1 | /* $NetBSD: gencode.c,v 1.11 2018/09/03 15:26:43 christos Exp $ */ |
2 | |
3 | /*#define CHASE_CHAIN*/ |
4 | /* |
5 | * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998 |
6 | * The Regents of the University of California. All rights reserved. |
7 | * |
8 | * Redistribution and use in source and binary forms, with or without |
9 | * modification, are permitted provided that: (1) source code distributions |
10 | * retain the above copyright notice and this paragraph in its entirety, (2) |
11 | * distributions including binary code include the above copyright notice and |
12 | * this paragraph in its entirety in the documentation or other materials |
13 | * provided with the distribution, and (3) all advertising materials mentioning |
14 | * features or use of this software display the following acknowledgement: |
15 | * ``This product includes software developed by the University of California, |
16 | * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of |
17 | * the University nor the names of its contributors may be used to endorse |
18 | * or promote products derived from this software without specific prior |
19 | * written permission. |
20 | * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED |
21 | * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF |
22 | * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. |
23 | */ |
24 | |
25 | #include <sys/cdefs.h> |
26 | __RCSID("$NetBSD: gencode.c,v 1.11 2018/09/03 15:26:43 christos Exp $" ); |
27 | |
28 | #ifdef HAVE_CONFIG_H |
29 | #include <config.h> |
30 | #endif |
31 | |
32 | #include <pcap-types.h> |
33 | #ifdef _WIN32 |
34 | #include <ws2tcpip.h> |
35 | #else |
36 | #include <sys/socket.h> |
37 | |
38 | #ifdef __NetBSD__ |
39 | #include <sys/param.h> |
40 | #endif |
41 | |
42 | #include <netinet/in.h> |
43 | #include <arpa/inet.h> |
44 | #endif /* _WIN32 */ |
45 | |
46 | #include <stdlib.h> |
47 | #include <string.h> |
48 | #include <memory.h> |
49 | #include <setjmp.h> |
50 | #include <stdarg.h> |
51 | |
52 | #ifdef MSDOS |
53 | #include "pcap-dos.h" |
54 | #endif |
55 | |
56 | #include "pcap-int.h" |
57 | |
58 | #include "ethertype.h" |
59 | #include "nlpid.h" |
60 | #include "llc.h" |
61 | #include "gencode.h" |
62 | #include "ieee80211.h" |
63 | #include "atmuni31.h" |
64 | #include "sunatmpos.h" |
65 | #include "ppp.h" |
66 | #include "pcap/sll.h" |
67 | #include "pcap/ipnet.h" |
68 | #include "arcnet.h" |
69 | |
70 | #include "grammar.h" |
71 | #include "scanner.h" |
72 | |
73 | #if defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) |
74 | #include <linux/types.h> |
75 | #include <linux/if_packet.h> |
76 | #include <linux/filter.h> |
77 | #endif |
78 | |
79 | #ifdef HAVE_NET_PFVAR_H |
80 | #include <sys/socket.h> |
81 | #include <net/if.h> |
82 | #include <net/pfvar.h> |
83 | #include <net/if_pflog.h> |
84 | #endif |
85 | |
86 | #ifndef offsetof |
87 | #define offsetof(s, e) ((size_t)&((s *)0)->e) |
88 | #endif |
89 | |
90 | #ifdef _WIN32 |
91 | #ifdef INET6 |
92 | #if defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF) |
93 | /* IPv6 address */ |
94 | struct in6_addr |
95 | { |
96 | union |
97 | { |
98 | uint8_t u6_addr8[16]; |
99 | uint16_t u6_addr16[8]; |
100 | uint32_t u6_addr32[4]; |
101 | } in6_u; |
102 | #define s6_addr in6_u.u6_addr8 |
103 | #define s6_addr16 in6_u.u6_addr16 |
104 | #define s6_addr32 in6_u.u6_addr32 |
105 | #define s6_addr64 in6_u.u6_addr64 |
106 | }; |
107 | |
108 | typedef unsigned short sa_family_t; |
109 | |
110 | #define __SOCKADDR_COMMON(sa_prefix) \ |
111 | sa_family_t sa_prefix##family |
112 | |
113 | /* Ditto, for IPv6. */ |
114 | struct sockaddr_in6 |
115 | { |
116 | __SOCKADDR_COMMON (sin6_); |
117 | uint16_t sin6_port; /* Transport layer port # */ |
118 | uint32_t sin6_flowinfo; /* IPv6 flow information */ |
119 | struct in6_addr sin6_addr; /* IPv6 address */ |
120 | }; |
121 | |
122 | #ifndef EAI_ADDRFAMILY |
123 | struct addrinfo { |
124 | int ai_flags; /* AI_PASSIVE, AI_CANONNAME */ |
125 | int ai_family; /* PF_xxx */ |
126 | int ai_socktype; /* SOCK_xxx */ |
127 | int ai_protocol; /* 0 or IPPROTO_xxx for IPv4 and IPv6 */ |
128 | size_t ai_addrlen; /* length of ai_addr */ |
129 | char *ai_canonname; /* canonical name for hostname */ |
130 | struct sockaddr *ai_addr; /* binary address */ |
131 | struct addrinfo *ai_next; /* next structure in linked list */ |
132 | }; |
133 | #endif /* EAI_ADDRFAMILY */ |
134 | #endif /* defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF) */ |
135 | #endif /* INET6 */ |
136 | #else /* _WIN32 */ |
137 | #include <netdb.h> /* for "struct addrinfo" */ |
138 | #endif /* _WIN32 */ |
139 | #include <pcap/namedb.h> |
140 | |
141 | #include "nametoaddr.h" |
142 | |
143 | #define ETHERMTU 1500 |
144 | |
145 | #ifndef ETHERTYPE_TEB |
146 | #define ETHERTYPE_TEB 0x6558 |
147 | #endif |
148 | |
149 | #ifndef IPPROTO_HOPOPTS |
150 | #define IPPROTO_HOPOPTS 0 |
151 | #endif |
152 | #ifndef IPPROTO_ROUTING |
153 | #define IPPROTO_ROUTING 43 |
154 | #endif |
155 | #ifndef IPPROTO_FRAGMENT |
156 | #define IPPROTO_FRAGMENT 44 |
157 | #endif |
158 | #ifndef IPPROTO_DSTOPTS |
159 | #define IPPROTO_DSTOPTS 60 |
160 | #endif |
161 | #ifndef IPPROTO_SCTP |
162 | #define IPPROTO_SCTP 132 |
163 | #endif |
164 | |
165 | #define GENEVE_PORT 6081 |
166 | |
167 | #ifdef HAVE_OS_PROTO_H |
168 | #include "os-proto.h" |
169 | #endif |
170 | |
171 | #define JMP(c) ((c)|BPF_JMP|BPF_K) |
172 | |
173 | /* |
174 | * "Push" the current value of the link-layer header type and link-layer |
175 | * header offset onto a "stack", and set a new value. (It's not a |
176 | * full-blown stack; we keep only the top two items.) |
177 | */ |
178 | #define PUSH_LINKHDR(cs, new_linktype, new_is_variable, new_constant_part, new_reg) \ |
179 | { \ |
180 | (cs)->prevlinktype = (cs)->linktype; \ |
181 | (cs)->off_prevlinkhdr = (cs)->off_linkhdr; \ |
182 | (cs)->linktype = (new_linktype); \ |
183 | (cs)->off_linkhdr.is_variable = (new_is_variable); \ |
184 | (cs)->off_linkhdr.constant_part = (new_constant_part); \ |
185 | (cs)->off_linkhdr.reg = (new_reg); \ |
186 | (cs)->is_geneve = 0; \ |
187 | } |
188 | |
189 | /* |
190 | * Offset "not set" value. |
191 | */ |
192 | #define OFFSET_NOT_SET 0xffffffffU |
193 | |
194 | /* |
195 | * Absolute offsets, which are offsets from the beginning of the raw |
196 | * packet data, are, in the general case, the sum of a variable value |
197 | * and a constant value; the variable value may be absent, in which |
198 | * case the offset is only the constant value, and the constant value |
199 | * may be zero, in which case the offset is only the variable value. |
200 | * |
201 | * bpf_abs_offset is a structure containing all that information: |
202 | * |
203 | * is_variable is 1 if there's a variable part. |
204 | * |
205 | * constant_part is the constant part of the value, possibly zero; |
206 | * |
207 | * if is_variable is 1, reg is the register number for a register |
208 | * containing the variable value if the register has been assigned, |
209 | * and -1 otherwise. |
210 | */ |
211 | typedef struct { |
212 | int is_variable; |
213 | u_int constant_part; |
214 | int reg; |
215 | } bpf_abs_offset; |
216 | |
217 | /* |
218 | * Value passed to gen_load_a() to indicate what the offset argument |
219 | * is relative to the beginning of. |
220 | */ |
221 | enum e_offrel { |
222 | OR_PACKET, /* full packet data */ |
223 | OR_LINKHDR, /* link-layer header */ |
224 | OR_PREVLINKHDR, /* previous link-layer header */ |
225 | OR_LLC, /* 802.2 LLC header */ |
226 | OR_PREVMPLSHDR, /* previous MPLS header */ |
227 | OR_LINKTYPE, /* link-layer type */ |
228 | OR_LINKPL, /* link-layer payload */ |
229 | OR_LINKPL_NOSNAP, /* link-layer payload, with no SNAP header at the link layer */ |
230 | OR_TRAN_IPV4, /* transport-layer header, with IPv4 network layer */ |
231 | OR_TRAN_IPV6 /* transport-layer header, with IPv6 network layer */ |
232 | }; |
233 | |
234 | /* |
235 | * We divy out chunks of memory rather than call malloc each time so |
236 | * we don't have to worry about leaking memory. It's probably |
237 | * not a big deal if all this memory was wasted but if this ever |
238 | * goes into a library that would probably not be a good idea. |
239 | * |
240 | * XXX - this *is* in a library.... |
241 | */ |
242 | #define NCHUNKS 16 |
243 | #define CHUNK0SIZE 1024 |
244 | struct chunk { |
245 | size_t n_left; |
246 | void *m; |
247 | }; |
248 | |
249 | /* Code generator state */ |
250 | |
251 | struct _compiler_state { |
252 | jmp_buf top_ctx; |
253 | pcap_t *bpf_pcap; |
254 | |
255 | struct icode ic; |
256 | |
257 | int snaplen; |
258 | |
259 | int linktype; |
260 | int prevlinktype; |
261 | int outermostlinktype; |
262 | |
263 | bpf_u_int32 netmask; |
264 | int no_optimize; |
265 | |
266 | /* Hack for handling VLAN and MPLS stacks. */ |
267 | u_int label_stack_depth; |
268 | u_int vlan_stack_depth; |
269 | |
270 | /* XXX */ |
271 | u_int pcap_fddipad; |
272 | |
273 | /* |
274 | * As errors are handled by a longjmp, anything allocated must |
275 | * be freed in the longjmp handler, so it must be reachable |
276 | * from that handler. |
277 | * |
278 | * One thing that's allocated is the result of pcap_nametoaddrinfo(); |
279 | * it must be freed with freeaddrinfo(). This variable points to |
280 | * any addrinfo structure that would need to be freed. |
281 | */ |
282 | struct addrinfo *ai; |
283 | |
284 | /* |
285 | * Various code constructs need to know the layout of the packet. |
286 | * These values give the necessary offsets from the beginning |
287 | * of the packet data. |
288 | */ |
289 | |
290 | /* |
291 | * Absolute offset of the beginning of the link-layer header. |
292 | */ |
293 | bpf_abs_offset off_linkhdr; |
294 | |
295 | /* |
296 | * If we're checking a link-layer header for a packet encapsulated |
297 | * in another protocol layer, this is the equivalent information |
298 | * for the previous layers' link-layer header from the beginning |
299 | * of the raw packet data. |
300 | */ |
301 | bpf_abs_offset off_prevlinkhdr; |
302 | |
303 | /* |
304 | * This is the equivalent information for the outermost layers' |
305 | * link-layer header. |
306 | */ |
307 | bpf_abs_offset off_outermostlinkhdr; |
308 | |
309 | /* |
310 | * Absolute offset of the beginning of the link-layer payload. |
311 | */ |
312 | bpf_abs_offset off_linkpl; |
313 | |
314 | /* |
315 | * "off_linktype" is the offset to information in the link-layer |
316 | * header giving the packet type. This is an absolute offset |
317 | * from the beginning of the packet. |
318 | * |
319 | * For Ethernet, it's the offset of the Ethernet type field; this |
320 | * means that it must have a value that skips VLAN tags. |
321 | * |
322 | * For link-layer types that always use 802.2 headers, it's the |
323 | * offset of the LLC header; this means that it must have a value |
324 | * that skips VLAN tags. |
325 | * |
326 | * For PPP, it's the offset of the PPP type field. |
327 | * |
328 | * For Cisco HDLC, it's the offset of the CHDLC type field. |
329 | * |
330 | * For BSD loopback, it's the offset of the AF_ value. |
331 | * |
332 | * For Linux cooked sockets, it's the offset of the type field. |
333 | * |
334 | * off_linktype.constant_part is set to OFFSET_NOT_SET for no |
335 | * encapsulation, in which case, IP is assumed. |
336 | */ |
337 | bpf_abs_offset off_linktype; |
338 | |
339 | /* |
340 | * TRUE if the link layer includes an ATM pseudo-header. |
341 | */ |
342 | int is_atm; |
343 | |
344 | /* |
345 | * TRUE if "geneve" appeared in the filter; it causes us to |
346 | * generate code that checks for a Geneve header and assume |
347 | * that later filters apply to the encapsulated payload. |
348 | */ |
349 | int is_geneve; |
350 | |
351 | /* |
352 | * TRUE if we need variable length part of VLAN offset |
353 | */ |
354 | int is_vlan_vloffset; |
355 | |
356 | /* |
357 | * These are offsets for the ATM pseudo-header. |
358 | */ |
359 | u_int off_vpi; |
360 | u_int off_vci; |
361 | u_int off_proto; |
362 | |
363 | /* |
364 | * These are offsets for the MTP2 fields. |
365 | */ |
366 | u_int off_li; |
367 | u_int off_li_hsl; |
368 | |
369 | /* |
370 | * These are offsets for the MTP3 fields. |
371 | */ |
372 | u_int off_sio; |
373 | u_int off_opc; |
374 | u_int off_dpc; |
375 | u_int off_sls; |
376 | |
377 | /* |
378 | * This is the offset of the first byte after the ATM pseudo_header, |
379 | * or -1 if there is no ATM pseudo-header. |
380 | */ |
381 | u_int off_payload; |
382 | |
383 | /* |
384 | * These are offsets to the beginning of the network-layer header. |
385 | * They are relative to the beginning of the link-layer payload |
386 | * (i.e., they don't include off_linkhdr.constant_part or |
387 | * off_linkpl.constant_part). |
388 | * |
389 | * If the link layer never uses 802.2 LLC: |
390 | * |
391 | * "off_nl" and "off_nl_nosnap" are the same. |
392 | * |
393 | * If the link layer always uses 802.2 LLC: |
394 | * |
395 | * "off_nl" is the offset if there's a SNAP header following |
396 | * the 802.2 header; |
397 | * |
398 | * "off_nl_nosnap" is the offset if there's no SNAP header. |
399 | * |
400 | * If the link layer is Ethernet: |
401 | * |
402 | * "off_nl" is the offset if the packet is an Ethernet II packet |
403 | * (we assume no 802.3+802.2+SNAP); |
404 | * |
405 | * "off_nl_nosnap" is the offset if the packet is an 802.3 packet |
406 | * with an 802.2 header following it. |
407 | */ |
408 | u_int off_nl; |
409 | u_int off_nl_nosnap; |
410 | |
411 | /* |
412 | * Here we handle simple allocation of the scratch registers. |
413 | * If too many registers are alloc'd, the allocator punts. |
414 | */ |
415 | int regused[BPF_MEMWORDS]; |
416 | int curreg; |
417 | |
418 | /* |
419 | * Memory chunks. |
420 | */ |
421 | struct chunk chunks[NCHUNKS]; |
422 | int cur_chunk; |
423 | }; |
424 | |
425 | void PCAP_NORETURN |
426 | bpf_syntax_error(compiler_state_t *cstate, const char *msg) |
427 | { |
428 | bpf_error(cstate, "syntax error in filter expression: %s" , msg); |
429 | /* NOTREACHED */ |
430 | } |
431 | |
432 | /* VARARGS */ |
433 | void PCAP_NORETURN |
434 | bpf_error(compiler_state_t *cstate, const char *fmt, ...) |
435 | { |
436 | va_list ap; |
437 | |
438 | va_start(ap, fmt); |
439 | if (cstate->bpf_pcap != NULL) |
440 | (void)pcap_vsnprintf(pcap_geterr(cstate->bpf_pcap), |
441 | PCAP_ERRBUF_SIZE, fmt, ap); |
442 | va_end(ap); |
443 | longjmp(cstate->top_ctx, 1); |
444 | /* NOTREACHED */ |
445 | } |
446 | |
447 | static void init_linktype(compiler_state_t *, pcap_t *); |
448 | |
449 | static void init_regs(compiler_state_t *); |
450 | static int alloc_reg(compiler_state_t *); |
451 | static void free_reg(compiler_state_t *, int); |
452 | |
453 | static void initchunks(compiler_state_t *cstate); |
454 | static void *newchunk(compiler_state_t *cstate, size_t); |
455 | static void freechunks(compiler_state_t *cstate); |
456 | static inline struct block *new_block(compiler_state_t *cstate, int); |
457 | static inline struct slist *new_stmt(compiler_state_t *cstate, int); |
458 | static struct block *gen_retblk(compiler_state_t *cstate, int); |
459 | static inline void syntax(compiler_state_t *cstate); |
460 | |
461 | static void backpatch(struct block *, struct block *); |
462 | static void merge(struct block *, struct block *); |
463 | static struct block *gen_cmp(compiler_state_t *, enum e_offrel, u_int, |
464 | u_int, bpf_int32); |
465 | static struct block *gen_cmp_gt(compiler_state_t *, enum e_offrel, u_int, |
466 | u_int, bpf_int32); |
467 | static struct block *gen_cmp_ge(compiler_state_t *, enum e_offrel, u_int, |
468 | u_int, bpf_int32); |
469 | static struct block *gen_cmp_lt(compiler_state_t *, enum e_offrel, u_int, |
470 | u_int, bpf_int32); |
471 | static struct block *gen_cmp_le(compiler_state_t *, enum e_offrel, u_int, |
472 | u_int, bpf_int32); |
473 | static struct block *gen_mcmp(compiler_state_t *, enum e_offrel, u_int, |
474 | u_int, bpf_int32, bpf_u_int32); |
475 | static struct block *gen_bcmp(compiler_state_t *, enum e_offrel, u_int, |
476 | u_int, const u_char *); |
477 | static struct block *gen_ncmp(compiler_state_t *, enum e_offrel, bpf_u_int32, |
478 | bpf_u_int32, bpf_u_int32, bpf_u_int32, int, bpf_int32); |
479 | static struct slist *gen_load_absoffsetrel(compiler_state_t *, bpf_abs_offset *, |
480 | u_int, u_int); |
481 | static struct slist *gen_load_a(compiler_state_t *, enum e_offrel, u_int, |
482 | u_int); |
483 | static struct slist *gen_loadx_iphdrlen(compiler_state_t *); |
484 | static struct block *gen_uncond(compiler_state_t *, int); |
485 | static inline struct block *gen_true(compiler_state_t *); |
486 | static inline struct block *gen_false(compiler_state_t *); |
487 | static struct block *gen_ether_linktype(compiler_state_t *, int); |
488 | static struct block *gen_ipnet_linktype(compiler_state_t *, int); |
489 | static struct block *gen_linux_sll_linktype(compiler_state_t *, int); |
490 | static struct slist *gen_load_prism_llprefixlen(compiler_state_t *); |
491 | static struct slist *gen_load_avs_llprefixlen(compiler_state_t *); |
492 | static struct slist *gen_load_radiotap_llprefixlen(compiler_state_t *); |
493 | static struct slist *gen_load_ppi_llprefixlen(compiler_state_t *); |
494 | static void insert_compute_vloffsets(compiler_state_t *, struct block *); |
495 | static struct slist *gen_abs_offset_varpart(compiler_state_t *, |
496 | bpf_abs_offset *); |
497 | static int ethertype_to_ppptype(int); |
498 | static struct block *gen_linktype(compiler_state_t *, int); |
499 | static struct block *gen_snap(compiler_state_t *, bpf_u_int32, bpf_u_int32); |
500 | static struct block *gen_llc_linktype(compiler_state_t *, int); |
501 | static struct block *gen_hostop(compiler_state_t *, bpf_u_int32, bpf_u_int32, |
502 | int, int, u_int, u_int); |
503 | #ifdef INET6 |
504 | static struct block *gen_hostop6(compiler_state_t *, struct in6_addr *, |
505 | struct in6_addr *, int, int, u_int, u_int); |
506 | #endif |
507 | static struct block *gen_ahostop(compiler_state_t *, const u_char *, int); |
508 | static struct block *gen_ehostop(compiler_state_t *, const u_char *, int); |
509 | static struct block *gen_fhostop(compiler_state_t *, const u_char *, int); |
510 | static struct block *gen_thostop(compiler_state_t *, const u_char *, int); |
511 | static struct block *gen_wlanhostop(compiler_state_t *, const u_char *, int); |
512 | static struct block *gen_ipfchostop(compiler_state_t *, const u_char *, int); |
513 | static struct block *gen_dnhostop(compiler_state_t *, bpf_u_int32, int); |
514 | static struct block *gen_mpls_linktype(compiler_state_t *, int); |
515 | static struct block *gen_host(compiler_state_t *, bpf_u_int32, bpf_u_int32, |
