_atm) | 
| 9229 | 			bpf_error(cstate, "'metaconnect' supported only on raw ATM" ); | 
| 9230 | 		b0 = gen_msg_abbrev(cstate, A_SETUP); | 
| 9231 | 		b1 = gen_msg_abbrev(cstate, A_CALLPROCEED); | 
| 9232 | 		gen_or(b0, b1); | 
| 9233 | 		b0 = gen_msg_abbrev(cstate, A_CONNECT); | 
| 9234 | 		gen_or(b0, b1); | 
| 9235 | 		b0 = gen_msg_abbrev(cstate, A_RELEASE); | 
| 9236 | 		gen_or(b0, b1); | 
| 9237 | 		b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE); | 
| 9238 | 		gen_or(b0, b1); | 
| 9239 | 		b0 = gen_atmtype_abbrev(cstate, A_METAC); | 
| 9240 | 		gen_and(b0, b1); | 
| 9241 | 		break; | 
| 9242 |  | 
| 9243 | 	default: | 
| 9244 | 		abort(); | 
| 9245 | 	} | 
| 9246 | 	return b1; | 
| 9247 | } | 
| 9248 |  |