516 | int, int, int); |
517 | #ifdef INET6 |
518 | static struct block *gen_host6(compiler_state_t *, struct in6_addr *, |
519 | struct in6_addr *, int, int, int); |
520 | #endif |
521 | #ifndef INET6 |
522 | static struct block *gen_gateway(compiler_state_t *, const u_char *, |
523 | struct addrinfo *, int, int); |
524 | #endif |
525 | static struct block *gen_ipfrag(compiler_state_t *); |
526 | static struct block *gen_portatom(compiler_state_t *, int, bpf_int32); |
527 | static struct block *gen_portrangeatom(compiler_state_t *, int, bpf_int32, |
528 | bpf_int32); |
529 | static struct block *gen_portatom6(compiler_state_t *, int, bpf_int32); |
530 | static struct block *gen_portrangeatom6(compiler_state_t *, int, bpf_int32, |
531 | bpf_int32); |
532 | struct block *gen_portop(compiler_state_t *, int, int, int); |
533 | static struct block *gen_port(compiler_state_t *, int, int, int); |
534 | struct block *gen_portrangeop(compiler_state_t *, int, int, int, int); |
535 | static struct block *gen_portrange(compiler_state_t *, int, int, int, int); |
536 | struct block *gen_portop6(compiler_state_t *, int, int, int); |
537 | static struct block *gen_port6(compiler_state_t *, int, int, int); |
538 | struct block *gen_portrangeop6(compiler_state_t *, int, int, int, int); |
539 | static struct block *gen_portrange6(compiler_state_t *, int, int, int, int); |
540 | static int lookup_proto(compiler_state_t *, const char *, int); |
541 | static struct block *gen_protochain(compiler_state_t *, int, int, int); |
542 | static struct block *gen_proto(compiler_state_t *, int, int, int); |
543 | static struct slist *xfer_to_x(compiler_state_t *, struct arth *); |
544 | static struct slist *xfer_to_a(compiler_state_t *, struct arth *); |
545 | static struct block *gen_mac_multicast(compiler_state_t *, int); |
546 | static struct block *gen_len(compiler_state_t *, int, int); |
547 | static struct block *gen_check_802_11_data_frame(compiler_state_t *); |
548 | static struct block *gen_geneve_ll_check(compiler_state_t *cstate); |
549 | |
550 | static struct block *gen_ppi_dlt_check(compiler_state_t *); |
551 | static struct block *gen_msg_abbrev(compiler_state_t *, int type); |
552 | |
553 | static void |
554 | initchunks(compiler_state_t *cstate) |
555 | { |
556 | int i; |
557 | |
558 | for (i = 0; i < NCHUNKS; i++) { |
559 | cstate->chunks[i].n_left = 0; |
560 | cstate->chunks[i].m = NULL; |
561 | } |
562 | cstate->cur_chunk = 0; |
563 | } |
564 | |
565 | static void * |
566 | newchunk(compiler_state_t *cstate, size_t n) |
567 | { |
568 | struct chunk *cp; |
569 | int k; |
570 | size_t size; |
571 | |
572 | #ifndef __NetBSD__ |
573 | /* XXX Round up to nearest long. */ |
574 | n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1); |
575 | #else |
576 | /* XXX Round up to structure boundary. */ |
577 | n = ALIGN(n); |
578 | #endif |
579 | |
580 | cp = &cstate->chunks[cstate->cur_chunk]; |
581 | if (n > cp->n_left) { |
582 | ++cp; |
583 | k = ++cstate->cur_chunk; |
584 | if (k >= NCHUNKS) |
585 | bpf_error(cstate, "out of memory" ); |
586 | size = CHUNK0SIZE << k; |
587 | cp->m = (void *)malloc(size); |
588 | if (cp->m == NULL) |
589 | bpf_error(cstate, "out of memory" ); |
590 | memset((char *)cp->m, 0, size); |
591 | cp->n_left = size; |
592 | if (n > size) |
593 | bpf_error(cstate, "out of memory" ); |
594 | } |
595 | cp->n_left -= n; |
596 | return (void *)((char *)cp->m + cp->n_left); |
597 | } |
598 | |
599 | static void |
600 | freechunks(compiler_state_t *cstate) |
601 | { |
602 | int i; |
603 | |
604 | for (i = 0; i < NCHUNKS; ++i) |
605 | if (cstate->chunks[i].m != NULL) |
606 | free(cstate->chunks[i].m); |
607 | } |
608 | |
609 | /* |
610 | * A strdup whose allocations are freed after code generation is over. |
611 | */ |
612 | char * |
613 | sdup(compiler_state_t *cstate, const char *s) |
614 | { |
615 | size_t n = strlen(s) + 1; |
616 | char *cp = newchunk(cstate, n); |
617 | |
618 | strlcpy(cp, s, n); |
619 | return (cp); |
620 | } |
621 | |
622 | static inline struct block * |
623 | new_block(compiler_state_t *cstate, int code) |
624 | { |
625 | struct block *p; |
626 | |
627 | p = (struct block *)newchunk(cstate, sizeof(*p)); |
628 | p->s.code = code; |
629 | p->head = p; |
630 | |
631 | return p; |
632 | } |
633 | |
634 | static inline struct slist * |
635 | new_stmt(compiler_state_t *cstate, int code) |
636 | { |
637 | struct slist *p; |
638 | |
639 | p = (struct slist *)newchunk(cstate, sizeof(*p)); |
640 | p->s.code = code; |
641 | |
642 | return p; |
643 | } |
644 | |
645 | static struct block * |
646 | gen_retblk(compiler_state_t *cstate, int v) |
647 | { |
648 | struct block *b = new_block(cstate, BPF_RET|BPF_K); |
649 | |
650 | b->s.k = v; |
651 | return b; |
652 | } |
653 | |
654 | static inline PCAP_NORETURN_DEF void |
655 | syntax(compiler_state_t *cstate) |
656 | { |
657 | bpf_error(cstate, "syntax error in filter expression" ); |
658 | } |
659 | |
660 | int |
661 | pcap_compile(pcap_t *p, struct bpf_program *program, |
662 | const char *buf, int optimize, bpf_u_int32 mask) |
663 | { |
664 | #ifdef _WIN32 |
665 | static int done = 0; |
666 | #endif |
667 | compiler_state_t cstate; |
668 | const char * volatile xbuf = buf; |
669 | yyscan_t scanner = NULL; |
670 | volatile YY_BUFFER_STATE in_buffer = NULL; |
671 | u_int len; |
672 | int rc; |
673 | |
674 | /* |
675 | * If this pcap_t hasn't been activated, it doesn't have a |
676 | * link-layer type, so we can't use it. |
677 | */ |
678 | if (!p->activated) { |
679 | pcap_snprintf(p->errbuf, PCAP_ERRBUF_SIZE, |
680 | "not-yet-activated pcap_t passed to pcap_compile" ); |
681 | return (-1); |
682 | } |
683 | |
684 | #ifdef _WIN32 |
685 | if (!done) |
686 | pcap_wsockinit(); |
687 | done = 1; |
688 | #endif |
689 | |
690 | #ifdef ENABLE_REMOTE |
691 | /* |
692 | * If the device on which we're capturing need to be notified |
693 | * that a new filter is being compiled, do so. |
694 | * |
695 | * This allows them to save a copy of it, in case, for example, |
696 | * they're implementing a form of remote packet capture, and |
697 | * want the remote machine to filter out the packets in which |
698 | * it's sending the packets it's captured. |
699 | * |
700 | * XXX - the fact that we happen to be compiling a filter |
701 | * doesn't necessarily mean we'll be installing it as the |
702 | * filter for this pcap_t; we might be running it from userland |
703 | * on captured packets to do packet classification. We really |
704 | * need a better way of handling this, but this is all that |
705 | * the WinPcap code did. |
706 | */ |
707 | if (p->save_current_filter_op != NULL) |
708 | (p->save_current_filter_op)(p, buf); |
709 | #endif |
710 | |
711 | initchunks(&cstate); |
712 | cstate.no_optimize = 0; |
713 | #ifdef INET6 |
714 | cstate.ai = NULL; |
715 | #endif |
716 | cstate.ic.root = NULL; |
717 | cstate.ic.cur_mark = 0; |
718 | cstate.bpf_pcap = p; |
719 | init_regs(&cstate); |
720 | |
721 | if (setjmp(cstate.top_ctx)) { |
722 | #ifdef INET6 |
723 | if (cstate.ai != NULL) |
724 | freeaddrinfo(cstate.ai); |
725 | #endif |
726 | rc = -1; |
727 | goto quit; |
728 | } |
729 | |
730 | cstate.netmask = mask; |
731 | |
732 | cstate.snaplen = pcap_snapshot(p); |
733 | if (cstate.snaplen == 0) { |
734 | pcap_snprintf(p->errbuf, PCAP_ERRBUF_SIZE, |
735 | "snaplen of 0 rejects all packets" ); |
736 | rc = -1; |
737 | goto quit; |
738 | } |
739 | |
740 | if (pcap_lex_init(&scanner) != 0) |
741 | pcap_fmt_errmsg_for_errno(p->errbuf, PCAP_ERRBUF_SIZE, |
742 | errno, "can't initialize scanner" ); |
743 | in_buffer = pcap__scan_string(xbuf ? xbuf : "" , scanner); |
744 | |
745 | /* |
746 | * Associate the compiler state with the lexical analyzer |
747 | * state. |
748 | */ |
749 | pcap_set_extra(&cstate, scanner); |
750 | |
751 | init_linktype(&cstate, p); |
752 | (void)pcap_parse(scanner, &cstate); |
753 | |
754 | if (cstate.ic.root == NULL) |
755 | cstate.ic.root = gen_retblk(&cstate, cstate.snaplen); |
756 | |
757 | if (optimize && !cstate.no_optimize) { |
758 | bpf_optimize(&cstate, &cstate.ic); |
759 | if (cstate.ic.root == NULL || |
760 | (cstate.ic.root->s.code == (BPF_RET|BPF_K) && cstate.ic.root->s.k == 0)) |
761 | bpf_error(&cstate, "expression rejects all packets" ); |
762 | } |
763 | program->bf_insns = icode_to_fcode(&cstate, &cstate.ic, cstate.ic.root, &len); |
764 | program->bf_len = len; |
765 | |
766 | rc = 0; /* We're all okay */ |
767 | |
768 | quit: |
769 | /* |
770 | * Clean up everything for the lexical analyzer. |
771 | */ |
772 | if (in_buffer != NULL) |
773 | pcap__delete_buffer(in_buffer, scanner); |
774 | if (scanner != NULL) |
775 | pcap_lex_destroy(scanner); |
776 | |
777 | /* |
778 | * Clean up our own allocated memory. |
779 | */ |
780 | freechunks(&cstate); |
781 | |
782 | return (rc); |
783 | } |
784 | |
785 | /* |
786 | * entry point for using the compiler with no pcap open |
787 | * pass in all the stuff that is needed explicitly instead. |
788 | */ |
789 | int |
790 | pcap_compile_nopcap(int snaplen_arg, int linktype_arg, |
791 | struct bpf_program *program, |
792 | const char *buf, int optimize, bpf_u_int32 mask) |
793 | { |
794 | pcap_t *p; |
795 | int ret; |
796 | |
797 | p = pcap_open_dead(linktype_arg, snaplen_arg); |
798 | if (p == NULL) |
799 | return (-1); |
800 | ret = pcap_compile(p, program, buf, optimize, mask); |
801 | pcap_close(p); |
802 | return (ret); |
803 | } |
804 | |
805 | /* |
806 | * Clean up a "struct bpf_program" by freeing all the memory allocated |
807 | * in it. |
808 | */ |
809 | void |
810 | pcap_freecode(struct bpf_program *program) |
811 | { |
812 | program->bf_len = 0; |
813 | if (program->bf_insns != NULL) { |
814 | free((char *)program->bf_insns); |
815 | program->bf_insns = NULL; |
816 | } |
817 | } |
818 | |
819 | /* |
820 | * Backpatch the blocks in 'list' to 'target'. The 'sense' field indicates |
821 | * which of the jt and jf fields has been resolved and which is a pointer |
822 | * back to another unresolved block (or nil). At least one of the fields |
823 | * in each block is already resolved. |
824 | */ |
825 | static void |
826 | backpatch(struct block *list, struct block *target) |
827 | { |
828 | struct block *next; |
829 | |
830 | while (list) { |
831 | if (!list->sense) { |
832 | next = JT(list); |
833 | JT(list) = target; |
834 | } else { |
835 | next = JF(list); |
836 | JF(list) = target; |
837 | } |
838 | list = next; |
839 | } |
840 | } |
841 | |
842 | /* |
843 | * Merge the lists in b0 and b1, using the 'sense' field to indicate |
844 | * which of jt and jf is the link. |
845 | */ |
846 | static void |
847 | merge(struct block *b0, struct block *b1) |
848 | { |
849 | register struct block **p = &b0; |
850 | |
851 | /* Find end of list. */ |
852 | while (*p) |
853 | p = !((*p)->sense) ? &JT(*p) : &JF(*p); |
854 | |
855 | /* Concatenate the lists. */ |
856 | *p = b1; |
857 | } |
858 | |
859 | void |
860 | finish_parse(compiler_state_t *cstate, struct block *p) |
861 | { |
862 | struct block *ppi_dlt_check; |
863 | |
864 | /* |
865 | * Insert before the statements of the first (root) block any |
866 | * statements needed to load the lengths of any variable-length |
867 | * headers into registers. |
868 | * |
869 | * XXX - a fancier strategy would be to insert those before the |
870 | * statements of all blocks that use those lengths and that |
871 | * have no predecessors that use them, so that we only compute |
872 | * the lengths if we need them. There might be even better |
873 | * approaches than that. |
874 | * |
875 | * However, those strategies would be more complicated, and |
876 | * as we don't generate code to compute a length if the |
877 | * program has no tests that use the length, and as most |
878 | * tests will probably use those lengths, we would just |
879 | * postpone computing the lengths so that it's not done |
880 | * for tests that fail early, and it's not clear that's |
881 | * worth the effort. |
882 | */ |
883 | insert_compute_vloffsets(cstate, p->head); |
884 | |
885 | /* |
886 | * For DLT_PPI captures, generate a check of the per-packet |
887 | * DLT value to make sure it's DLT_IEEE802_11. |
888 | * |
889 | * XXX - TurboCap cards use DLT_PPI for Ethernet. |
890 | * Can we just define some DLT_ETHERNET_WITH_PHDR pseudo-header |
891 | * with appropriate Ethernet information and use that rather |
892 | * than using something such as DLT_PPI where you don't know |
893 | * the link-layer header type until runtime, which, in the |
894 | * general case, would force us to generate both Ethernet *and* |
895 | * 802.11 code (*and* anything else for which PPI is used) |
896 | * and choose between them early in the BPF program? |
897 | */ |
898 | ppi_dlt_check = gen_ppi_dlt_check(cstate); |
899 | if (ppi_dlt_check != NULL) |
900 | gen_and(ppi_dlt_check, p); |
901 | |
902 | backpatch(p, gen_retblk(cstate, cstate->snaplen)); |
903 | p->sense = !p->sense; |
904 | backpatch(p, gen_retblk(cstate, 0)); |
905 | cstate->ic.root = p->head; |
906 | } |
907 | |
908 | void |
909 | gen_and(struct block *b0, struct block *b1) |
910 | { |
911 | backpatch(b0, b1->head); |
912 | b0->sense = !b0->sense; |
913 | b1->sense = !b1->sense; |
914 | merge(b1, b0); |
915 | b1->sense = !b1->sense; |
916 | b1->head = b0->head; |
917 | } |
918 | |
919 | void |
920 | gen_or(struct block *b0, struct block *b1) |
921 | { |
922 | b0->sense = !b0->sense; |
923 | backpatch(b0, b1->head); |
924 | b0->sense = !b0->sense; |
925 | merge(b1, b0); |
926 | b1->head = b0->head; |
927 | } |
928 | |
929 | void |
930 | gen_not(struct block *b) |
931 | { |
932 | b->sense = !b->sense; |
933 | } |
934 | |
935 | static struct block * |
936 | gen_cmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset, |
937 | u_int size, bpf_int32 v) |
938 | { |
939 | return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v); |
940 | } |
941 | |
942 | static struct block * |
943 | gen_cmp_gt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset, |
944 | u_int size, bpf_int32 v) |
945 | { |
946 | return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 0, v); |
947 | } |
948 | |
949 | static struct block * |
950 | gen_cmp_ge(compiler_state_t *cstate, enum e_offrel offrel, u_int offset, |
951 | u_int size, bpf_int32 v) |
952 | { |
953 | return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 0, v); |
954 | } |
955 | |
956 | static struct block * |
957 | gen_cmp_lt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset, |
958 | u_int size, bpf_int32 v) |
959 | { |
960 | return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 1, v); |
961 | } |
962 | |
963 | static struct block * |
964 | gen_cmp_le(compiler_state_t *cstate, enum e_offrel offrel, u_int offset, |
965 | u_int size, bpf_int32 v) |
966 | { |
967 | return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 1, v); |
968 | } |
969 | |
970 | static struct block * |
971 | gen_mcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset, |
972 | u_int size, bpf_int32 v, bpf_u_int32 mask) |
973 | { |
974 | return gen_ncmp(cstate, offrel, offset, size, mask, BPF_JEQ, 0, v); |
975 | } |
976 | |
977 | static struct block * |
978 | gen_bcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset, |
979 | u_int size, const u_char *v) |
980 | { |
981 | register struct block *b, *tmp; |
982 | |
983 | b = NULL; |
984 | while (size >= 4) { |
985 | register const u_char *p = &v[size - 4]; |
986 | bpf_int32 w = ((bpf_int32)p[0] << 24) | |
987 | ((bpf_int32)p[1] << 16) | ((bpf_int32)p[2] << 8) | p[3]; |
988 | |
989 | tmp = gen_cmp(cstate, offrel, offset + size - 4, BPF_W, w); |
990 | if (b != NULL) |
991 | gen_and(b, tmp); |
992 | b = tmp; |
993 | size -= 4; |
994 | } |
995 | while (size >= 2) { |
996 | register const u_char *p = &v[size - 2]; |
997 | bpf_int32 w = ((bpf_int32)p[0] << 8) | p[1]; |
998 | |
999 | tmp = gen_cmp(cstate, offrel, offset + size - 2, BPF_H, w); |
1000 | if (b != NULL) |
1001 | gen_and(b, tmp); |
1002 | b = tmp; |
1003 | size -= 2; |
1004 | } |
1005 | if (size > 0) { |
1006 | tmp = gen_cmp(cstate, offrel, offset, BPF_B, (bpf_int32)v[0]); |
1007 | if (b != NULL) |
1008 | gen_and(b, tmp); |
1009 | b = tmp; |
1010 | } |
1011 | return b; |
1012 | } |
1013 | |
1014 | /* |
1015 | * AND the field of size "size" at offset "offset" relative to the header |
1016 | * specified by "offrel" with "mask", and compare it with the value "v" |
1017 | * with the test specified by "jtype"; if "reverse" is true, the test |
1018 | * should test the opposite of "jtype". |
1019 | */ |
1020 | static struct block * |
1021 | gen_ncmp(compiler_state_t *cstate, enum e_offrel offrel, bpf_u_int32 offset, |
1022 | bpf_u_int32 size, bpf_u_int32 mask, bpf_u_int32 jtype, int reverse, |
1023 | bpf_int32 v) |
1024 | { |
1025 | struct slist *s, *s2; |
1026 | struct block *b; |
1027 | |
1028 | s = gen_load_a(cstate, offrel, offset, size); |
1029 | |
1030 | if (mask != 0xffffffff) { |
1031 | s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K); |
1032 | s2->s.k = mask; |
1033 | sappend(s, s2); |
1034 | } |
1035 | |
1036 | b = new_block(cstate, JMP(jtype)); |
1037 | b->stmts = s; |
1038 | b->s.k = v; |
1039 | if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE)) |
1040 | gen_not(b); |
1041 | return b; |
1042 | } |
1043 | |
1044 | static void |
1045 | init_linktype(compiler_state_t *cstate, pcap_t *p) |
1046 | { |
1047 | cstate->pcap_fddipad = p->fddipad; |
1048 | |
1049 | /* |
1050 | * We start out with only one link-layer header. |
1051 | */ |
1052 | cstate->outermostlinktype = pcap_datalink(p); |
1053 | cstate->off_outermostlinkhdr.constant_part = 0; |
1054 | cstate->off_outermostlinkhdr.is_variable = 0; |
1055 | cstate->off_outermostlinkhdr.reg = -1; |
1056 | |
1057 | cstate->prevlinktype = cstate->outermostlinktype; |
1058 | cstate->off_prevlinkhdr.constant_part = 0; |
1059 | cstate->off_prevlinkhdr.is_variable = 0; |
1060 | cstate->off_prevlinkhdr.reg = -1; |
1061 | |
1062 | cstate->linktype = cstate->outermostlinktype; |
1063 | cstate->off_linkhdr.constant_part = 0; |
1064 | cstate->off_linkhdr.is_variable = 0; |
1065 | cstate->off_linkhdr.reg = -1; |
1066 | |
1067 | /* |
1068 | * XXX |
1069 | */ |
1070 | cstate->off_linkpl.constant_part = 0; |
1071 | cstate->off_linkpl.is_variable = 0; |
1072 | cstate->off_linkpl.reg = -1; |
1073 | |
1074 | cstate->off_linktype.constant_part = 0; |
1075 | cstate->off_linktype.is_variable = 0; |
1076 | cstate->off_linktype.reg = -1; |
1077 | |
1078 | /* |
1079 | * Assume it's not raw ATM with a pseudo-header, for now. |
1080 | */ |
1081 | cstate->is_atm = 0; |
1082 | cstate->off_vpi = OFFSET_NOT_SET; |
1083 | cstate->off_vci = OFFSET_NOT_SET; |
1084 | cstate->off_proto = OFFSET_NOT_SET; |
1085 | cstate->off_payload = OFFSET_NOT_SET; |
1086 | |
1087 | /* |
1088 | * And not Geneve. |
1089 | */ |
1090 | cstate->is_geneve = 0; |
1091 | |
1092 | /* |
1093 | * No variable length VLAN offset by default |
1094 | */ |
1095 | cstate->is_vlan_vloffset = 0; |
1096 | |
1097 | /* |
1098 | * And assume we're not doing SS7. |
1099 | */ |
1100 | cstate->off_li = OFFSET_NOT_SET; |
1101 | cstate->off_li_hsl = OFFSET_NOT_SET; |
1102 | cstate->off_sio = OFFSET_NOT_SET; |
1103 | cstate->off_opc = OFFSET_NOT_SET; |
1104 | cstate->off_dpc = OFFSET_NOT_SET; |
1105 | cstate->off_sls = OFFSET_NOT_SET; |
1106 | |
1107 | cstate->label_stack_depth = 0; |
1108 | cstate->vlan_stack_depth = 0; |
1109 | |
1110 | switch (cstate->linktype) { |
1111 | |
1112 | case DLT_ARCNET: |
1113 | cstate->off_linktype.constant_part = 2; |
1114 | cstate->off_linkpl.constant_part = 6; |
1115 | cstate->off_nl = 0; /* XXX in reality, variable! */ |
1116 | cstate->off_nl_nosnap = 0; /* no 802.2 LLC */ |
1117 | break; |
1118 | |
1119 | case DLT_ARCNET_LINUX: |
1120 | cstate->off_linktype.constant_part = 4; |
1121 | cstate->off_linkpl.constant_part = 8; |
1122 | cstate->off_nl = 0; /* XXX in reality, variable! */ |
1123 | cstate->off_nl_nosnap = 0; /* no 802.2 LLC */ |
1124 | break; |
1125 | |
1126 | case DLT_EN10MB: |
1127 | cstate->off_linktype.constant_part = 12; |
1128 | cstate->off_linkpl.constant_part = 14; /* Ethernet header length */ |
1129 | cstate->off_nl = 0; /* Ethernet II */ |
1130 | cstate->off_nl_nosnap = 3; /* 802.3+802.2 */ |
1131 | break; |
1132 | |
1133 | case DLT_SLIP: |
1134 | /* |
1135 | * SLIP doesn't have a link level type. The 16 byte |
1136 | * header is hacked into our SLIP driver. |
1137 | */ |
1138 | cstate->off_linktype.constant_part = OFFSET_NOT_SET; |
1139 | cstate->off_linkpl.constant_part = 16; |
1140 | cstate->off_nl = 0; |
1141 | cstate->off_nl_nosnap = 0; /* no 802.2 LLC */ |
1142 | break; |
1143 | |
1144 | case DLT_SLIP_BSDOS: |
1145 | /* XXX this may be the same as the DLT_PPP_BSDOS case */ |
1146 | cstate->off_linktype.constant_part = OFFSET_NOT_SET; |
1147 | /* XXX end */ |
1148 | cstate->off_linkpl.constant_part = 24; |
1149 | cstate->off_nl = 0; |
1150 | cstate->off_nl_nosnap = 0; /* no 802.2 LLC */ |
1151 | break; |
1152 | |
1153 | case DLT_NULL: |
1154 | case DLT_LOOP: |
1155 | cstate->off_linktype.constant_part = 0; |
1156 | cstate->off_linkpl.constant_part = 4; |
1157 | cstate->off_nl = 0; |
1158 | cstate->off_nl_nosnap = 0; /* no 802.2 LLC */ |
1159 | break; |
1160 | |
1161 | case DLT_ENC: |
1162 | cstate->off_linktype.constant_part = 0; |
1163 | cstate->off_linkpl.constant_part = 12; |
1164 | cstate->off_nl = 0; |
1165 | cstate->off_nl_nosnap = 0; /* no 802.2 LLC */ |
1166 | break; |
1167 | |
1168 | case DLT_PPP: |
1169 | case DLT_PPP_PPPD: |
1170 | case DLT_C_HDLC: /* BSD/OS Cisco HDLC */ |
1171 | case DLT_PPP_SERIAL: /* NetBSD sync/async serial PPP */ |
1172 | cstate->off_linktype.constant_part = 2; /* skip HDLC-like framing */ |
1173 | cstate->off_linkpl.constant_part = 4; /* skip HDLC-like framing and protocol field */ |
1174 | cstate->off_nl = 0; |
1175 | cstate->off_nl_nosnap = 0; /* no 802.2 LLC */ |
1176 | break; |
1177 | |
1178 | case DLT_PPP_ETHER: |
1179 | /* |
1180 | * This does no include the Ethernet header, and |
1181 | * only covers session state. |
1182 | */ |
1183 | cstate->off_linktype.constant_part = 6; |
1184 | cstate->off_linkpl.constant_part = 8; |
1185 | cstate->off_nl = 0; |
1186 | cstate->off_nl_nosnap = 0; /* no 802.2 LLC */ |
1187 | break; |
1188 | |
1189 | case DLT_PPP_BSDOS: |
1190 | cstate->off_linktype.constant_part = 5; |
1191 | cstate->off_linkpl.constant_part = 24; |
1192 | cstate->off_nl = 0; |
1193 | cstate->off_nl_nosnap = 0; /* no 802.2 LLC */ |
1194 | break; |
1195 | |
1196 | case DLT_FDDI: |
1197 | /* |
1198 | * FDDI doesn't really have a link-level type field. |
1199 | * We set "off_linktype" to the offset of the LLC header. |
1200 | * |
1201 | * To check for Ethernet types, we assume that SSAP = SNAP |
1202 | * is being used and pick out the encapsulated Ethernet type. |
1203 | * XXX - should we generate code to check for SNAP? |
1204 | */ |
1205 | cstate->off_linktype.constant_part = 13; |
1206 | cstate->off_linktype.constant_part += cstate->pcap_fddipad; |
1207 | cstate->off_linkpl.constant_part = 13; /* FDDI MAC header length */ |
1208 | cstate->off_linkpl.constant_part += cstate->pcap_fddipad; |
1209 | cstate->off_nl = 8; /* 802.2+SNAP */ |
1210 | cstate->off_nl_nosnap = 3; /* 802.2 */ |
1211 | break; |
1212 | |
1213 | case DLT_IEEE802: |
1214 | /* |
1215 | * Token Ring doesn't really have a link-level type field. |
1216 | * We set "off_linktype" to the offset of the LLC header. |
1217 | * |
1218 | * To check for Ethernet types, we assume that SSAP = SNAP |
1219 | * is being used and pick out the encapsulated Ethernet type. |
1220 | * XXX - should we generate code to check for SNAP? |
1221 | * |
1222 | * XXX - the header is actually variable-length. |
1223 | * Some various Linux patched versions gave 38 |
1224 | * as "off_linktype" and 40 as "off_nl"; however, |
1225 | * if a token ring packet has *no* routing |
1226 | * information, i.e. is not source-routed, the correct |
1227 | * values are 20 and 22, as they are in the vanilla code. |
1228 | * |
1229 | * A packet is source-routed iff the uppermost bit |
1230 | * of the first byte of the source address, at an |
1231 | * offset of 8, has the uppermost bit set. If the |
1232 | * packet is source-routed, the total number of bytes |
1233 | * of routing information is 2 plus bits 0x1F00 of |
1234 | * the 16-bit value at an offset of 14 (shifted right |
1235 | * 8 - figure out which byte that is). |
1236 | */ |
1237 | cstate->off_linktype.constant_part = 14; |
1238 | cstate->off_linkpl.constant_part = 14; /* Token Ring MAC header length */ |
1239 | cstate->off_nl = 8; /* 802.2+SNAP */ |
1240 | cstate->off_nl_nosnap = 3; /* 802.2 */ |
1241 | break; |
1242 | |
1243 | case DLT_PRISM_HEADER: |
1244 | case DLT_IEEE802_11_RADIO_AVS: |
1245 | case DLT_IEEE802_11_RADIO: |
1246 | cstate->off_linkhdr.is_variable = 1; |
1247 | /* Fall through, 802.11 doesn't have a variable link |
1248 | * prefix but is otherwise the same. */ |
1249 | |
1250 | case DLT_IEEE802_11: |
1251 | /* |
1252 | * 802.11 doesn't really have a link-level type field. |
1253 | * We set "off_linktype.constant_part" to the offset of |
1254 | * the LLC header. |
1255 | * |
1256 | * To check for Ethernet types, we assume that SSAP = SNAP |
1257 | * is being used and pick out the encapsulated Ethernet type. |
1258 | * XXX - should we generate code to check for SNAP? |
1259 | * |
1260 | * We also handle variable-length radio headers here. |
1261 | * The Prism header is in theory variable-length, but in |
1262 | * practice it's always 144 bytes long. However, some |
1263 | * drivers on Linux use ARPHRD_IEEE80211_PRISM, but |
1264 | * sometimes or always supply an AVS header, so we |
1265 | * have to check whether the radio header is a Prism |
1266 | * header or an AVS header, so, in practice, it's |
1267 | * variable-length. |
1268 | */ |
1269 | cstate->off_linktype.constant_part = 24; |
1270 | cstate->off_linkpl.constant_part = 0; /* link-layer header is variable-length */ |
1271 | cstate->off_linkpl.is_variable = 1; |
1272 | cstate->off_nl = 8; /* 802.2+SNAP */ |
1273 | cstate->off_nl_nosnap = 3; /* 802.2 */ |
1274 | break; |
1275 | |
1276 | case DLT_PPI: |
1277 | /* |
1278 | * At the moment we treat PPI the same way that we treat |
1279 | * normal Radiotap encoded packets. The difference is in |
1280 | * the function that generates the code at the beginning |
1281 | * to compute the header length. Since this code generator |
1282 | * of PPI supports bare 802.11 encapsulation only (i.e. |
1283 | * the encapsulated DLT should be DLT_IEEE802_11) we |
1284 | * generate code to check for this too. |
1285 | */ |
1286 | cstate->off_linktype.constant_part = 24; |
1287 | cstate->off_linkpl.constant_part = 0; /* link-layer header is variable-length */ |
1288 | cstate->off_linkpl.is_variable = 1; |
1289 | cstate->off_linkhdr.is_variable = 1; |
1290 | cstate->off_nl = 8; /* 802.2+SNAP */ |
1291 | cstate->off_nl_nosnap = 3; /* 802.2 */ |
1292 | break; |
1293 | |
1294 | case DLT_ATM_RFC1483: |
1295 | case DLT_ATM_CLIP: /* Linux ATM defines this */ |
1296 | /* |
1297 | * assume routed, non-ISO PDUs |
1298 | * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00) |
1299 | * |
1300 | * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS, |
1301 | * or PPP with the PPP NLPID (e.g., PPPoA)? The |
1302 | * latter would presumably be treated the way PPPoE |
1303 | * should be, so you can do "pppoe and udp port 2049" |
1304 | * or "pppoa and tcp port 80" and have it check for |
1305 | * PPPo{A,E} and a PPP protocol of IP and.... |
1306 | */ |
1307 | cstate->off_linktype.constant_part = 0; |
1308 | cstate->off_linkpl.constant_part = 0; /* packet begins with LLC header */ |
1309 | cstate->off_nl = 8; /* 802.2+SNAP */ |
1310 | cstate->off_nl_nosnap = 3; /* 802.2 */ |
1311 | break; |
1312 | |
1313 | case DLT_SUNATM: |
1314 | /* |
1315 | * Full Frontal ATM; you get AALn PDUs with an ATM |
1316 | * pseudo-header. |
1317 | */ |
1318 | cstate->is_atm = 1; |
1319 | cstate->off_vpi = SUNATM_VPI_POS; |
1320 | cstate->off_vci = SUNATM_VCI_POS; |
1321 | cstate->off_proto = PROTO_POS; |
1322 | cstate->off_payload = SUNATM_PKT_BEGIN_POS; |
1323 | cstate->off_linktype.constant_part = cstate->off_payload; |
1324 | cstate->off_linkpl.constant_part = cstate->off_payload; /* if LLC-encapsulated */ |
1325 | cstate->off_nl = 8; /* 802.2+SNAP */ |
1326 | cstate->off_nl_nosnap = 3; /* 802.2 */ |
1327 | break; |
1328 | |
1329 | case DLT_RAW: |
1330 | case DLT_IPV4: |
1331 | case DLT_IPV6: |
1332 | cstate->off_linktype.constant_part = OFFSET_NOT_SET; |
1333 | cstate->off_linkpl.constant_part = 0; |
1334 | cstate->off_nl = 0; |
1335 | cstate->off_nl_nosnap = 0; /* no 802.2 LLC */ |
1336 | break; |
1337 | |
1338 | case DLT_LINUX_SLL: /* fake header for Linux cooked socket */ |
1339 | cstate->off_linktype.constant_part = 14; |
1340 | cstate->off_linkpl.constant_part = 16; |
1341 | cstate->off_nl = 0; |
1342 | cstate->off_nl_nosnap = 0; /* no 802.2 LLC */ |
1343 | break; |
1344 | |
1345 | case DLT_LTALK: |
1346 | /* |
1347 | * LocalTalk does have a 1-byte type field in the LLAP header, |
1348 | * but really it just indicates whether there is a "short" or |
1349 | * "long" DDP packet following. |
1350 | */ |
1351 | cstate->off_linktype.constant_part = OFFSET_NOT_SET; |
1352 | cstate->off_linkpl.constant_part = 0; |
1353 | cstate->off_nl = 0; |
1354 | cstate->off_nl_nosnap = 0; /* no 802.2 LLC */ |
1355 | break; |
1356 | |
1357 | case DLT_IP_OVER_FC: |
1358 | /* |
1359 | * RFC 2625 IP-over-Fibre-Channel doesn't really have a |
1360 | * link-level type field. We set "off_linktype" to the |
1361 | * offset of the LLC header. |
1362 | * |
1363 | * To check for Ethernet types, we assume that SSAP = SNAP |
1364 | * is being used and pick out the encapsulated Ethernet type. |
1365 | * XXX - should we generate code to check for SNAP? RFC |
1366 | * 2625 says SNAP should be used. |
1367 | */ |
1368 | cstate->off_linktype.constant_part = 16; |
1369 | cstate->off_linkpl.constant_part = 16; |
1370 | cstate->off_nl = 8; /* 802.2+SNAP */ |
1371 | cstate->off_nl_nosnap = 3; /* 802.2 */ |
1372 | break; |
1373 | |
1374 | case DLT_FRELAY: |
1375 | /* |
1376 | * XXX - we should set this to handle SNAP-encapsulated |
1377 | * frames (NLPID of 0x80). |
1378 | */ |
1379 | cstate->off_linktype.constant_part = OFFSET_NOT_SET; |
1380 | cstate->off_linkpl.constant_part = 0; |
1381 | cstate->off_nl = 0; |
1382 | cstate->off_nl_nosnap = 0; /* no 802.2 LLC */ |
1383 | break; |
1384 | |
1385 | /* |
1386 | * the only BPF-interesting FRF.16 frames are non-control frames; |
1387 | * Frame Relay has a variable length link-layer |
1388 | * so lets start with offset 4 for now and increments later on (FIXME); |
1389 | */ |
1390 | case DLT_MFR: |
1391 | cstate->off_linktype.constant_part = OFFSET_NOT_SET; |
1392 | cstate->off_linkpl.constant_part = 0; |
1393 | cstate->off_nl = 4; |
1394 | cstate->off_nl_nosnap = 0; /* XXX - for now -> no 802.2 LLC */ |
1395 | break; |
1396 | |
1397 | case DLT_APPLE_IP_OVER_IEEE1394: |
1398 | cstate->off_linktype.constant_part = 16; |
1399 | cstate->off_linkpl.constant_part = 18; |
1400 | cstate->off_nl = 0; |
1401 | cstate->off_nl_nosnap = 0; /* no 802.2 LLC */ |
1402 | break; |
1403 | |
1404 | case DLT_SYMANTEC_FIREWALL: |
1405 | cstate->off_linktype.constant_part = 6; |
1406 | cstate->off_linkpl.constant_part = 44; |
1407 | cstate->off_nl = 0; /* Ethernet II */ |
1408 | cstate->off_nl_nosnap = 0; /* XXX - what does it do with 802.3 packets? */ |
1409 | break; |
1410 | |
1411 | #ifdef HAVE_NET_PFVAR_H |
1412 | case DLT_PFLOG: |
1413 | cstate->off_linktype.constant_part = 0; |
1414 | cstate->off_linkpl.constant_part = PFLOG_HDRLEN; |
1415 | cstate->off_nl = 0; |
1416 | cstate->off_nl_nosnap = 0; /* no 802.2 LLC */ |
1417 | break; |
1418 | #endif |
1419 | |
1420 | case DLT_JUNIPER_MFR: |
1421 | case DLT_JUNIPER_MLFR: |
1422 | case DLT_JUNIPER_MLPPP: |
1423 | case DLT_JUNIPER_PPP: |
1424 | case DLT_JUNIPER_CHDLC: |
1425 | case DLT_JUNIPER_FRELAY: |
1426 | cstate->off_linktype.constant_part = 4; |
1427 | cstate->off_linkpl.constant_part = 4; |
1428 | cstate->off_nl = 0; |
1429 | cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */ |
1430 | break; |
1431 | |
1432 | case DLT_JUNIPER_ATM1: |
1433 | cstate->off_linktype.constant_part = 4; /* in reality variable between 4-8 */ |
1434 | cstate->off_linkpl.constant_part = 4; /* in reality variable between 4-8 */ |
1435 | cstate->off_nl = 0; |
1436 | cstate->off_nl_nosnap = 10; |
1437 | break; |
1438 | |
1439 | case DLT_JUNIPER_ATM2: |
1440 | cstate->off_linktype.constant_part = 8; /* in reality variable between 8-12 */ |
1441 | cstate->off_linkpl.constant_part = 8; /* in reality variable between 8-12 */ |
1442 | cstate->off_nl = 0; |
1443 | cstate->off_nl_nosnap = 10; |
1444 | break; |
1445 | |
1446 | /* frames captured on a Juniper PPPoE service PIC |
1447 | * contain raw ethernet frames */ |
1448 | case DLT_JUNIPER_PPPOE: |
1449 | case DLT_JUNIPER_ETHER: |
1450 | cstate->off_linkpl.constant_part = 14; |
1451 | cstate->off_linktype.constant_part = 16; |
1452 | cstate->off_nl = 18; /* Ethernet II */ |
1453 | cstate->off_nl_nosnap = 21; /* 802.3+802.2 */ |
1454 | break; |
1455 | |
1456 | case DLT_JUNIPER_PPPOE_ATM: |
1457 | cstate->off_linktype.constant_part = 4; |
1458 | cstate->off_linkpl.constant_part = 6; |
1459 | cstate->off_nl = 0; |
1460 | cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */ |
1461 | break; |
1462 | |
1463 | case DLT_JUNIPER_GGSN: |
1464 | cstate->off_linktype.constant_part = 6; |
1465 | cstate->off_linkpl.constant_part = 12; |
1466 | cstate->off_nl = 0; |
1467 | cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */ |
1468 | break; |
1469 | |
1470 | case DLT_JUNIPER_ES: |
1471 | cstate->off_linktype.constant_part = 6; |
1472 | cstate->off_linkpl.constant_part = OFFSET_NOT_SET; /* not really a network layer but raw IP addresses */ |
1473 | cstate->off_nl = OFFSET_NOT_SET; /* not really a network layer but raw IP addresses */ |
1474 | cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */ |
1475 | break; |
1476 | |
1477 | case DLT_JUNIPER_MONITOR: |
1478 | cstate->off_linktype.constant_part = 12; |
1479 | cstate->off_linkpl.constant_part = 12; |
1480 | cstate->off_nl = 0; /* raw IP/IP6 header */ |
1481 | cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */ |
1482 | break; |
1483 | |
1484 | case DLT_BACNET_MS_TP: |
1485 | cstate->off_linktype.constant_part = OFFSET_NOT_SET; |
1486 | cstate->off_linkpl.constant_part = OFFSET_NOT_SET; |
1487 | cstate->off_nl = OFFSET_NOT_SET; |
1488 | cstate->off_nl_nosnap = OFFSET_NOT_SET; |
1489 | break; |
1490 | |
1491 | case DLT_JUNIPER_SERVICES: |
1492 | cstate->off_linktype.constant_part = 12; |
1493 | cstate->off_linkpl.constant_part = OFFSET_NOT_SET; /* L3 proto location dep. on cookie type */ |
1494 | cstate->off_nl = OFFSET_NOT_SET; /* L3 proto location dep. on cookie type */ |
1495 | cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */ |
1496 | break; |
1497 | |
1498 | case DLT_JUNIPER_VP: |
1499 | cstate->off_linktype.constant_part = 18; |
1500 | cstate->off_linkpl.constant_part = OFFSET_NOT_SET; |
1501 | cstate->off_nl = OFFSET_NOT_SET; |
1502 | cstate->off_nl_nosnap = OFFSET_NOT_SET; |
1503 | break; |
1504 | |
1505 | case DLT_JUNIPER_ST: |
1506 | cstate->off_linktype.constant_part = 18; |
1507 | cstate->off_linkpl.constant_part = OFFSET_NOT_SET; |
1508 | cstate->off_nl = OFFSET_NOT_SET; |
1509 | cstate->off_nl_nosnap = OFFSET_NOT_SET; |
1510 | break; |
1511 | |
1512 | case DLT_JUNIPER_ISM: |
1513 | cstate->off_linktype.constant_part = 8; |
1514 | cstate->off_linkpl.constant_part = OFFSET_NOT_SET; |
1515 | cstate->off_nl = OFFSET_NOT_SET; |
1516 | cstate->off_nl_nosnap = OFFSET_NOT_SET; |
1517 | break; |
1518 | |
1519 | case DLT_JUNIPER_VS: |
1520 | case DLT_JUNIPER_SRX_E2E: |
1521 | case DLT_JUNIPER_FIBRECHANNEL: |
1522 | case DLT_JUNIPER_ATM_CEMIC: |
1523 | cstate->off_linktype.constant_part = 8; |
1524 | cstate->off_linkpl.constant_part = OFFSET_NOT_SET; |
1525 | cstate->off_nl = OFFSET_NOT_SET; |
1526 | cstate->off_nl_nosnap = OFFSET_NOT_SET; |
1527 | break; |
1528 | |
1529 | case DLT_MTP2: |
1530 | cstate->off_li = 2; |
1531 | cstate->off_li_hsl = 4; |
1532 | cstate->off_sio = 3; |
1533 | cstate->off_opc = 4; |
1534 | cstate->off_dpc = 4; |
1535 | cstate->off_sls = 7; |
1536 | cstate->off_linktype.constant_part = OFFSET_NOT_SET; |
1537 | cstate->off_linkpl.constant_part = OFFSET_NOT_SET; |
1538 | cstate->off_nl = OFFSET_NOT_SET; |
1539 | cstate->off_nl_nosnap = OFFSET_NOT_SET; |
1540 | break; |
1541 | |
1542 | case DLT_MTP2_WITH_PHDR: |
1543 | cstate->off_li = 6; |
1544 | cstate->off_li_hsl = 8; |
1545 | cstate->off_sio = 7; |
1546 | cstate->off_opc = 8; |
1547 | cstate->off_dpc = 8; |
1548 | cstate->off_sls = 11; |
1549 | cstate->off_linktype.constant_part = OFFSET_NOT_SET; |
1550 | cstate->off_linkpl.constant_part = OFFSET_NOT_SET; |
1551 | cstate->off_nl = OFFSET_NOT_SET; |
1552 | cstate->off_nl_nosnap = OFFSET_NOT_SET; |
1553 | break; |
1554 | |
1555 | case DLT_ERF: |
1556 | cstate->off_li = 22; |
1557 | cstate->off_li_hsl = 24; |
1558 | cstate->off_sio = 23; |
1559 | cstate->off_opc = 24; |
1560 | cstate->off_dpc = 24; |
1561 | cstate->off_sls = 27; |
1562 | cstate->off_linktype.constant_part = OFFSET_NOT_SET; |
1563 | cstate->off_linkpl.constant_part = OFFSET_NOT_SET; |
1564 | cstate->off_nl = OFFSET_NOT_SET; |
1565 | cstate->off_nl_nosnap = OFFSET_NOT_SET; |
1566 | break; |
1567 | |
1568 | case DLT_PFSYNC: |
1569 | cstate->off_linktype.constant_part = OFFSET_NOT_SET; |
1570 | cstate->off_linkpl.constant_part = 4; |
1571 | cstate->off_nl = 0; |
1572 | cstate->off_nl_nosnap = 0; |
1573 | break; |
1574 | |
1575 | case DLT_AX25_KISS: |
1576 | /* |
1577 | * Currently, only raw "link[N:M]" filtering is supported. |
1578 | */ |
1579 | cstate->off_linktype.constant_part = OFFSET_NOT_SET; /* variable, min 15, max 71 steps of 7 */ |
1580 | cstate->off_linkpl.constant_part = OFFSET_NOT_SET; |
1581 | cstate->off_nl = OFFSET_NOT_SET; /* variable, min 16, max 71 steps of 7 */ |
1582 | cstate->off_nl_nosnap = OFFSET_NOT_SET; /* no 802.2 LLC */ |
1583 | break; |
1584 | |
1585 | case DLT_IPNET: |
1586 | cstate->off_linktype.constant_part = 1; |
1587 | cstate->off_linkpl.constant_part = 24; /* ipnet header length */ |
1588 | cstate->off_nl = 0; |
1589 | cstate->off_nl_nosnap = OFFSET_NOT_SET; |
1590 | break; |
1591 | |
1592 | case DLT_NETANALYZER: |
1593 | cstate->off_linkhdr.constant_part = 4; /* Ethernet header is past 4-byte pseudo-header */ |
1594 | cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12; |
1595 | cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14; /* pseudo-header+Ethernet header length */ |
1596 | cstate->off_nl = 0; /* Ethernet II */ |
1597 | cstate->off_nl_nosnap = 3; /* 802.3+802.2 */ |
1598 | break; |
1599 | |
1600 | case DLT_NETANALYZER_TRANSPARENT: |
1601 | cstate->off_linkhdr.constant_part = 12; /* MAC header is past 4-byte pseudo-header, preamble, and SFD */ |
1602 | cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12; |
1603 | cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14; /* pseudo-header+preamble+SFD+Ethernet header length */ |
1604 | cstate->off_nl = 0; /* Ethernet II */ |
1605 | cstate->off_nl_nosnap = 3; /* 802.3+802.2 */ |
1606 | break; |
1607 | |
1608 | default: |
1609 | /* |
1610 | * For values in the range in which we've assigned new |
1611 | * DLT_ values, only raw "link[N:M]" filtering is supported. |
1612 | */ |
1613 | if (cstate->linktype >= DLT_MATCHING_MIN && |
1614 | cstate->linktype <= DLT_MATCHING_MAX) { |
1615 | cstate->off_linktype.constant_part = OFFSET_NOT_SET; |
1616 | cstate->off_linkpl.constant_part = OFFSET_NOT_SET; |
1617 | cstate->off_nl = OFFSET_NOT_SET; |
1618 | cstate->off_nl_nosnap = OFFSET_NOT_SET; |
1619 | } else { |
1620 | bpf_error(cstate, "unknown data link type %d" , cstate->linktype); |
1621 | } |
1622 | break; |
1623 | } |
1624 | |
1625 | cstate->off_outermostlinkhdr = cstate->off_prevlinkhdr = cstate->off_linkhdr; |
1626 | } |
1627 | |
1628 | /* |
1629 | * Load a value relative to the specified absolute offset. |
1630 | */ |
1631 | static struct slist * |
1632 | gen_load_absoffsetrel(compiler_state_t *cstate, bpf_abs_offset *abs_offset, |
1633 | u_int offset, u_int size) |
1634 | { |
1635 | struct slist *s, *s2; |
1636 | |
1637 | s = gen_abs_offset_varpart(cstate, abs_offset); |
1638 | |
1639 | /* |
1640 | * If "s" is non-null, it has code to arrange that the X register |
1641 | * contains the variable part of the absolute offset, so we |
1642 | * generate a load relative to that, with an offset of |
1643 | * abs_offset->constant_part + offset. |
1644 | * |
1645 | * Otherwise, we can do an absolute load with an offset of |
1646 | * abs_offset->constant_part + offset. |
1647 | */ |
1648 | if (s != NULL) { |
1649 | /* |
1650 | * "s" points to a list of statements that puts the |
1651 | * variable part of the absolute offset into the X register. |
1652 | * Do an indirect load, to use the X register as an offset. |
1653 | */ |
1654 | s2 = new_stmt(cstate, BPF_LD|BPF_IND|size); |
1655 | s2->s.k = abs_offset->constant_part + offset; |
1656 | sappend(s, s2); |
1657 | } else { |
1658 | /* |
1659 | * There is no variable part of the absolute offset, so |
1660 | * just do an absolute load. |
1661 | */ |
1662 | s = new_stmt(cstate, BPF_LD|BPF_ABS|size); |
1663 | s->s.k = abs_offset->constant_part + offset; |
1664 | } |
1665 | return s; |
1666 | } |
1667 | |
1668 | /* |
1669 | * Load a value relative to the beginning of the specified header. |
1670 | */ |
1671 | static struct slist * |
1672 | gen_load_a(compiler_state_t *cstate, enum e_offrel offrel, u_int offset, |
1673 | u_int size) |
1674 | { |
1675 | struct slist *s, *s2; |
1676 | |
1677 | switch (offrel) { |
1678 | |
1679 | case OR_PACKET: |
1680 | s = new_stmt(cstate, BPF_LD|BPF_ABS|size); |
1681 | s->s.k = offset; |
1682 | break; |
1683 | |
1684 | case OR_LINKHDR: |
1685 | s = gen_load_absoffsetrel(cstate, &cstate->off_linkhdr, offset, size); |
1686 | break; |
1687 | |
1688 | case OR_PREVLINKHDR: |
1689 | s = gen_load_absoffsetrel(cstate, &cstate->off_prevlinkhdr, offset, size); |
1690 | break; |
1691 | |
1692 | case OR_LLC: |
1693 | s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, offset, size); |
1694 | break; |
1695 | |
1696 | case OR_PREVMPLSHDR: |
1697 | s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl - 4 + offset, size); |
1698 | break; |
1699 | |
1700 | case OR_LINKPL: |
1701 | s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + offset, size); |
1702 | break; |
1703 | |
1704 | case OR_LINKPL_NOSNAP: |
1705 | s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl_nosnap + offset, size); |
1706 | break; |
1707 | |
1708 | case OR_LINKTYPE: |
1709 | s = gen_load_absoffsetrel(cstate, &cstate->off_linktype, offset, size); |
1710 | break; |
1711 | |
1712 | case OR_TRAN_IPV4: |
1713 | /* |
1714 | * Load the X register with the length of the IPv4 header |
1715 | * (plus the offset of the link-layer header, if it's |
1716 | * preceded by a variable-length header such as a radio |
1717 | * header), in bytes. |
1718 | */ |
1719 | s = gen_loadx_iphdrlen(cstate); |
1720 | |
1721 | /* |
1722 | * Load the item at {offset of the link-layer payload} + |
1723 | * {offset, relative to the start of the link-layer |
1724 | * paylod, of the IPv4 header} + {length of the IPv4 header} + |
1725 | * {specified offset}. |
1726 | * |
1727 | * If the offset of the link-layer payload is variable, |
1728 | * the variable part of that offset is included in the |
1729 | * value in the X register, and we include the constant |
1730 | * part in the offset of the load. |
1731 | */ |
1732 | s2 = new_stmt(cstate, BPF_LD|BPF_IND|size); |
1733 | s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + offset; |
1734 | sappend(s, s2); |
1735 | break; |
1736 | |
1737 | case OR_TRAN_IPV6: |
1738 | s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + 40 + offset, size); |
1739 | break; |
1740 | |
1741 | default: |
1742 | abort(); |
1743 | /* NOTREACHED */ |
1744 | } |
1745 | return s; |
1746 | } |
1747 | |
1748 | /* |
1749 | * Generate code to load into the X register the sum of the length of |
1750 | * the IPv4 header and the variable part of the offset of the link-layer |
1751 | * payload. |
1752 | */ |
1753 | static struct slist * |
1754 | gen_loadx_iphdrlen(compiler_state_t *cstate) |
1755 | { |
1756 | struct slist *s, *s2; |
1757 | |
1758 | s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl); |
1759 | if (s != NULL) { |
1760 | /* |
1761 | * The offset of the link-layer payload has a variable |
1762 | * part. "s" points to a list of statements that put |
1763 | * the variable part of that offset into the X register. |
1764 | * |
1765 | * The 4*([k]&0xf) addressing mode can't be used, as we |
1766 | * don't have a constant offset, so we have to load the |
1767 | * value in question into the A register and add to it |
1768 | * the value from the X register. |
1769 | */ |
1770 | s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B); |
1771 | s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl; |
1772 | sappend(s, s2); |
1773 | s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K); |
1774 | s2->s.k = 0xf; |
1775 | sappend(s, s2); |
1776 | s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K); |
1777 | s2->s.k = 2; |
1778 | sappend(s, s2); |
1779 | |
1780 | /* |
1781 | * The A register now contains the length of the IP header. |
1782 | * We need to add to it the variable part of the offset of |
1783 | * the link-layer payload, which is still in the X |
1784 | * register, and move the result into the X register. |
1785 | */ |
1786 | sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X)); |
1787 | sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX)); |
1788 | } else { |
1789 | /* |
1790 | * The offset of the link-layer payload is a constant, |
1791 | * so no code was generated to load the (non-existent) |
1792 | * variable part of that offset. |
1793 | * |
1794 | * This means we can use the 4*([k]&0xf) addressing |
1795 | * mode. Load the length of the IPv4 header, which |
1796 | * is at an offset of cstate->off_nl from the beginning of |
1797 | * the link-layer payload, and thus at an offset of |
1798 | * cstate->off_linkpl.constant_part + cstate->off_nl from the beginning |
1799 | * of the raw packet data, using that addressing mode. |
1800 | */ |
1801 | s = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B); |
1802 | s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl; |
1803 | } |
1804 | return s; |
1805 | } |
1806 | |
1807 | |
1808 | static struct block * |
1809 | gen_uncond(compiler_state_t *cstate, int rsense) |
1810 | { |
1811 | struct block *b; |
1812 | struct slist *s; |
1813 | |
1814 | s = new_stmt(cstate, BPF_LD|BPF_IMM); |
1815 | s->s.k = !rsense; |
1816 | b = new_block(cstate, JMP(BPF_JEQ)); |
1817 | b->stmts = s; |
1818 | |
1819 | return b; |
1820 | } |
1821 | |
1822 | static inline struct block * |
1823 | gen_true(compiler_state_t *cstate) |
1824 | { |
1825 | return gen_uncond(cstate, 1); |
1826 | } |
1827 | |
1828 | static inline struct block * |
1829 | gen_false(compiler_state_t *cstate) |
1830 | { |
1831 | return gen_uncond(cstate, 0); |
1832 | } |
1833 | |
1834 | /* |
1835 | * Byte-swap a 32-bit number. |
1836 | * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on |
1837 | * big-endian platforms.) |
1838 | */ |
1839 | #define SWAPLONG(y) \ |
1840 | ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff)) |
1841 | |
1842 | /* |
1843 | * Generate code to match a particular packet type. |
1844 | * |
1845 | * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP |
1846 | * value, if <= ETHERMTU. We use that to determine whether to |
1847 | * match the type/length field or to check the type/length field for |
1848 | * a value <= ETHERMTU to see whether it's a type field and then do |
1849 | * the appropriate test. |
1850 | */ |
1851 | static struct block * |
1852 | gen_ether_linktype(compiler_state_t *cstate, int proto) |
1853 | { |
1854 | struct block *b0, *b1; |
1855 | |
1856 | switch (proto) { |
1857 | |
1858 | case LLCSAP_ISONS: |
1859 | case LLCSAP_IP: |
1860 | case LLCSAP_NETBEUI: |
1861 | /* |
1862 | * OSI protocols and NetBEUI always use 802.2 encapsulation, |
1863 | * so we check the DSAP and SSAP. |
1864 | * |
1865 | * LLCSAP_IP checks for IP-over-802.2, rather |
1866 | * than IP-over-Ethernet or IP-over-SNAP. |
1867 | * |
1868 | * XXX - should we check both the DSAP and the |
1869 | * SSAP, like this, or should we check just the |
1870 | * DSAP, as we do for other types <= ETHERMTU |
1871 | * (i.e., other SAP values)? |
1872 | */ |
1873 | b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU); |
1874 | gen_not(b0); |
1875 | b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_int32) |
1876 | ((proto << 8) | proto)); |
1877 | gen_and(b0, b1); |
1878 | return b1; |
1879 | |
1880 | case LLCSAP_IPX: |
1881 | /* |
1882 | * Check for; |
1883 | * |
1884 | * Ethernet_II frames, which are Ethernet |
1885 | * frames with a frame type of ETHERTYPE_IPX; |
1886 | * |
1887 | * Ethernet_802.3 frames, which are 802.3 |
1888 | * frames (i.e., the type/length field is |
1889 | * a length field, <= ETHERMTU, rather than |
1890 | * a type field) with the first two bytes |
1891 | * after the Ethernet/802.3 header being |
1892 | * 0xFFFF; |
1893 | * |
1894 | * Ethernet_802.2 frames, which are 802.3 |
1895 | * frames with an 802.2 LLC header and |
1896 | * with the IPX LSAP as the DSAP in the LLC |
1897 | * header; |
1898 | * |
1899 | * Ethernet_SNAP frames, which are 802.3 |
1900 | * frames with an LLC header and a SNAP |
1901 | * header and with an OUI of 0x000000 |
1902 | * (encapsulated Ethernet) and a protocol |
1903 | * ID of ETHERTYPE_IPX in the SNAP header. |
1904 | * |
1905 | * XXX - should we generate the same code both |
1906 | * for tests for LLCSAP_IPX and for ETHERTYPE_IPX? |
1907 | */ |
1908 | |
1909 | /* |
1910 | * This generates code to check both for the |
1911 | * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3. |
1912 | */ |
1913 | b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, (bpf_int32)LLCSAP_IPX); |
1914 | b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_int32)0xFFFF); |
1915 | gen_or(b0, b1); |
1916 | |
1917 | /* |
1918 | * Now we add code to check for SNAP frames with |
1919 | * ETHERTYPE_IPX, i.e. Ethernet_SNAP. |
1920 | */ |
1921 | b0 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX); |
1922 | gen_or(b0, b1); |
1923 | |
1924 | /* |
1925 | * Now we generate code to check for 802.3 |
1926 | * frames in general. |
1927 | */ |
1928 | b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU); |
1929 | gen_not(b0); |
1930 | |
1931 | /* |
1932 | * Now add the check for 802.3 frames before the |
1933 | * check for Ethernet_802.2 and Ethernet_802.3, |
1934 | * as those checks should only be done on 802.3 |
1935 | * frames, not on Ethernet frames. |
1936 | */ |
1937 | gen_and(b0, b1); |
1938 | |
1939 | /* |
1940 | * Now add the check for Ethernet_II frames, and |
1941 | * do that before checking for the other frame |
1942 | * types. |
1943 | */ |
1944 | b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)ETHERTYPE_IPX); |
1945 | gen_or(b0, b1); |
1946 | return b1; |
1947 | |
1948 | case ETHERTYPE_ATALK: |
1949 | case ETHERTYPE_AARP: |
1950 | /* |
1951 | * EtherTalk (AppleTalk protocols on Ethernet link |
1952 | * layer) may use 802.2 encapsulation. |
1953 | */ |
1954 | |
1955 | /* |
1956 | * Check for 802.2 encapsulation (EtherTalk phase 2?); |
1957 | * we check for an Ethernet type field less than |
1958 | * 1500, which means it's an 802.3 length field. |
1959 | */ |
1960 | b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU); |
1961 | gen_not(b0); |
1962 | |
1963 | /* |
1964 | * 802.2-encapsulated ETHERTYPE_ATALK packets are |
1965 | * SNAP packets with an organization code of |
1966 | * 0x080007 (Apple, for Appletalk) and a protocol |
1967 | * type of ETHERTYPE_ATALK (Appletalk). |
1968 | * |
1969 | * 802.2-encapsulated ETHERTYPE_AARP packets are |
1970 | * SNAP packets with an organization code of |
1971 | * 0x000000 (encapsulated Ethernet) and a protocol |
1972 | * type of ETHERTYPE_AARP (Appletalk ARP). |
1973 | */ |
1974 | if (proto == ETHERTYPE_ATALK) |
1975 | b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK); |
1976 | else /* proto == ETHERTYPE_AARP */ |
1977 | b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP); |
1978 | gen_and(b0, b1); |
1979 | |
1980 | /* |
1981 | * Check for Ethernet encapsulation (Ethertalk |
1982 | * phase 1?); we just check for the Ethernet |
1983 | * protocol type. |
1984 | */ |
1985 | b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto); |
1986 | |
1987 | gen_or(b0, b1); |
1988 | return b1; |
1989 | |
1990 | default: |
1991 | if (proto <= ETHERMTU) { |
1992 | /* |
1993 | * This is an LLC SAP value, so the frames |
1994 | * that match would be 802.2 frames. |
1995 | * Check that the frame is an 802.2 frame |
1996 | * (i.e., that the length/type field is |
1997 | * a length field, <= ETHERMTU) and |
1998 | * then check the DSAP. |
1999 | */ |
2000 | b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU); |
2001 | gen_not(b0); |
2002 | b1 = gen_cmp(cstate, OR_LINKTYPE, 2, BPF_B, (bpf_int32)proto); |
2003 | gen_and(b0, b1); |
2004 | return b1; |
2005 | } else { |
2006 | /* |
2007 | * This is an Ethernet type, so compare |
2008 | * the length/type field with it (if |
2009 | * the frame is an 802.2 frame, the length |
2010 | * field will be <= ETHERMTU, and, as |
2011 | * "proto" is > ETHERMTU, this test |
2012 | * will fail and the frame won't match, |
2013 | * which is what we want). |
2014 | */ |
2015 | return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, |
2016 | (bpf_int32)proto); |
2017 | } |
2018 | } |
2019 | } |
2020 | |
2021 | static struct block * |
2022 | gen_loopback_linktype(compiler_state_t *cstate, int proto) |
2023 | { |
2024 | /* |
2025 | * For DLT_NULL, the link-layer header is a 32-bit word |
2026 | * containing an AF_ value in *host* byte order, and for |
2027 | * DLT_ENC, the link-layer header begins with a 32-bit |
2028 | * word containing an AF_ value in host byte order. |
2029 | * |
2030 | * In addition, if we're reading a saved capture file, |
2031 | * the host byte order in the capture may not be the |
2032 | * same as the host byte order on this machine. |
2033 | * |
2034 | * For DLT_LOOP, the link-layer header is a 32-bit |
2035 | * word containing an AF_ value in *network* byte order. |
2036 | */ |
2037 | if (cstate->linktype == DLT_NULL || cstate->linktype == DLT_ENC) { |
2038 | /* |
2039 | * The AF_ value is in host byte order, but the BPF |
2040 | * interpreter will convert it to network byte order. |
2041 | * |
2042 | * If this is a save file, and it's from a machine |
2043 | * with the opposite byte order to ours, we byte-swap |
2044 | * the AF_ value. |
2045 | * |
2046 | * Then we run it through "htonl()", and generate |
2047 | * code to compare against the result. |
2048 | */ |
2049 | if (cstate->bpf_pcap->rfile != NULL && cstate->bpf_pcap->swapped) |
2050 | proto = SWAPLONG(proto); |
2051 | proto = htonl(proto); |
2052 | } |
2053 | return (gen_cmp(cstate, OR_LINKHDR, 0, BPF_W, (bpf_int32)proto)); |
2054 | } |
2055 | |
2056 | /* |
2057 | * "proto" is an Ethernet type value and for IPNET, if it is not IPv4 |
2058 | * or IPv6 then we have an error. |
2059 | */ |
2060 | static struct block * |
2061 | gen_ipnet_linktype(compiler_state_t *cstate, int proto) |
2062 | { |
2063 | switch (proto) { |
2064 | |
2065 | case ETHERTYPE_IP: |
2066 | return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, (bpf_int32)IPH_AF_INET); |
2067 | /* NOTREACHED */ |
2068 | |
2069 | case ETHERTYPE_IPV6: |
2070 | return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, |
2071 | (bpf_int32)IPH_AF_INET6); |
2072 | /* NOTREACHED */ |
2073 | |
2074 | default: |
2075 | break; |
2076 | } |
2077 | |
2078 | return gen_false(cstate); |
2079 | } |
2080 | |
2081 | /* |
2082 | * Generate code to match a particular packet type. |
2083 | * |
2084 | * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP |
2085 | * value, if <= ETHERMTU. We use that to determine whether to |
2086 | * match the type field or to check the type field for the special |
2087 | * LINUX_SLL_P_802_2 value and then do the appropriate test. |
2088 | */ |
2089 | static struct block * |
2090 | gen_linux_sll_linktype(compiler_state_t *cstate, int proto) |
2091 | { |
2092 | struct block *b0, *b1; |
2093 | |
2094 | switch (proto) { |
2095 | |
2096 | case LLCSAP_ISONS: |
2097 | case LLCSAP_IP: |
2098 | case LLCSAP_NETBEUI: |
2099 | /* |
2100 | * OSI protocols and NetBEUI always use 802.2 encapsulation, |
2101 | * so we check the DSAP and SSAP. |
2102 | * |
2103 | * LLCSAP_IP checks for IP-over-802.2, rather |
2104 | * than IP-over-Ethernet or IP-over-SNAP. |
2105 | * |
2106 | * XXX - should we check both the DSAP and the |
2107 | * SSAP, like this, or should we check just the |
2108 | * DSAP, as we do for other types <= ETHERMTU |
2109 | * (i.e., other SAP values)? |
2110 | */ |
2111 | b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2); |
2112 | b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_int32) |
2113 | ((proto << 8) | proto)); |
2114 | gen_and(b0, b1); |
2115 | return b1; |
2116 | |
2117 | case LLCSAP_IPX: |
2118 | /* |
2119 | * Ethernet_II frames, which are Ethernet |
2120 | * frames with a frame type of ETHERTYPE_IPX; |
2121 | * |
2122 | * Ethernet_802.3 frames, which have a frame |
2123 | * type of LINUX_SLL_P_802_3; |
2124 | * |
2125 | * Ethernet_802.2 frames, which are 802.3 |
2126 | * frames with an 802.2 LLC header (i.e, have |
2127 | * a frame type of LINUX_SLL_P_802_2) and |
2128 | * with the IPX LSAP as the DSAP in the LLC |
2129 | * header; |
2130 | * |
2131 | * Ethernet_SNAP frames, which are 802.3 |
2132 | * frames with an LLC header and a SNAP |
2133 | * header and with an OUI of 0x000000 |
2134 | * (encapsulated Ethernet) and a protocol |
2135 | * ID of ETHERTYPE_IPX in the SNAP header. |
2136 | * |
2137 | * First, do the checks on LINUX_SLL_P_802_2 |
2138 | * frames; generate the check for either |
2139 | * Ethernet_802.2 or Ethernet_SNAP frames, and |
2140 | * then put a check for LINUX_SLL_P_802_2 frames |
2141 | * before it. |
2142 | */ |
2143 | b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, (bpf_int32)LLCSAP_IPX); |
2144 | b1 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX); |
2145 | gen_or(b0, b1); |
2146 | b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2); |
2147 | gen_and(b0, b1); |
2148 | |
2149 | /* |
2150 | * Now check for 802.3 frames and OR that with |
2151 | * the previous test. |
2152 | */ |
2153 | b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_3); |
2154 | gen_or(b0, b1); |
2155 | |
2156 | /* |
2157 | * Now add the check for Ethernet_II frames, and |
2158 | * do that before checking for the other frame |
2159 | * types. |
2160 | */ |
2161 | b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)ETHERTYPE_IPX); |
2162 | gen_or(b0, b1); |
2163 | return b1; |
2164 | |
2165 | case ETHERTYPE_ATALK: |
2166 | case ETHERTYPE_AARP: |
2167 | /* |
2168 | * EtherTalk (AppleTalk protocols on Ethernet link |
2169 | * layer) may use 802.2 encapsulation. |
2170 | */ |
2171 | |
2172 | /* |
2173 | * Check for 802.2 encapsulation (EtherTalk phase 2?); |
2174 | * we check for the 802.2 protocol type in the |
2175 | * "Ethernet type" field. |
2176 | */ |
2177 | b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2); |
2178 | |
2179 | /* |
2180 | * 802.2-encapsulated ETHERTYPE_ATALK packets are |
2181 | * SNAP packets with an organization code of |
2182 | * 0x080007 (Apple, for Appletalk) and a protocol |
2183 | * type of ETHERTYPE_ATALK (Appletalk). |
2184 | * |
2185 | * 802.2-encapsulated ETHERTYPE_AARP packets are |
2186 | * SNAP packets with an organization code of |
2187 | * 0x000000 (encapsulated Ethernet) and a protocol |
2188 | * type of ETHERTYPE_AARP (Appletalk ARP). |
2189 | */ |
2190 | if (proto == ETHERTYPE_ATALK) |
2191 | b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK); |
2192 | else /* proto == ETHERTYPE_AARP */ |
2193 | b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP); |
2194 | gen_and(b0, b1); |
2195 | |
2196 | /* |
2197 | * Check for Ethernet encapsulation (Ethertalk |
2198 | * phase 1?); we just check for the Ethernet |
2199 | * protocol type. |
2200 | */ |
2201 | b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto); |
2202 | |
2203 | gen_or(b0, b1); |
2204 | return b1; |
2205 | |
2206 | default: |
2207 | if (proto <= ETHERMTU) { |
2208 | /* |
2209 | * This is an LLC SAP value, so the frames |
2210 | * that match would be 802.2 frames. |
2211 | * Check for the 802.2 protocol type |
2212 | * in the "Ethernet type" field, and |
2213 | * then check the DSAP. |
2214 | */ |
2215 | b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2); |
2216 | b1 = gen_cmp(cstate, OR_LINKHDR, cstate->off_linkpl.constant_part, BPF_B, |
2217 | (bpf_int32)proto); |
2218 | gen_and(b0, b1); |
2219 | return b1; |
2220 | } else { |
2221 | /* |
2222 | * This is an Ethernet type, so compare |
2223 | * the length/type field with it (if |
2224 | * the frame is an 802.2 frame, the length |
2225 | * field will be <= ETHERMTU, and, as |
2226 | * "proto" is > ETHERMTU, this test |
2227 | * will fail and the frame won't match, |
2228 | * which is what we want). |
2229 | */ |
2230 | return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto); |
2231 | } |
2232 | } |
2233 | } |
2234 | |
2235 | static struct slist * |
2236 | gen_load_prism_llprefixlen(compiler_state_t *cstate) |
2237 | { |
2238 | struct slist *s1, *s2; |
2239 | struct slist *sjeq_avs_cookie; |
2240 | struct slist *sjcommon; |
2241 | |
2242 | /* |
2243 | * This code is not compatible with the optimizer, as |
2244 | * we are generating jmp instructions within a normal |
2245 | * slist of instructions |
2246 | */ |
2247 | cstate->no_optimize = 1; |
2248 | |
2249 | /* |
2250 | * Generate code to load the length of the radio header into |
2251 | * the register assigned to hold that length, if one has been |
2252 | * assigned. (If one hasn't been assigned, no code we've |
2253 | * generated uses that prefix, so we don't need to generate any |
2254 | * code to load it.) |
2255 | * |
2256 | * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes |
2257 | * or always use the AVS header rather than the Prism header. |
2258 | * We load a 4-byte big-endian value at the beginning of the |
2259 | * raw packet data, and see whether, when masked with 0xFFFFF000, |
2260 | * it's equal to 0x80211000. If so, that indicates that it's |
2261 | * an AVS header (the masked-out bits are the version number). |
2262 | * Otherwise, it's a Prism header. |
2263 | * |
2264 | * XXX - the Prism header is also, in theory, variable-length, |
2265 | * but no known software generates headers that aren't 144 |
2266 | * bytes long. |
2267 | */ |
2268 | if (cstate->off_linkhdr.reg != -1) { |
2269 | /* |
2270 | * Load the cookie. |
2271 | */ |
2272 | s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS); |
2273 | s1->s.k = 0; |
2274 | |
2275 | /* |
2276 | * AND it with 0xFFFFF000. |
2277 | */ |
2278 | s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K); |
2279 | s2->s.k = 0xFFFFF000; |
2280 | sappend(s1, s2); |
2281 | |
2282 | /* |
2283 | * Compare with 0x80211000. |
2284 | */ |
2285 | sjeq_avs_cookie = new_stmt(cstate, JMP(BPF_JEQ)); |
2286 | sjeq_avs_cookie->s.k = 0x80211000; |
2287 | sappend(s1, sjeq_avs_cookie); |
2288 | |
2289 | /* |
2290 | * If it's AVS: |
2291 | * |
2292 | * The 4 bytes at an offset of 4 from the beginning of |
2293 | * the AVS header are the length of the AVS header. |
2294 | * That field is big-endian. |
2295 | */ |
2296 | s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS); |
2297 | s2->s.k = 4; |
2298 | sappend(s1, s2); |
2299 | sjeq_avs_cookie->s.jt = s2; |
2300 | |
2301 | /* |
2302 | * Now jump to the code to allocate a register |
2303 | * into which to save the header length and |
2304 | * store the length there. (The "jump always" |
2305 | * instruction needs to have the k field set; |
2306 | * it's added to the PC, so, as we're jumping |
2307 | * over a single instruction, it should be 1.) |
2308 | */ |
2309 | sjcommon = new_stmt(cstate, JMP(BPF_JA)); |
2310 | sjcommon->s.k = 1; |
2311 | sappend(s1, sjcommon); |
2312 | |
2313 | /* |
2314 | * Now for the code that handles the Prism header. |
2315 | * Just load the length of the Prism header (144) |
2316 | * into the A register. Have the test for an AVS |
2317 | * header branch here if we don't have an AVS header. |
2318 | */ |
2319 | s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM); |
2320 | s2->s.k = 144; |
2321 | sappend(s1, s2); |
2322 | sjeq_avs_cookie->s.jf = s2; |
2323 | |
2324 | /* |
2325 | * Now allocate a register to hold that value and store |
2326 | * it. The code for the AVS header will jump here after |
2327 | * loading the length of the AVS header. |
2328 | */ |
2329 | s2 = new_stmt(cstate, BPF_ST); |
2330 | s2->s.k = cstate->off_linkhdr.reg; |
2331 | sappend(s1, s2); |
2332 | sjcommon->s.jf = s2; |
2333 | |
2334 | /* |
2335 | * Now move it into the X register. |
2336 | */ |
2337 | s2 = new_stmt(cstate, BPF_MISC|BPF_TAX); |
2338 | sappend(s1, s2); |
2339 | |
2340 | return (s1); |
2341 | } else |
2342 | return (NULL); |
2343 | } |
2344 | |
2345 | static struct slist * |
2346 | gen_load_avs_llprefixlen(compiler_state_t *cstate) |
2347 | { |
2348 | struct slist *s1, *s2; |
2349 | |
2350 | /* |
2351 | * Generate code to load the length of the AVS header into |
2352 | * the register assigned to hold that length, if one has been |
2353 | * assigned. (If one hasn't been assigned, no code we've |
2354 | * generated uses that prefix, so we don't need to generate any |
2355 | * code to load it.) |
2356 | */ |
2357 | if (cstate->off_linkhdr.reg != -1) { |
2358 | /* |
2359 | * The 4 bytes at an offset of 4 from the beginning of |
2360 | * the AVS header are the length of the AVS header. |
2361 | * That field is big-endian. |
2362 | */ |
2363 | s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS); |
2364 | s1->s.k = 4; |
2365 | |
2366 | /* |
2367 | * Now allocate a register to hold that value and store |
2368 | * it. |
2369 | */ |
2370 | s2 = new_stmt(cstate, BPF_ST); |
2371 | s2->s.k = cstate->off_linkhdr.reg; |
2372 | sappend(s1, s2); |
2373 | |
2374 | /* |
2375 | * Now move it into the X register. |
2376 | */ |
2377 | s2 = new_stmt(cstate, BPF_MISC|BPF_TAX); |
2378 | sappend(s1, s2); |
2379 | |
2380 | return (s1); |
2381 | } else |
2382 | return (NULL); |
2383 | } |
2384 | |
2385 | static struct slist * |
2386 | gen_load_radiotap_llprefixlen(compiler_state_t *cstate) |
2387 | { |
2388 | struct slist *s1, *s2; |
2389 | |
2390 | /* |
2391 | * Generate code to load the length of the radiotap header into |
2392 | * the register assigned to hold that length, if one has been |
2393 | * assigned. (If one hasn't been assigned, no code we've |
2394 | * generated uses that prefix, so we don't need to generate any |
2395 | * code to load it.) |
2396 | */ |
2397 | if (cstate->off_linkhdr.reg != -1) { |
2398 | /* |
2399 | * The 2 bytes at offsets of 2 and 3 from the beginning |
2400 | * of the radiotap header are the length of the radiotap |
2401 | * header; unfortunately, it's little-endian, so we have |
2402 | * to load it a byte at a time and construct the value. |
2403 | */ |
2404 | |
2405 | /* |
2406 | * Load the high-order byte, at an offset of 3, shift it |
2407 | * left a byte, and put the result in the X register. |
2408 | */ |
2409 | s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS); |
2410 | s1->s.k = 3; |
2411 | s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K); |
2412 | sappend(s1, s2); |
2413 | s2->s.k = 8; |
2414 | s2 = new_stmt(cstate, BPF_MISC|BPF_TAX); |
2415 | sappend(s1, s2); |
2416 | |
2417 | /* |
2418 | * Load the next byte, at an offset of 2, and OR the |
2419 | * value from the X register into it. |
2420 | */ |
2421 | s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS); |
2422 | sappend(s1, s2); |
2423 | s2->s.k = 2; |
2424 | s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X); |
2425 | sappend(s1, s2); |
2426 | |
2427 | /* |
2428 | * Now allocate a register to hold that value and store |
2429 | * it. |
2430 | */ |
2431 | s2 = new_stmt(cstate, BPF_ST); |
2432 | s2->s.k = cstate->off_linkhdr.reg; |
2433 | sappend(s1, s2); |
2434 | |
2435 | /* |
2436 | * Now move it into the X register. |
2437 | */ |
2438 | s2 = new_stmt(cstate, BPF_MISC|BPF_TAX); |
2439 | sappend(s1, s2); |
2440 | |
2441 | return (s1); |
2442 | } else |
2443 | return (NULL); |
2444 | } |
2445 | |
2446 | /* |
2447 | * At the moment we treat PPI as normal Radiotap encoded |
2448 | * packets. The difference is in the function that generates |
2449 | * the code at the beginning to compute the header length. |
2450 | * Since this code generator of PPI supports bare 802.11 |
2451 | * encapsulation only (i.e. the encapsulated DLT should be |
2452 | * DLT_IEEE802_11) we generate code to check for this too; |
2453 | * that's done in finish_parse(). |
2454 | */ |
2455 | static struct slist * |
2456 | gen_load_ppi_llprefixlen(compiler_state_t *cstate) |
2457 | { |
2458 | struct slist *s1, *s2; |
2459 | |
2460 | /* |
2461 | * Generate code to load the length of the radiotap header |
2462 | * into the register assigned to hold that length, if one has |
2463 | * been assigned. |
2464 | */ |
2465 | if (cstate->off_linkhdr.reg != -1) { |
2466 | /* |
2467 | * The 2 bytes at offsets of 2 and 3 from the beginning |
2468 | * of the radiotap header are the length of the radiotap |
2469 | * header; unfortunately, it's little-endian, so we have |
2470 | * to load it a byte at a time and construct the value. |
2471 | */ |
2472 | |
2473 | /* |
2474 | * Load the high-order byte, at an offset of 3, shift it |
2475 | * left a byte, and put the result in the X register. |
2476 | */ |
2477 | s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS); |
2478 | s1->s.k = 3; |
2479 | s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K); |
2480 | sappend(s1, s2); |
2481 | s2->s.k = 8; |
2482 | s2 = new_stmt(cstate, BPF_MISC|BPF_TAX); |
2483 | sappend(s1, s2); |
2484 | |
2485 | /* |
2486 | * Load the next byte, at an offset of 2, and OR the |
2487 | * value from the X register into it. |
2488 | */ |
2489 | s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS); |
2490 | sappend(s1, s2); |
2491 | s2->s.k = 2; |
2492 | s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X); |
2493 | sappend(s1, s2); |
2494 | |
2495 | /* |
2496 | * Now allocate a register to hold that value and store |
2497 | * it. |
2498 | */ |
2499 | s2 = new_stmt(cstate, BPF_ST); |
2500 | s2->s.k = cstate->off_linkhdr.reg; |
2501 | sappend(s1, s2); |
2502 | |
2503 | /* |
2504 | * Now move it into the X register. |
2505 | */ |
2506 | s2 = new_stmt(cstate, BPF_MISC|BPF_TAX); |
2507 | sappend(s1, s2); |
2508 | |
2509 | return (s1); |
2510 | } else |
2511 | return (NULL); |
2512 | } |
2513 | |
2514 | /* |
2515 | * Load a value relative to the beginning of the link-layer header after the 802.11 |
2516 | * header, i.e. LLC_SNAP. |
2517 | * The link-layer header doesn't necessarily begin at the beginning |
2518 | * of the packet data; there might be a variable-length prefix containing |
2519 | * radio information. |
2520 | */ |
2521 | static struct slist * |
2522 | (compiler_state_t *cstate, struct slist *s, struct slist *snext) |
2523 | { |
2524 | struct slist *s2; |
2525 | struct slist *sjset_data_frame_1; |
2526 | struct slist *sjset_data_frame_2; |
2527 | struct slist *sjset_qos; |
2528 | struct slist *sjset_radiotap_flags_present; |
2529 | struct slist *sjset_radiotap_ext_present; |
2530 | struct slist *sjset_radiotap_tsft_present; |
2531 | struct slist *sjset_tsft_datapad, *sjset_notsft_datapad; |
2532 | struct slist *s_roundup; |
2533 | |
2534 | if (cstate->off_linkpl.reg == -1) { |
2535 | /* |
2536 | * No register has been assigned to the offset of |
2537 | * the link-layer payload, which means nobody needs |
2538 | * it; don't bother computing it - just return |
2539 | * what we already have. |
2540 | */ |
2541 | return (s); |
2542 | } |
2543 | |
2544 | /* |
2545 | * This code is not compatible with the optimizer, as |
2546 | * we are generating jmp instructions within a normal |
2547 | * slist of instructions |
2548 | */ |
2549 | cstate->no_optimize = 1; |
2550 | |
2551 | /* |
2552 | * If "s" is non-null, it has code to arrange that the X register |
2553 | * contains the length of the prefix preceding the link-layer |
2554 | * header. |
2555 | * |
2556 | * Otherwise, the length of the prefix preceding the link-layer |
2557 | * header is "off_outermostlinkhdr.constant_part". |
2558 | */ |
2559 | if (s == NULL) { |
2560 | /* |
2561 | * There is no variable-length header preceding the |
2562 | * link-layer header. |
2563 | * |
2564 | * Load the length of the fixed-length prefix preceding |
2565 | * the link-layer header (if any) into the X register, |
2566 | * and store it in the cstate->off_linkpl.reg register. |
2567 | * That length is off_outermostlinkhdr.constant_part. |
2568 | */ |
2569 | s = new_stmt(cstate, BPF_LDX|BPF_IMM); |
2570 | s->s.k = cstate->off_outermostlinkhdr.constant_part; |
2571 | } |
2572 | |
2573 | /* |
2574 | * The X register contains the offset of the beginning of the |
2575 | * link-layer header; add 24, which is the minimum length |
2576 | * of the MAC header for a data frame, to that, and store it |
2577 | * in cstate->off_linkpl.reg, and then load the Frame Control field, |
2578 | * which is at the offset in the X register, with an indexed load. |
2579 | */ |
2580 | s2 = new_stmt(cstate, BPF_MISC|BPF_TXA); |
2581 | sappend(s, s2); |
2582 | s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K); |
2583 | s2->s.k = 24; |
2584 | sappend(s, s2); |
2585 | s2 = new_stmt(cstate, BPF_ST); |
2586 | s2->s.k = cstate->off_linkpl.reg; |
2587 | sappend(s, s2); |
2588 | |
2589 | s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B); |
2590 | s2->s.k = 0; |
2591 | sappend(s, s2); |
2592 | |
2593 | /* |
2594 | * Check the Frame Control field to see if this is a data frame; |
2595 | * a data frame has the 0x08 bit (b3) in that field set and the |
2596 | * 0x04 bit (b2) clear. |
2597 | */ |
2598 | sjset_data_frame_1 = new_stmt(cstate, JMP(BPF_JSET)); |
2599 | sjset_data_frame_1->s.k = 0x08; |
2600 | sappend(s, sjset_data_frame_1); |
2601 | |
2602 | /* |
2603 | * If b3 is set, test b2, otherwise go to the first statement of |
2604 | * the rest of the program. |
2605 | */ |
2606 | sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(cstate, JMP(BPF_JSET)); |
2607 | sjset_data_frame_2->s.k = 0x04; |
2608 | sappend(s, sjset_data_frame_2); |
2609 | sjset_data_frame_1->s.jf = snext; |
2610 | |
2611 | /* |
2612 | * If b2 is not set, this is a data frame; test the QoS bit. |
2613 | * Otherwise, go to the first statement of the rest of the |
2614 | * program. |
2615 | */ |
2616 | sjset_data_frame_2->s.jt = snext; |
2617 | sjset_data_frame_2->s.jf = sjset_qos = new_stmt(cstate, JMP(BPF_JSET)); |
2618 | sjset_qos->s.k = 0x80; /* QoS bit */ |
2619 | sappend(s, sjset_qos); |
2620 | |
2621 | /* |
2622 | * If it's set, add 2 to cstate->off_linkpl.reg, to skip the QoS |
2623 | * field. |
2624 | * Otherwise, go to the first statement of the rest of the |
2625 | * program. |
2626 | */ |
2627 | sjset_qos->s.jt = s2 = new_stmt(cstate, BPF_LD|BPF_MEM); |
2628 | s2->s.k = cstate->off_linkpl.reg; |
2629 | sappend(s, s2); |
2630 | s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM); |
2631 | s2->s.k = 2; |
2632 | sappend(s, s2); |
2633 | s2 = new_stmt(cstate, BPF_ST); |
2634 | s2->s.k = cstate->off_linkpl.reg; |
2635 | sappend(s, s2); |
2636 | |
2637 | /* |
2638 | * If we have a radiotap header, look at it to see whether |
2639 | * there's Atheros padding between the MAC-layer header |
2640 | * and the payload. |
2641 | * |
2642 | * Note: all of the fields in the radiotap header are |
2643 | * little-endian, so we byte-swap all of the values |
2644 | * we test against, as they will be loaded as big-endian |
2645 | * values. |
2646 | * |
2647 | * XXX - in the general case, we would have to scan through |
2648 | * *all* the presence bits, if there's more than one word of |
2649 | * presence bits. That would require a loop, meaning that |
2650 | * we wouldn't be able to run the filter in the kernel. |
2651 | * |
2652 | * We assume here that the Atheros adapters that insert the |
2653 | * annoying padding don't have multiple antennae and therefore |
2654 | * do not generate radiotap headers with multiple presence words. |
2655 | */ |
2656 | if (cstate->linktype == DLT_IEEE802_11_RADIO) { |
2657 | /* |
2658 | * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set |
2659 | * in the first presence flag word? |
2660 | */ |
2661 | sjset_qos->s.jf = s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_W); |
2662 | s2->s.k = 4; |
2663 | sappend(s, s2); |
2664 | |
2665 | sjset_radiotap_flags_present = new_stmt(cstate, JMP(BPF_JSET)); |
2666 | sjset_radiotap_flags_present->s.k = SWAPLONG(0x00000002); |
2667 | sappend(s, sjset_radiotap_flags_present); |
2668 | |
2669 | /* |
2670 | * If not, skip all of this. |
2671 | */ |
2672 | sjset_radiotap_flags_present->s.jf = snext; |
2673 | |
2674 | /* |
2675 | * Otherwise, is the "extension" bit set in that word? |
2676 | */ |
2677 | sjset_radiotap_ext_present = new_stmt(cstate, JMP(BPF_JSET)); |
2678 | sjset_radiotap_ext_present->s.k = SWAPLONG(0x80000000); |
2679 | sappend(s, sjset_radiotap_ext_present); |
2680 | sjset_radiotap_flags_present->s.jt = sjset_radiotap_ext_present; |
2681 | |
2682 | /* |
2683 | * If so, skip all of this. |
2684 | */ |
2685 | sjset_radiotap_ext_present->s.jt = snext; |
2686 | |
2687 | /* |
2688 | * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set? |
2689 | */ |
2690 | sjset_radiotap_tsft_present = new_stmt(cstate, JMP(BPF_JSET)); |
2691 | sjset_radiotap_tsft_present->s.k = SWAPLONG(0x00000001); |
2692 | sappend(s, sjset_radiotap_tsft_present); |
2693 | sjset_radiotap_ext_present->s.jf = sjset_radiotap_tsft_present; |
2694 | |
2695 | /* |
2696 | * If IEEE80211_RADIOTAP_TSFT is set, the flags field is |
2697 | * at an offset of 16 from the beginning of the raw packet |
2698 | * data (8 bytes for the radiotap header and 8 bytes for |
2699 | * the TSFT field). |
2700 | * |
2701 | * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20) |
2702 | * is set. |
2703 | */ |
2704 | s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B); |
2705 | s2->s.k = 16; |
2706 | sappend(s, s2); |
2707 | sjset_radiotap_tsft_present->s.jt = s2; |
2708 | |
2709 | sjset_tsft_datapad = new_stmt(cstate, JMP(BPF_JSET)); |
2710 | sjset_tsft_datapad->s.k = 0x20; |
2711 | sappend(s, sjset_tsft_datapad); |
2712 | |
2713 | /* |
2714 | * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is |
2715 | * at an offset of 8 from the beginning of the raw packet |
2716 | * data (8 bytes for the radiotap header). |
2717 | * |
2718 | * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20) |
2719 | * is set. |
2720 | */ |
2721 | s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B); |
2722 | s2->s.k = 8; |
2723 | sappend(s, s2); |
2724 | sjset_radiotap_tsft_present->s.jf = s2; |
2725 | |
2726 | sjset_notsft_datapad = new_stmt(cstate, JMP(BPF_JSET)); |
2727 | sjset_notsft_datapad->s.k = 0x20; |
2728 | sappend(s, sjset_notsft_datapad); |
2729 | |
2730 | /* |
2731 | * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is |
2732 | * set, round the length of the 802.11 header to |
2733 | * a multiple of 4. Do that by adding 3 and then |
2734 | * dividing by and multiplying by 4, which we do by |
2735 | * ANDing with ~3. |
2736 | */ |
2737 | s_roundup = new_stmt(cstate, BPF_LD|BPF_MEM); |
2738 | s_roundup->s.k = cstate->off_linkpl.reg; |
2739 | sappend(s, s_roundup); |
2740 | s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM); |
2741 | s2->s.k = 3; |
2742 | sappend(s, s2); |
2743 | s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_IMM); |
2744 | s2->s.k = ~3; |
2745 | sappend(s, s2); |
2746 | s2 = new_stmt(cstate, BPF_ST); |
2747 | s2->s.k = cstate->off_linkpl.reg; |
2748 | sappend(s, s2); |
2749 | |
2750 | sjset_tsft_datapad->s.jt = s_roundup; |
2751 | sjset_tsft_datapad->s.jf = snext; |
2752 | sjset_notsft_datapad->s.jt = s_roundup; |
2753 | sjset_notsft_datapad->s.jf = snext; |
2754 | } else |
2755 | sjset_qos->s.jf = snext; |
2756 | |
2757 | return s; |
2758 | } |
2759 | |
2760 | static void |
2761 | insert_compute_vloffsets(compiler_state_t *cstate, struct block *b) |
2762 | { |
2763 | struct slist *s; |
2764 | |
2765 | /* There is an implicit dependency between the link |
2766 | * payload and link header since the payload computation |
2767 | * includes the variable part of the header. Therefore, |
2768 | * if nobody else has allocated a register for the link |
2769 | * header and we need it, do it now. */ |
2770 | if (cstate->off_linkpl.reg != -1 && cstate->off_linkhdr.is_variable && |
2771 | cstate->off_linkhdr.reg == -1) |
2772 | cstate->off_linkhdr.reg = alloc_reg(cstate); |
2773 | |
2774 | /* |
2775 | * For link-layer types that have a variable-length header |
2776 | * preceding the link-layer header, generate code to load |
2777 | * the offset of the link-layer header into the register |
2778 | * assigned to that offset, if any. |
2779 | * |
2780 | * XXX - this, and the next switch statement, won't handle |
2781 | * encapsulation of 802.11 or 802.11+radio information in |
2782 | * some other protocol stack. That's significantly more |
2783 | * complicated. |
2784 | */ |
2785 | switch (cstate->outermostlinktype) { |
2786 | |
2787 | case DLT_PRISM_HEADER: |
2788 | s = gen_load_prism_llprefixlen(cstate); |
2789 | break; |
2790 | |
2791 | case DLT_IEEE802_11_RADIO_AVS: |
2792 | s = gen_load_avs_llprefixlen(cstate); |
2793 | break; |
2794 | |
2795 | case DLT_IEEE802_11_RADIO: |
2796 | s = gen_load_radiotap_llprefixlen(cstate); |
2797 | break; |
2798 | |
2799 | case DLT_PPI: |
2800 | s = gen_load_ppi_llprefixlen(cstate); |
2801 | break; |
2802 | |
2803 | default: |
2804 | s = NULL; |
2805 | break; |
2806 | } |
2807 | |
2808 | /* |
2809 | * For link-layer types that have a variable-length link-layer |
2810 | * header, generate code to load the offset of the link-layer |
2811 | * payload into the register assigned to that offset, if any. |
2812 | */ |
2813 | switch (cstate->outermostlinktype) { |
2814 | |
2815 | case DLT_IEEE802_11: |
2816 | case DLT_PRISM_HEADER: |
2817 | case DLT_IEEE802_11_RADIO_AVS: |
2818 | case DLT_IEEE802_11_RADIO: |
2819 | case DLT_PPI: |
2820 | s = gen_load_802_11_header_len(cstate, s, b->stmts); |
2821 | break; |
2822 | } |
2823 | |
2824 | /* |
2825 | * If there there is no initialization yet and we need variable |
2826 | * length offsets for VLAN, initialize them to zero |
2827 | */ |
2828 | if (s == NULL && cstate->is_vlan_vloffset) { |
2829 | struct slist *s2; |
2830 | |
2831 | if (cstate->off_linkpl.reg == -1) |
2832 | cstate->off_linkpl.reg = alloc_reg(cstate); |
2833 | if (cstate->off_linktype.reg == -1) |
2834 | cstate->off_linktype.reg = alloc_reg(cstate); |
2835 | |
2836 | s = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM); |
2837 | s->s.k = 0; |
2838 | s2 = new_stmt(cstate, BPF_ST); |
2839 | s2->s.k = cstate->off_linkpl.reg; |
2840 | sappend(s, s2); |
2841 | s2 = new_stmt(cstate, BPF_ST); |
2842 | s2->s.k = cstate->off_linktype.reg; |
2843 | sappend(s, s2); |
2844 | } |
2845 | |
2846 | /* |
2847 | * If we have any offset-loading code, append all the |
2848 | * existing statements in the block to those statements, |
2849 | * and make the resulting list the list of statements |
2850 | * for the block. |
2851 | */ |
2852 | if (s != NULL) { |
2853 | sappend(s, b->stmts); |
2854 | b->stmts = s; |
2855 | } |
2856 | } |
2857 | |
2858 | static struct block * |
2859 | gen_ppi_dlt_check(compiler_state_t *cstate) |
2860 | { |
2861 | struct slist *s_load_dlt; |
2862 | struct block *b; |
2863 | |
2864 | if (cstate->linktype == DLT_PPI) |
2865 | { |
2866 | /* Create the statements that check for the DLT |
2867 | */ |
2868 | s_load_dlt = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS); |
2869 | s_load_dlt->s.k = 4; |
2870 | |
2871 | b = new_block(cstate, JMP(BPF_JEQ)); |
2872 | |
2873 | b->stmts = s_load_dlt; |
2874 | b->s.k = SWAPLONG(DLT_IEEE802_11); |
2875 | } |
2876 | else |
2877 | { |
2878 | b = NULL; |
2879 | } |
2880 | |
2881 | return b; |
2882 | } |
2883 | |
2884 | /* |
2885 | * Take an absolute offset, and: |
2886 | * |
2887 | * if it has no variable part, return NULL; |
2888 | * |
2889 | * if it has a variable part, generate code to load the register |
2890 | * containing that variable part into the X register, returning |
2891 | * a pointer to that code - if no register for that offset has |
2892 | * been allocated, allocate it first. |
2893 | * |
2894 | * (The code to set that register will be generated later, but will |
2895 | * be placed earlier in the code sequence.) |
2896 | */ |
2897 | static struct slist * |
2898 | gen_abs_offset_varpart(compiler_state_t *cstate, bpf_abs_offset *off) |
2899 | { |
2900 | struct slist *s; |
2901 | |
2902 | if (off->is_variable) { |
2903 | if (off->reg == -1) { |
2904 | /* |
2905 | * We haven't yet assigned a register for the |
2906 | * variable part of the offset of the link-layer |
2907 | * header; allocate one. |
2908 | */ |
2909 | off->reg = alloc_reg(cstate); |
2910 | } |
2911 | |
2912 | /* |
2913 | * Load the register containing the variable part of the |
2914 | * offset of the link-layer header into the X register. |
2915 | */ |
2916 | s = new_stmt(cstate, BPF_LDX|BPF_MEM); |
2917 | s->s.k = off->reg; |
2918 | return s; |
2919 | } else { |
2920 | /* |
2921 | * That offset isn't variable, there's no variable part, |
2922 | * so we don't need to generate any code. |
2923 | */ |
2924 | return NULL; |
2925 | } |
2926 | } |
2927 | |
2928 | /* |
2929 | * Map an Ethernet type to the equivalent PPP type. |
2930 | */ |
2931 | static int |
2932 | ethertype_to_ppptype(int proto) |
2933 | { |
2934 | switch (proto) { |
2935 | |
2936 | case ETHERTYPE_IP: |
2937 | proto = PPP_IP; |
2938 | break; |
2939 | |
2940 | case ETHERTYPE_IPV6: |
2941 | proto = PPP_IPV6; |
2942 | break; |
2943 | |
2944 | case ETHERTYPE_DN: |
2945 | proto = PPP_DECNET; |
2946 | break; |
2947 | |
2948 | case ETHERTYPE_ATALK: |
2949 | proto = PPP_APPLE; |
2950 | break; |
2951 | |
2952 | case ETHERTYPE_NS: |
2953 | proto = PPP_NS; |
2954 | break; |
2955 | |
2956 | case LLCSAP_ISONS: |
2957 | proto = PPP_OSI; |
2958 | break; |
2959 | |
2960 | case LLCSAP_8021D: |
2961 | /* |
2962 | * I'm assuming the "Bridging PDU"s that go |
2963 | * over PPP are Spanning Tree Protocol |
2964 | * Bridging PDUs. |
2965 | */ |
2966 | proto = PPP_BRPDU; |
2967 | break; |
2968 | |
2969 | case LLCSAP_IPX: |
2970 | proto = PPP_IPX; |
2971 | break; |
2972 | } |
2973 | return (proto); |
2974 | } |
2975 | |
2976 | /* |
2977 | * Generate any tests that, for encapsulation of a link-layer packet |
2978 | * inside another protocol stack, need to be done to check for those |
2979 | * link-layer packets (and that haven't already been done by a check |
2980 | * for that encapsulation). |
2981 | */ |
2982 | static struct block * |
2983 | gen_prevlinkhdr_check(compiler_state_t *cstate) |
2984 | { |
2985 | struct block *b0; |
2986 | |
2987 | if (cstate->is_geneve) |
2988 | return gen_geneve_ll_check(cstate); |
2989 | |
2990 | switch (cstate->prevlinktype) { |
2991 | |
2992 | case DLT_SUNATM: |
2993 | /* |
2994 | * This is LANE-encapsulated Ethernet; check that the LANE |
2995 | * packet doesn't begin with an LE Control marker, i.e. |
2996 | * that it's data, not a control message. |
2997 | * |
2998 | * (We've already generated a test for LANE.) |
2999 | */ |
3000 | b0 = gen_cmp(cstate, OR_PREVLINKHDR, SUNATM_PKT_BEGIN_POS, BPF_H, 0xFF00); |
3001 | gen_not(b0); |
3002 | return b0; |
3003 | |
3004 | default: |
3005 | /* |
3006 | * No such tests are necessary. |
3007 | */ |
3008 | return NULL; |
3009 | } |
3010 | /*NOTREACHED*/ |
3011 | } |
3012 | |
3013 | /* |
3014 | * The three different values we should check for when checking for an |
3015 | * IPv6 packet with DLT_NULL. |
3016 | */ |
3017 | #define BSD_AFNUM_INET6_BSD 24 /* NetBSD, OpenBSD, BSD/OS, Npcap */ |
3018 | #define BSD_AFNUM_INET6_FREEBSD 28 /* FreeBSD */ |
3019 | #define BSD_AFNUM_INET6_DARWIN 30 /* macOS, iOS, other Darwin-based OSes */ |
3020 | |
3021 | /* |
3022 | * Generate code to match a particular packet type by matching the |
3023 | * link-layer type field or fields in the 802.2 LLC header. |
3024 | * |
3025 | * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP |
3026 | * value, if <= ETHERMTU. |
3027 | */ |
3028 | static struct block * |
3029 | gen_linktype(compiler_state_t *cstate, int proto) |
3030 | { |
3031 | struct block *b0, *b1, *b2; |
3032 | const char *description; |
3033 | |
3034 | /* are we checking MPLS-encapsulated packets? */ |
3035 | if (cstate->label_stack_depth > 0) { |
3036 | switch (proto) { |
3037 | case ETHERTYPE_IP: |
3038 | case PPP_IP: |
3039 | /* FIXME add other L3 proto IDs */ |
3040 | return gen_mpls_linktype(cstate, Q_IP); |
3041 | |
3042 | case ETHERTYPE_IPV6: |
3043 | case PPP_IPV6: |
3044 | /* FIXME add other L3 proto IDs */ |
3045 | return gen_mpls_linktype(cstate, Q_IPV6); |
3046 | |
3047 | default: |
3048 | bpf_error(cstate, "unsupported protocol over mpls" ); |
3049 | /* NOTREACHED */ |
3050 | } |
3051 | } |
3052 | |
3053 | switch (cstate->linktype) { |
3054 | |
3055 | case DLT_EN10MB: |
3056 | case DLT_NETANALYZER: |
3057 | case DLT_NETANALYZER_TRANSPARENT: |
3058 | /* Geneve has an EtherType regardless of whether there is an |
3059 | * L2 header. */ |
3060 | if (!cstate->is_geneve) |
3061 | b0 = gen_prevlinkhdr_check(cstate); |
3062 | else |
3063 | b0 = NULL; |
3064 | |
3065 | b1 = gen_ether_linktype(cstate, proto); |
3066 | if (b0 != NULL) |
3067 | gen_and(b0, b1); |
3068 | return b1; |
3069 | /*NOTREACHED*/ |
3070 | break; |
3071 | |
3072 | case DLT_C_HDLC: |
3073 | switch (proto) { |
3074 | |
3075 | case LLCSAP_ISONS: |
3076 | proto = (proto << 8 | LLCSAP_ISONS); |
3077 | /* fall through */ |
3078 | |
3079 | default: |
3080 | return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto); |
3081 | /*NOTREACHED*/ |
3082 | break; |
3083 | } |
3084 | break; |
3085 | |
3086 | case DLT_IEEE802_11: |
3087 | case DLT_PRISM_HEADER: |
3088 | case DLT_IEEE802_11_RADIO_AVS: |
3089 | case DLT_IEEE802_11_RADIO: |
3090 | case DLT_PPI: |
3091 | /* |
3092 | * Check that we have a data frame. |
3093 | */ |
3094 | b0 = gen_check_802_11_data_frame(cstate); |
3095 | |
3096 | /* |
3097 | * Now check for the specified link-layer type. |
3098 | */ |
3099 | b1 = gen_llc_linktype(cstate, proto); |
3100 | gen_and(b0, b1); |
3101 | return b1; |
3102 | /*NOTREACHED*/ |
3103 | break; |
3104 | |
3105 | case DLT_FDDI: |
3106 | /* |
3107 | * XXX - check for LLC frames. |
3108 | */ |
3109 | return gen_llc_linktype(cstate, proto); |
3110 | /*NOTREACHED*/ |
3111 | break; |
3112 | |
3113 | case DLT_IEEE802: |
3114 | /* |
3115 | * XXX - check for LLC PDUs, as per IEEE 802.5. |
3116 | */ |
3117 | return gen_llc_linktype(cstate, proto); |
3118 | /*NOTREACHED*/ |
3119 | break; |
3120 | |
3121 | case DLT_ATM_RFC1483: |
3122 | case DLT_ATM_CLIP: |
3123 | case DLT_IP_OVER_FC: |
3124 | return gen_llc_linktype(cstate, proto); |
3125 | /*NOTREACHED*/ |
3126 | break; |
3127 | |
3128 | case DLT_SUNATM: |
3129 | /* |
3130 | * Check for an LLC-encapsulated version of this protocol; |
3131 | * if we were checking for LANE, linktype would no longer |
3132 | * be DLT_SUNATM. |
3133 | * |
3134 | * Check for LLC encapsulation and then check the protocol. |
3135 | */ |
3136 | b0 = gen_atmfield_code(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0); |
3137 | b1 = gen_llc_linktype(cstate, proto); |
3138 | gen_and(b0, b1); |
3139 | return b1; |
3140 | /*NOTREACHED*/ |
3141 | break; |
3142 | |
3143 | case DLT_LINUX_SLL: |
3144 | return gen_linux_sll_linktype(cstate, proto); |
3145 | /*NOTREACHED*/ |
3146 | break; |
3147 | |
3148 | case DLT_SLIP: |
3149 | case DLT_SLIP_BSDOS: |
3150 | case DLT_RAW: |
3151 | /* |
3152 | * These types don't provide any type field; packets |
3153 | * are always IPv4 or IPv6. |
3154 | * |
3155 | * XXX - for IPv4, check for a version number of 4, and, |
3156 | * for IPv6, check for a version number of 6? |
3157 | */ |
3158 | switch (proto) { |
3159 | |
3160 | case ETHERTYPE_IP: |
3161 | /* Check for a version number of 4. */ |
3162 | return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x40, 0xF0); |
3163 | |
3164 | case ETHERTYPE_IPV6: |
3165 | /* Check for a version number of 6. */ |
3166 | return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x60, 0xF0); |
3167 | |
3168 | default: |
3169 | return gen_false(cstate); /* always false */ |
3170 | } |
3171 | /*NOTREACHED*/ |
3172 | break; |
3173 | |
3174 | case DLT_IPV4: |
3175 | /* |
3176 | * Raw IPv4, so no type field. |
3177 | */ |
3178 | if (proto == ETHERTYPE_IP) |
3179 | return gen_true(cstate); /* always true */ |
3180 | |
3181 | /* Checking for something other than IPv4; always false */ |
3182 | return gen_false(cstate); |
3183 | /*NOTREACHED*/ |
3184 | break; |
3185 | |
3186 | case DLT_IPV6: |
3187 | /* |
3188 | * Raw IPv6, so no type field. |
3189 | */ |
3190 | if (proto == ETHERTYPE_IPV6) |
3191 | return gen_true(cstate); /* always true */ |
3192 | |
3193 | /* Checking for something other than IPv6; always false */ |
3194 | return gen_false(cstate); |
3195 | /*NOTREACHED*/ |
3196 | break; |
3197 | |
3198 | case DLT_PPP: |
3199 | case DLT_PPP_PPPD: |
3200 | case DLT_PPP_SERIAL: |
3201 | case DLT_PPP_ETHER: |
3202 | /* |
3203 | * We use Ethernet protocol types inside libpcap; |
3204 | * map them to the corresponding PPP protocol types. |
3205 | */ |
3206 | proto = ethertype_to_ppptype(proto); |
3207 | return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto); |
3208 | /*NOTREACHED*/ |
3209 | break; |
3210 | |
3211 | case DLT_PPP_BSDOS: |
3212 | /* |
3213 | * We use Ethernet protocol types inside libpcap; |
3214 | * map them to the corresponding PPP protocol types. |
3215 | */ |
3216 | switch (proto) { |
3217 | |
3218 | case ETHERTYPE_IP: |
3219 | /* |
3220 | * Also check for Van Jacobson-compressed IP. |
3221 | * XXX - do this for other forms of PPP? |
3222 | */ |
3223 | b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_IP); |
3224 | b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJC); |
3225 | gen_or(b0, b1); |
3226 | b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJNC); |
3227 | gen_or(b1, b0); |
3228 | return b0; |
3229 | |
3230 | default: |
3231 | proto = ethertype_to_ppptype(proto); |
3232 | return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, |
3233 | (bpf_int32)proto); |
3234 | } |
3235 | /*NOTREACHED*/ |
3236 | break; |
3237 | |
3238 | case DLT_NULL: |
3239 | case DLT_LOOP: |
3240 | case DLT_ENC: |
3241 | switch (proto) { |
3242 | |
3243 | case ETHERTYPE_IP: |
3244 | return (gen_loopback_linktype(cstate, AF_INET)); |
3245 | |
3246 | case ETHERTYPE_IPV6: |
3247 | /* |
3248 | * AF_ values may, unfortunately, be platform- |
3249 | * dependent; AF_INET isn't, because everybody |
3250 | * used 4.2BSD's value, but AF_INET6 is, because |
3251 | * 4.2BSD didn't have a value for it (given that |
3252 | * IPv6 didn't exist back in the early 1980's), |
3253 | * and they all picked their own values. |
3254 | * |
3255 | * This means that, if we're reading from a |
3256 | * savefile, we need to check for all the |
3257 | * possible values. |
3258 | * |
3259 | * If we're doing a live capture, we only need |
3260 | * to check for this platform's value; however, |
3261 | * Npcap uses 24, which isn't Windows's AF_INET6 |
3262 | * value. (Given the multiple different values, |
3263 | * programs that read pcap files shouldn't be |
3264 | * checking for their platform's AF_INET6 value |
3265 | * anyway, they should check for all of the |
3266 | * possible values. and they might as well do |
3267 | * that even for live captures.) |
3268 | */ |
3269 | if (cstate->bpf_pcap->rfile != NULL) { |
3270 | /* |
3271 | * Savefile - check for all three |
3272 | * possible IPv6 values. |
3273 | */ |
3274 | b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_BSD); |
3275 | b1 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_FREEBSD); |
3276 | gen_or(b0, b1); |
3277 | b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_DARWIN); |
3278 | gen_or(b0, b1); |
3279 | return (b1); |
3280 | } else { |
3281 | /* |
3282 | * Live capture, so we only need to |
3283 | * check for the value used on this |
3284 | * platform. |
3285 | */ |
3286 | #ifdef _WIN32 |
3287 | /* |
3288 | * Npcap doesn't use Windows's AF_INET6, |
3289 | * as that collides with AF_IPX on |
3290 | * some BSDs (both have the value 23). |
3291 | * Instead, it uses 24. |
3292 | */ |
3293 | return (gen_loopback_linktype(cstate, 24)); |
3294 | #else /* _WIN32 */ |
3295 | #ifdef AF_INET6 |
3296 | return (gen_loopback_linktype(cstate, AF_INET6)); |
3297 | #else /* AF_INET6 */ |
3298 | /* |
3299 | * I guess this platform doesn't support |
3300 | * IPv6, so we just reject all packets. |
3301 | */ |
3302 | return gen_false(cstate); |
3303 | #endif /* AF_INET6 */ |
3304 | #endif /* _WIN32 */ |
3305 | } |
3306 | |
3307 | default: |
3308 | /* |
3309 | * Not a type on which we support filtering. |
3310 | * XXX - support those that have AF_ values |
3311 | * #defined on this platform, at least? |
3312 | */ |
3313 | return gen_false(cstate); |
3314 | } |
3315 | |
3316 | #ifdef HAVE_NET_PFVAR_H |
3317 | case DLT_PFLOG: |
3318 | /* |
3319 | * af field is host byte order in contrast to the rest of |
3320 | * the packet. |
3321 | */ |
3322 | if (proto == ETHERTYPE_IP) |
3323 | return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af), |
3324 | BPF_B, (bpf_int32)AF_INET)); |
3325 | else if (proto == ETHERTYPE_IPV6) |
3326 | return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af), |
3327 | BPF_B, (bpf_int32)AF_INET6)); |
3328 | else |
3329 | return gen_false(cstate); |
3330 | /*NOTREACHED*/ |
3331 | break; |
3332 | #endif /* HAVE_NET_PFVAR_H */ |
3333 | |
3334 | case DLT_ARCNET: |
3335 | case DLT_ARCNET_LINUX: |
3336 | /* |
3337 | * XXX should we check for first fragment if the protocol |
3338 | * uses PHDS? |
3339 | */ |
3340 | switch (proto) { |
3341 | |
3342 | default: |
3343 | return gen_false(cstate); |
3344 | |
3345 | case ETHERTYPE_IPV6: |
3346 | return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, |
3347 | (bpf_int32)ARCTYPE_INET6)); |
3348 | |
3349 | case ETHERTYPE_IP: |
3350 | b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, |
3351 | (bpf_int32)ARCTYPE_IP); |
3352 | b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, |
3353 | (bpf_int32)ARCTYPE_IP_OLD); |
3354 | gen_or(b0, b1); |
3355 | return (b1); |
3356 | |
3357 | case ETHERTYPE_ARP: |
3358 | b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, |
3359 | (bpf_int32)ARCTYPE_ARP); |
3360 | b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, |
3361 | (bpf_int32)ARCTYPE_ARP_OLD); |
3362 | gen_or(b0, b1); |
3363 | return (b1); |
3364 | |
3365 | case ETHERTYPE_REVARP: |
3366 | return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, |
3367 | (bpf_int32)ARCTYPE_REVARP)); |
3368 | |
3369 | case ETHERTYPE_ATALK: |
3370 | return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, |
3371 | (bpf_int32)ARCTYPE_ATALK)); |
3372 | } |
3373 | /*NOTREACHED*/ |
3374 | break; |
3375 | |
3376 | case DLT_LTALK: |
3377 | switch (proto) { |
3378 | case ETHERTYPE_ATALK: |
3379 | return gen_true(cstate); |
3380 | default: |
3381 | return gen_false(cstate); |
3382 | } |
3383 | /*NOTREACHED*/ |
3384 | break; |
3385 | |
3386 | case DLT_FRELAY: |
3387 | /* |
3388 | * XXX - assumes a 2-byte Frame Relay header with |
3389 | * DLCI and flags. What if the address is longer? |
3390 | */ |
3391 | switch (proto) { |
3392 | |
3393 | case ETHERTYPE_IP: |
3394 | /* |
3395 | * Check for the special NLPID for IP. |
3396 | */ |
3397 | return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0xcc); |
3398 | |
3399 | case ETHERTYPE_IPV6: |
3400 | /* |
3401 | * Check for the special NLPID for IPv6. |
3402 | */ |
3403 | return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0x8e); |
3404 | |
3405 | case LLCSAP_ISONS: |
3406 | /* |
3407 | * Check for several OSI protocols. |
3408 | * |
3409 | * Frame Relay packets typically have an OSI |
3410 | * NLPID at the beginning; we check for each |
3411 | * of them. |
3412 | * |
3413 | * What we check for is the NLPID and a frame |
3414 | * control field of UI, i.e. 0x03 followed |
3415 | * by the NLPID. |
3416 | */ |
3417 | b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO8473_CLNP); |
3418 | b1 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO9542_ESIS); |
3419 | b2 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO10589_ISIS); |
3420 | gen_or(b1, b2); |
3421 | gen_or(b0, b2); |
3422 | return b2; |
3423 | |
3424 | default: |
3425 | return gen_false(cstate); |
3426 | } |
3427 | /*NOTREACHED*/ |
3428 | break; |
3429 | |
3430 | case DLT_MFR: |
3431 | bpf_error(cstate, "Multi-link Frame Relay link-layer type filtering not implemented" ); |
3432 | |
3433 | case DLT_JUNIPER_MFR: |
3434 | case DLT_JUNIPER_MLFR: |
3435 | case DLT_JUNIPER_MLPPP: |
3436 | case DLT_JUNIPER_ATM1: |
3437 | case DLT_JUNIPER_ATM2: |
3438 | case DLT_JUNIPER_PPPOE: |
3439 | case DLT_JUNIPER_PPPOE_ATM: |
3440 | case DLT_JUNIPER_GGSN: |
3441 | case DLT_JUNIPER_ES: |
3442 | case DLT_JUNIPER_MONITOR: |
3443 | case DLT_JUNIPER_SERVICES: |
3444 | case DLT_JUNIPER_ETHER: |
3445 | case DLT_JUNIPER_PPP: |
3446 | case DLT_JUNIPER_FRELAY: |
3447 | case DLT_JUNIPER_CHDLC: |
3448 | case DLT_JUNIPER_VP: |
3449 | case DLT_JUNIPER_ST: |
3450 | case DLT_JUNIPER_ISM: |
3451 | case DLT_JUNIPER_VS: |
3452 | case DLT_JUNIPER_SRX_E2E: |
3453 | case DLT_JUNIPER_FIBRECHANNEL: |
3454 | case DLT_JUNIPER_ATM_CEMIC: |
3455 | |
3456 | /* just lets verify the magic number for now - |
3457 | * on ATM we may have up to 6 different encapsulations on the wire |
3458 | * and need a lot of heuristics to figure out that the payload |
3459 | * might be; |
3460 | * |
3461 | * FIXME encapsulation specific BPF_ filters |
3462 | */ |
3463 | return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */ |
3464 | |
3465 | case DLT_BACNET_MS_TP: |
3466 | return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x55FF0000, 0xffff0000); |
3467 | |
3468 | case DLT_IPNET: |
3469 | return gen_ipnet_linktype(cstate, proto); |
3470 | |
3471 | case DLT_LINUX_IRDA: |
3472 | bpf_error(cstate, "IrDA link-layer type filtering not implemented" ); |
3473 | |
3474 | case DLT_DOCSIS: |
3475 | bpf_error(cstate, "DOCSIS link-layer type filtering not implemented" ); |
3476 | |
3477 | case DLT_MTP2: |
3478 | case DLT_MTP2_WITH_PHDR: |
3479 | bpf_error(cstate, "MTP2 link-layer type filtering not implemented" ); |
3480 | |
3481 | case DLT_ERF: |
3482 | bpf_error(cstate, "ERF link-layer type filtering not implemented" ); |
3483 | |
3484 | case DLT_PFSYNC: |
3485 | bpf_error(cstate, "PFSYNC link-layer type filtering not implemented" ); |
3486 | |
3487 | case DLT_LINUX_LAPD: |
3488 | bpf_error(cstate, "LAPD link-layer type filtering not implemented" ); |
3489 | |
3490 | case DLT_USB_FREEBSD: |
3491 | case DLT_USB_LINUX: |
3492 | case DLT_USB_LINUX_MMAPPED: |
3493 | case DLT_USBPCAP: |
3494 | bpf_error(cstate, "USB link-layer type filtering not implemented" ); |
3495 | |
3496 | case DLT_BLUETOOTH_HCI_H4: |
3497 | case DLT_BLUETOOTH_HCI_H4_WITH_PHDR: |
3498 | bpf_error(cstate, "Bluetooth link-layer type filtering not implemented" ); |
3499 | |
3500 | case DLT_CAN20B: |
3501 | case DLT_CAN_SOCKETCAN: |
3502 | bpf_error(cstate, "CAN link-layer type filtering not implemented" ); |
3503 | |
3504 | case DLT_IEEE802_15_4: |
3505 | case DLT_IEEE802_15_4_LINUX: |
3506 | case DLT_IEEE802_15_4_NONASK_PHY: |
3507 | case DLT_IEEE802_15_4_NOFCS: |
3508 | bpf_error(cstate, "IEEE 802.15.4 link-layer type filtering not implemented" ); |
3509 | |
3510 | case DLT_IEEE802_16_MAC_CPS_RADIO: |
3511 | bpf_error(cstate, "IEEE 802.16 link-layer type filtering not implemented" ); |
3512 | |
3513 | case DLT_SITA: |
3514 | bpf_error(cstate, "SITA link-layer type filtering not implemented" ); |
3515 | |
3516 | case DLT_RAIF1: |
3517 | bpf_error(cstate, "RAIF1 link-layer type filtering not implemented" ); |
3518 | |
3519 | case DLT_IPMB: |
3520 | bpf_error(cstate, "IPMB link-layer type filtering not implemented" ); |
3521 | |
3522 | case DLT_AX25_KISS: |
3523 | bpf_error(cstate, "AX.25 link-layer type filtering not implemented" ); |
3524 | |
3525 | case DLT_NFLOG: |
3526 | /* Using the fixed-size NFLOG header it is possible to tell only |
3527 | * the address family of the packet, other meaningful data is |
3528 | * either missing or behind TLVs. |
3529 | */ |
3530 | bpf_error(cstate, "NFLOG link-layer type filtering not implemented" ); |
3531 | |
3532 | default: |
3533 | /* |
3534 | * Does this link-layer header type have a field |
3535 | * indicating the type of the next protocol? If |
3536 | * so, off_linktype.constant_part will be the offset of that |
3537 | * field in the packet; if not, it will be OFFSET_NOT_SET. |
3538 | */ |
3539 | if (cstate->off_linktype.constant_part != OFFSET_NOT_SET) { |
3540 | /* |
3541 | * Yes; assume it's an Ethernet type. (If |
3542 | * it's not, it needs to be handled specially |
3543 | * above.) |
3544 | */ |
3545 | return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto); |
3546 | } else { |
3547 | /* |
3548 | * No; report an error. |
3549 | */ |
3550 | description = pcap_datalink_val_to_description(cstate->linktype); |
3551 | if (description != NULL) { |
3552 | bpf_error(cstate, "%s link-layer type filtering not implemented" , |
3553 | description); |
3554 | } else { |
3555 | bpf_error(cstate, "DLT %u link-layer type filtering not implemented" , |
3556 | cstate->linktype); |
3557 | } |
3558 | } |
3559 | break; |
3560 | } |
3561 | } |
3562 | |
3563 | /* |
3564 | * Check for an LLC SNAP packet with a given organization code and |
3565 | * protocol type; we check the entire contents of the 802.2 LLC and |
3566 | * snap headers, checking for DSAP and SSAP of SNAP and a control |
3567 | * field of 0x03 in the LLC header, and for the specified organization |
3568 | * code and protocol type in the SNAP header. |
3569 | */ |
3570 | static struct block * |
3571 | gen_snap(compiler_state_t *cstate, bpf_u_int32 orgcode, bpf_u_int32 ptype) |
3572 | { |
3573 | u_char snapblock[8]; |
3574 | |
3575 | snapblock[0] = LLCSAP_SNAP; /* DSAP = SNAP */ |
3576 | snapblock[1] = LLCSAP_SNAP; /* SSAP = SNAP */ |
3577 | snapblock[2] = 0x03; /* control = UI */ |
3578 | snapblock[3] = (u_char)(orgcode >> 16); /* upper 8 bits of organization code */ |
3579 | snapblock[4] = (u_char)(orgcode >> 8); /* middle 8 bits of organization code */ |
3580 | snapblock[5] = (u_char)(orgcode >> 0); /* lower 8 bits of organization code */ |
3581 | snapblock[6] = (u_char)(ptype >> 8); /* upper 8 bits of protocol type */ |
3582 | snapblock[7] = (u_char)(ptype >> 0); /* lower 8 bits of protocol type */ |
3583 | return gen_bcmp(cstate, OR_LLC, 0, 8, snapblock); |
3584 | } |
3585 | |
3586 | /* |
3587 | * Generate code to match frames with an LLC header. |
3588 | */ |
3589 | struct block * |
3590 | gen_llc(compiler_state_t *cstate) |
3591 | { |
3592 | struct block *b0, *b1; |
3593 | |
3594 | switch (cstate->linktype) { |
3595 | |
3596 | case DLT_EN10MB: |
3597 | /* |
3598 | * We check for an Ethernet type field less than |
3599 | * 1500, which means it's an 802.3 length field. |
3600 | */ |
3601 | b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU); |
3602 | gen_not(b0); |
3603 | |
3604 | /* |
3605 | * Now check for the purported DSAP and SSAP not being |
3606 | * 0xFF, to rule out NetWare-over-802.3. |
3607 | */ |
3608 | b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_int32)0xFFFF); |
3609 | gen_not(b1); |
3610 | gen_and(b0, b1); |
3611 | return b1; |
3612 | |
3613 | case DLT_SUNATM: |
3614 | /* |
3615 | * We check for LLC traffic. |
3616 | */ |
3617 | b0 = gen_atmtype_abbrev(cstate, A_LLC); |
3618 | return b0; |
3619 | |
3620 | case DLT_IEEE802: /* Token Ring */ |
3621 | /* |
3622 | * XXX - check for LLC frames. |
3623 | */ |
3624 | return gen_true(cstate); |
3625 | |
3626 | case DLT_FDDI: |
3627 | /* |
3628 | * XXX - check for LLC frames. |
3629 | */ |
3630 | return gen_true(cstate); |
3631 | |
3632 | case DLT_ATM_RFC1483: |
3633 | /* |
3634 | * For LLC encapsulation, these are defined to have an |
3635 | * 802.2 LLC header. |
3636 | * |
3637 | * For VC encapsulation, they don't, but there's no |
3638 | * way to check for that; the protocol used on the VC |
3639 | * is negotiated out of band. |
3640 | */ |
3641 | return gen_true(cstate); |
3642 | |
3643 | case DLT_IEEE802_11: |
3644 | case DLT_PRISM_HEADER: |
3645 | case DLT_IEEE802_11_RADIO: |
3646 | case DLT_IEEE802_11_RADIO_AVS: |
3647 | case DLT_PPI: |
3648 | /* |
3649 | * Check that we have a data frame. |
3650 | */ |
3651 | b0 = gen_check_802_11_data_frame(cstate); |
3652 | return b0; |
3653 | |
3654 | default: |
3655 | bpf_error(cstate, "'llc' not supported for linktype %d" , cstate->linktype); |
3656 | /* NOTREACHED */ |
3657 | } |
3658 | } |
3659 | |
3660 | struct block * |
3661 | gen_llc_i(compiler_state_t *cstate) |
3662 | { |
3663 | struct block *b0, *b1; |
3664 | struct slist *s; |
3665 | |
3666 | /* |
3667 | * Check whether this is an LLC frame. |
3668 | */ |
3669 | b0 = gen_llc(cstate); |
3670 | |
3671 | /* |
3672 | * Load the control byte and test the low-order bit; it must |
3673 | * be clear for I frames. |
3674 | */ |
3675 | s = gen_load_a(cstate, OR_LLC, 2, BPF_B); |
3676 | b1 = new_block(cstate, JMP(BPF_JSET)); |
3677 | b1->s.k = 0x01; |
3678 | b1->stmts = s; |
3679 | gen_not(b1); |
3680 | gen_and(b0, b1); |
3681 | return b1; |
3682 | } |
3683 | |
3684 | struct block * |
3685 | gen_llc_s(compiler_state_t *cstate) |
3686 | { |
3687 | struct block *b0, *b1; |
3688 | |
3689 | /* |
3690 | * Check whether this is an LLC frame. |
3691 | */ |
3692 | b0 = gen_llc(cstate); |
3693 | |
3694 | /* |
3695 | * Now compare the low-order 2 bit of the control byte against |
3696 | * the appropriate value for S frames. |
3697 | */ |
3698 | b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_S_FMT, 0x03); |
3699 | gen_and(b0, b1); |
3700 | return b1; |
3701 | } |
3702 | |
3703 | struct block * |
3704 | gen_llc_u(compiler_state_t *cstate) |
3705 | { |
3706 | struct block *b0, *b1; |
3707 | |
3708 | /* |
3709 | * Check whether this is an LLC frame. |
3710 | */ |
3711 | b0 = gen_llc(cstate); |
3712 | |
3713 | /* |
3714 | * Now compare the low-order 2 bit of the control byte against |
3715 | * the appropriate value for U frames. |
3716 | */ |
3717 | b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_U_FMT, 0x03); |
3718 | gen_and(b0, b1); |
3719 | return b1; |
3720 | } |
3721 | |
3722 | struct block * |
3723 | gen_llc_s_subtype(compiler_state_t *cstate, bpf_u_int32 subtype) |
3724 | { |
3725 | struct block *b0, *b1; |
3726 | |
3727 | /* |
3728 | * Check whether this is an LLC frame. |
3729 | */ |
3730 | b0 = gen_llc(cstate); |
3731 | |
3732 | /* |
3733 | * Now check for an S frame with the appropriate type. |
3734 | */ |
3735 | b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_S_CMD_MASK); |
3736 | gen_and(b0, b1); |
3737 | return b1; |
3738 | } |
3739 | |
3740 | struct block * |
3741 | gen_llc_u_subtype(compiler_state_t *cstate, bpf_u_int32 subtype) |
3742 | { |
3743 | struct block *b0, *b1; |
3744 | |
3745 | /* |
3746 | * Check whether this is an LLC frame. |
3747 | */ |
3748 | b0 = gen_llc(cstate); |
3749 | |
3750 | /* |
3751 | * Now check for a U frame with the appropriate type. |
3752 | */ |
3753 | b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_U_CMD_MASK); |
3754 | gen_and(b0, b1); |
3755 | return b1; |
3756 | } |
3757 | |
3758 | /* |
3759 | * Generate code to match a particular packet type, for link-layer types |
3760 | * using 802.2 LLC headers. |
3761 | * |
3762 | * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used |
3763 | * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues. |
3764 | * |
3765 | * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP |
3766 | * value, if <= ETHERMTU. We use that to determine whether to |
3767 | * match the DSAP or both DSAP and LSAP or to check the OUI and |
3768 | * protocol ID in a SNAP header. |
3769 | */ |
3770 | static struct block * |
3771 | gen_llc_linktype(compiler_state_t *cstate, int proto) |
3772 | { |
3773 | /* |
3774 | * XXX - handle token-ring variable-length header. |
3775 | */ |
3776 | switch (proto) { |
3777 | |
3778 | case LLCSAP_IP: |
3779 | case LLCSAP_ISONS: |
3780 | case LLCSAP_NETBEUI: |
3781 | /* |
3782 | * XXX - should we check both the DSAP and the |
3783 | * SSAP, like this, or should we check just the |
3784 | * DSAP, as we do for other SAP values? |
3785 | */ |
3786 | return gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_u_int32) |
3787 | ((proto << 8) | proto)); |
3788 | |
3789 | case LLCSAP_IPX: |
3790 | /* |
3791 | * XXX - are there ever SNAP frames for IPX on |
3792 | * non-Ethernet 802.x networks? |
3793 | */ |
3794 | return gen_cmp(cstate, OR_LLC, 0, BPF_B, |
3795 | (bpf_int32)LLCSAP_IPX); |
3796 | |
3797 | case ETHERTYPE_ATALK: |
3798 | /* |
3799 | * 802.2-encapsulated ETHERTYPE_ATALK packets are |
3800 | * SNAP packets with an organization code of |
3801 | * 0x080007 (Apple, for Appletalk) and a protocol |
3802 | * type of ETHERTYPE_ATALK (Appletalk). |
3803 | * |
3804 | * XXX - check for an organization code of |
3805 | * encapsulated Ethernet as well? |
3806 | */ |
3807 | return gen_snap(cstate, 0x080007, ETHERTYPE_ATALK); |
3808 | |
3809 | default: |
3810 | /* |
3811 | * XXX - we don't have to check for IPX 802.3 |
3812 | * here, but should we check for the IPX Ethertype? |
3813 | */ |
3814 | if (proto <= ETHERMTU) { |
3815 | /* |
3816 | * This is an LLC SAP value, so check |
3817 | * the DSAP. |
3818 | */ |
3819 | return gen_cmp(cstate, OR_LLC, 0, BPF_B, (bpf_int32)proto); |
3820 | } else { |
3821 | /* |
3822 | * This is an Ethernet type; we assume that it's |
3823 | * unlikely that it'll appear in the right place |
3824 | * at random, and therefore check only the |
3825 | * location that would hold the Ethernet type |
3826 | * in a SNAP frame with an organization code of |
3827 | * 0x000000 (encapsulated Ethernet). |
3828 | * |
3829 | * XXX - if we were to check for the SNAP DSAP and |
3830 | * LSAP, as per XXX, and were also to check for an |
3831 | * organization code of 0x000000 (encapsulated |
3832 | * Ethernet), we'd do |
3833 | * |
3834 | * return gen_snap(cstate, 0x000000, proto); |
3835 | * |
3836 | * here; for now, we don't, as per the above. |
3837 | * I don't know whether it's worth the extra CPU |
3838 | * time to do the right check or not. |
3839 | */ |
3840 | return gen_cmp(cstate, OR_LLC, 6, BPF_H, (bpf_int32)proto); |
3841 | } |
3842 | } |
3843 | } |
3844 | |
3845 | static struct block * |
3846 | gen_hostop(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask, |
3847 | int dir, int proto, u_int src_off, u_int dst_off) |
3848 | { |
3849 | struct block *b0, *b1; |
3850 | u_int offset; |
3851 | |
3852 | switch (dir) { |
3853 | |
3854 | case Q_SRC: |
3855 | offset = src_off; |
3856 | break; |
3857 | |
3858 | case Q_DST: |
3859 | offset = dst_off; |
3860 | break; |
3861 | |
3862 | case Q_AND: |
3863 | b0 = gen_hostop(cstate, addr, mask, Q_SRC, proto, src_off, dst_off); |
3864 | b1 = gen_hostop(cstate, addr, mask, Q_DST, proto, src_off, dst_off); |
3865 | gen_and(b0, b1); |
3866 | return b1; |
3867 | |
3868 | case Q_OR: |
3869 | case Q_DEFAULT: |
3870 | b0 = gen_hostop(cstate, addr, mask, Q_SRC, proto, src_off, dst_off); |
3871 | b1 = gen_hostop(cstate, addr, mask, Q_DST, proto, src_off, dst_off); |
3872 | gen_or(b0, b1); |
3873 | return b1; |
3874 | |
3875 | case Q_ADDR1: |
3876 | bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses" ); |
3877 | break; |
3878 | |
3879 | case Q_ADDR2: |
3880 | bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses" ); |
3881 | break; |
3882 | |
3883 | case Q_ADDR3: |
3884 | bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses" ); |
3885 | break; |
3886 | |
3887 | case Q_ADDR4: |
3888 | bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses" ); |
3889 | break; |
3890 | |
3891 | case Q_RA: |
3892 | bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses" ); |
3893 | break; |
3894 | |
3895 | case Q_TA: |
3896 | bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses" ); |
3897 | break; |
3898 | |
3899 | default: |
3900 | abort(); |
3901 | } |
3902 | b0 = gen_linktype(cstate, proto); |
3903 | b1 = gen_mcmp(cstate, OR_LINKPL, offset, BPF_W, (bpf_int32)addr, mask); |
3904 | gen_and(b0, b1); |
3905 | return b1; |
3906 | } |
3907 | |
3908 | #ifdef INET6 |
3909 | static struct block * |
3910 | gen_hostop6(compiler_state_t *cstate, struct in6_addr *addr, |
3911 | struct in6_addr *mask, int dir, int proto, u_int src_off, u_int dst_off) |
3912 | { |
3913 | struct block *b0, *b1; |
3914 | u_int offset; |
3915 | uint32_t *a, *m; |
3916 | |
3917 | switch (dir) { |
3918 | |
3919 | case Q_SRC: |
3920 | offset = src_off; |
3921 | break; |
3922 | |
3923 | case Q_DST: |
3924 | offset = dst_off; |
3925 | break; |
3926 | |
3927 | case Q_AND: |
3928 | b0 = gen_hostop6(cstate, addr, mask, Q_SRC, proto, src_off, dst_off); |
3929 | b1 = gen_hostop6(cstate, addr, mask, Q_DST, proto, src_off, dst_off); |
3930 | gen_and(b0, b1); |
3931 | return b1; |
3932 | |
3933 | case Q_OR: |
3934 | case Q_DEFAULT: |
3935 | b0 = gen_hostop6(cstate, addr, mask, Q_SRC, proto, src_off, dst_off); |
3936 | b1 = gen_hostop6(cstate, addr, mask, Q_DST, proto, src_off, dst_off); |
3937 | gen_or(b0, b1); |
3938 | return b1; |
3939 | |
3940 | case Q_ADDR1: |
3941 | bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses" ); |
3942 | break; |
3943 | |
3944 | case Q_ADDR2: |
3945 | bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses" ); |
3946 | break; |
3947 | |
3948 | case Q_ADDR3: |
3949 | bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses" ); |
3950 | break; |
3951 | |
3952 | case Q_ADDR4: |
3953 | bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses" ); |
3954 | break; |
3955 | |
3956 | case Q_RA: |
3957 | bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses" ); |
3958 | break; |
3959 | |
3960 | case Q_TA: |
3961 | bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses" ); |
3962 | break; |
3963 | |
3964 | default: |
3965 | abort(); |
3966 | } |
3967 | /* this order is important */ |
3968 | a = (uint32_t *)addr; |
3969 | m = (uint32_t *)mask; |
3970 | b1 = gen_mcmp(cstate, OR_LINKPL, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3])); |
3971 | b0 = gen_mcmp(cstate, OR_LINKPL, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2])); |
3972 | gen_and(b0, b1); |
3973 | b0 = gen_mcmp(cstate, OR_LINKPL, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1])); |
3974 | gen_and(b0, b1); |
3975 | b0 = gen_mcmp(cstate, OR_LINKPL, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0])); |
3976 | gen_and(b0, b1); |
3977 | b0 = gen_linktype(cstate, proto); |
3978 | gen_and(b0, b1); |
3979 | return b1; |
3980 | } |
3981 | #endif |
3982 | |
3983 | static struct block * |
3984 | gen_ehostop(compiler_state_t *cstate, const u_char *eaddr, int dir) |
3985 | { |
3986 | register struct block *b0, *b1; |
3987 | |
3988 | switch (dir) { |
3989 | case Q_SRC: |
3990 | return gen_bcmp(cstate, OR_LINKHDR, 6, 6, eaddr); |
3991 | |
3992 | case Q_DST: |
3993 | return gen_bcmp(cstate, OR_LINKHDR, 0, 6, eaddr); |
3994 | |
3995 | case Q_AND: |
3996 | b0 = gen_ehostop(cstate, eaddr, Q_SRC); |
3997 | b1 = gen_ehostop(cstate, eaddr, Q_DST); |
3998 | gen_and(b0, b1); |
3999 | return b1; |
4000 | |
4001 | case Q_DEFAULT: |
4002 | case Q_OR: |
4003 | b0 = gen_ehostop(cstate, eaddr, Q_SRC); |
4004 | b1 = gen_ehostop(cstate, eaddr, Q_DST); |
4005 | gen_or(b0, b1); |
4006 | return b1; |
4007 | |
4008 | case Q_ADDR1: |
4009 | bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11 with 802.11 headers" ); |
4010 | break; |
4011 | |
4012 | case Q_ADDR2: |
4013 | bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11 with 802.11 headers" ); |
4014 | break; |
4015 | |
4016 | case Q_ADDR3: |
4017 | bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11 with 802.11 headers" ); |
4018 | break; |
4019 | |
4020 | case Q_ADDR4: |
4021 | bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11 with 802.11 headers" ); |
4022 | break; |
4023 | |
4024 | case Q_RA: |
4025 | bpf_error(cstate, "'ra' is only supported on 802.11 with 802.11 headers" ); |
4026 | break; |
4027 | |
4028 | case Q_TA: |
4029 | bpf_error(cstate, "'ta' is only supported on 802.11 with 802.11 headers" ); |
4030 | break; |
4031 | } |
4032 | abort(); |
4033 | /* NOTREACHED */ |
4034 | } |
4035 | |
4036 | /* |
4037 | * Like gen_ehostop, but for DLT_FDDI |
4038 | */ |
4039 | static struct block * |
4040 | gen_fhostop(compiler_state_t *cstate, const u_char *eaddr, int dir) |
4041 | { |
4042 | struct block *b0, *b1; |
4043 | |
4044 | switch (dir) { |
4045 | case Q_SRC: |
4046 | return gen_bcmp(cstate, OR_LINKHDR, 6 + 1 + cstate->pcap_fddipad, 6, eaddr); |
4047 | |
4048 | case Q_DST: |
4049 | return gen_bcmp(cstate, OR_LINKHDR, 0 + 1 + cstate->pcap_fddipad, 6, eaddr); |
4050 | |
4051 | case Q_AND: |
4052 | b0 = gen_fhostop(cstate, eaddr, Q_SRC); |
4053 | b1 = gen_fhostop(cstate, eaddr, Q_DST); |
4054 | gen_and(b0, b1); |
4055 | return b1; |
4056 | |
4057 | case Q_DEFAULT: |
4058 | case Q_OR: |
4059 | b0 = gen_fhostop(cstate, eaddr, Q_SRC); |
4060 | b1 = gen_fhostop(cstate, eaddr, Q_DST); |
4061 | gen_or(b0, b1); |
4062 | return b1; |
4063 | |
4064 | case Q_ADDR1: |
4065 | bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11" ); |
4066 | break; |
4067 | |
4068 | case Q_ADDR2: |
4069 | bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11" ); |
4070 | break; |
4071 | |
4072 | case Q_ADDR3: |
4073 | bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11" ); |
4074 | break; |
4075 | |
4076 | case Q_ADDR4: |
4077 | bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11" ); |
4078 | break; |
4079 | |
4080 | case Q_RA: |
4081 | bpf_error(cstate, "'ra' is only supported on 802.11" ); |
4082 | break; |
4083 | |
4084 | case Q_TA: |
4085 | bpf_error(cstate, "'ta' is only supported on 802.11" ); |
4086 | break; |
4087 | } |
4088 | abort(); |
4089 | /* NOTREACHED */ |
4090 | } |
4091 | |
4092 | /* |
4093 | * Like gen_ehostop, but for DLT_IEEE802 (Token Ring) |
4094 | */ |
4095 | static struct block * |
4096 | gen_thostop(compiler_state_t *cstate, const u_char *eaddr, int dir) |
4097 | { |
4098 | register struct block *b0, *b1; |
4099 | |
4100 | switch (dir) { |
4101 | case Q_SRC: |
4102 | return gen_bcmp(cstate, OR_LINKHDR, 8, 6, eaddr); |
4103 | |
4104 | case Q_DST: |
4105 | return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr); |
4106 | |
4107 | case Q_AND: |
4108 | b0 = gen_thostop(cstate, eaddr, Q_SRC); |
4109 | b1 = gen_thostop(cstate, eaddr, Q_DST); |
4110 | gen_and(b0, b1); |
4111 | return b1; |
4112 | |
4113 | case Q_DEFAULT: |
4114 | case Q_OR: |
4115 | b0 = gen_thostop(cstate, eaddr, Q_SRC); |
4116 | b1 = gen_thostop(cstate, eaddr, Q_DST); |
4117 | gen_or(b0, b1); |
4118 | return b1; |
4119 | |
4120 | case Q_ADDR1: |
4121 | bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11" ); |
4122 | break; |
4123 | |
4124 | case Q_ADDR2: |
4125 | bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11" ); |
4126 | break; |
4127 | |
4128 | case Q_ADDR3: |
4129 | bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11" ); |
4130 | break; |
4131 | |
4132 | case Q_ADDR4: |
4133 | bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11" ); |
4134 | break; |
4135 | |
4136 | case Q_RA: |
4137 | bpf_error(cstate, "'ra' is only supported on 802.11" ); |
4138 | break; |
4139 | |
4140 | case Q_TA: |
4141 | bpf_error(cstate, "'ta' is only supported on 802.11" ); |
4142 | break; |
4143 | } |
4144 | abort(); |
4145 | /* NOTREACHED */ |
4146 | } |
4147 | |
4148 | /* |
4149 | * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and |
4150 | * various 802.11 + radio headers. |
4151 | */ |
4152 | static struct block * |
4153 | gen_wlanhostop(compiler_state_t *cstate, const u_char *eaddr, int dir) |
4154 | { |
4155 | register struct block *b0, *b1, *b2; |
4156 | register struct slist *s; |
4157 | |
4158 | #ifdef ENABLE_WLAN_FILTERING_PATCH |
4159 | /* |
4160 | * TODO GV 20070613 |
4161 | * We need to disable the optimizer because the optimizer is buggy |
4162 | * and wipes out some LD instructions generated by the below |
4163 | * code to validate the Frame Control bits |
4164 | */ |
4165 | cstate->no_optimize = 1; |
4166 | #endif /* ENABLE_WLAN_FILTERING_PATCH */ |
4167 | |
4168 | switch (dir) { |
4169 | case Q_SRC: |
4170 | /* |
4171 | * Oh, yuk. |
4172 | * |
4173 | * For control frames, there is no SA. |
4174 | * |
4175 | * For management frames, SA is at an |
4176 | * offset of 10 from the beginning of |
4177 | * the packet. |
4178 | * |
4179 | * For data frames, SA is at an offset |
4180 | * of 10 from the beginning of the packet |
4181 | * if From DS is clear, at an offset of |
4182 | * 16 from the beginning of the packet |
4183 | * if From DS is set and To DS is clear, |
4184 | * and an offset of 24 from the beginning |
4185 | * of the packet if From DS is set and To DS |
4186 | * is set. |
4187 | */ |
4188 | |
4189 | /* |
4190 | * Generate the tests to be done for data frames |
4191 | * with From DS set. |
4192 | * |
4193 | * First, check for To DS set, i.e. check "link[1] & 0x01". |
4194 | */ |
4195 | s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B); |
4196 | b1 = new_block(cstate, JMP(BPF_JSET)); |
4197 | b1->s.k = 0x01; /* To DS */ |
4198 | b1->stmts = s; |
4199 | |
4200 | /* |
4201 | * If To DS is set, the SA is at 24. |
4202 | */ |
4203 | b0 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr); |
4204 | gen_and(b1, b0); |
4205 | |
4206 | /* |
4207 | * Now, check for To DS not set, i.e. check |
4208 | * "!(link[1] & 0x01)". |
4209 | */ |
4210 | s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B); |
4211 | b2 = new_block(cstate, JMP(BPF_JSET)); |
4212 | b2->s.k = 0x01; /* To DS */ |
4213 | b2->stmts = s; |
4214 | gen_not(b2); |
4215 | |
4216 | /* |
4217 | * If To DS is not set, the SA is at 16. |
4218 | */ |
4219 | b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr); |
4220 | gen_and(b2, b1); |
4221 | |
4222 | /* |
4223 | * Now OR together the last two checks. That gives |
4224 | * the complete set of checks for data frames with |
4225 | * From DS set. |
4226 | */ |
4227 | gen_or(b1, b0); |
4228 | |
4229 | /* |
4230 | * Now check for From DS being set, and AND that with |
4231 | * the ORed-together checks. |
4232 | */ |
4233 | s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B); |
4234 | b1 = new_block(cstate, JMP(BPF_JSET)); |
4235 | b1->s.k = 0x02; /* From DS */ |
4236 | b1->stmts = s; |
4237 | gen_and(b1, b0); |
4238 | |
4239 | /* |
4240 | * Now check for data frames with From DS not set. |
4241 | */ |
4242 | s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B); |
4243 | b2 = new_block(cstate, JMP(BPF_JSET)); |
4244 | b2->s.k = 0x02; /* From DS */ |
4245 | b2->stmts = s; |
4246 | gen_not(b2); |
4247 | |
4248 | /* |
4249 | * If From DS isn't set, the SA is at 10. |
4250 | */ |
4251 | b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr); |
4252 | gen_and(b2, b1); |
4253 | |
4254 | /* |
4255 | * Now OR together the checks for data frames with |
4256 | * From DS not set and for data frames with From DS |
4257 | * set; that gives the checks done for data frames. |
4258 | */ |
4259 | gen_or(b1, b0); |
4260 | |
4261 | /* |
4262 | * Now check for a data frame. |
4263 | * I.e, check "link[0] & 0x08". |
4264 | */ |
4265 | s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B); |
4266 | b1 = new_block(cstate, JMP(BPF_JSET)); |
4267 | b1->s.k = 0x08; |
4268 | b1->stmts = s; |
4269 | |
4270 | /* |
4271 | * AND that with the checks done for data frames. |
4272 | */ |
4273 | gen_and(b1, b0); |
4274 | |
4275 | /* |
4276 | * If the high-order bit of the type value is 0, this |
4277 | * is a management frame. |
4278 | * I.e, check "!(link[0] & 0x08)". |
4279 | */ |
4280 | s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B); |
4281 | b2 = new_block(cstate, JMP(BPF_JSET)); |
4282 | b2->s.k = 0x08; |
4283 | b2->stmts = s; |
4284 | gen_not(b2); |
4285 | |
4286 | /* |
4287 | * For management frames, the SA is at 10. |
4288 | */ |
4289 | b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr); |
4290 | gen_and(b2, b1); |
4291 | |
4292 | /* |
4293 | * OR that with the checks done for data frames. |
4294 | * That gives the checks done for management and |
4295 | * data frames. |
4296 | */ |
4297 | gen_or(b1, b0); |
4298 | |
4299 | /* |
4300 | * If the low-order bit of the type value is 1, |
4301 | * this is either a control frame or a frame |
4302 | * with a reserved type, and thus not a |
4303 | * frame with an SA. |
4304 | * |
4305 | * I.e., check "!(link[0] & 0x04)". |
4306 | */ |
4307 | s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B); |
4308 | b1 = new_block(cstate, JMP(BPF_JSET)); |
4309 | b1->s.k = 0x04; |
4310 | b1->stmts = s; |
4311 | gen_not(b1); |
4312 | |
4313 | /* |
4314 | * AND that with the checks for data and management |
4315 | * frames. |
4316 | */ |
4317 | gen_and(b1, b0); |
4318 | return b0; |
4319 | |
4320 | case Q_DST: |
4321 | /* |
4322 | * Oh, yuk. |
4323 | * |
4324 | * For control frames, there is no DA. |
4325 | * |
4326 | * For management frames, DA is at an |
4327 | * offset of 4 from the beginning of |
4328 | * the packet. |
4329 | * |
4330 | * For data frames, DA is at an offset |
4331 | * of 4 from the beginning of the packet |
4332 | * if To DS is clear and at an offset of |
4333 | * 16 from the beginning of the packet |
4334 | * if To DS is set. |
4335 | */ |
4336 | |
4337 | /* |
4338 | * Generate the tests to be done for data frames. |
4339 | * |
4340 | * First, check for To DS set, i.e. "link[1] & 0x01". |
4341 | */ |
4342 | s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B); |
4343 | b1 = new_block(cstate, JMP(BPF_JSET)); |
4344 | b1->s.k = 0x01; /* To DS */ |
4345 | b1->stmts = s; |
4346 | |
4347 | /* |
4348 | * If To DS is set, the DA is at 16. |
4349 | */ |
4350 | b0 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr); |
4351 | gen_and(b1, b0); |
4352 | |
4353 | /* |
4354 | * Now, check for To DS not set, i.e. check |
4355 | * "!(link[1] & 0x01)". |
4356 | */ |
4357 | s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B); |
4358 | b2 = new_block(cstate, JMP(BPF_JSET)); |
4359 | b2->s.k = 0x01; /* To DS */ |
4360 | b2->stmts = s; |
4361 | gen_not(b2); |
4362 | |
4363 | /* |
4364 | * If To DS is not set, the DA is at 4. |
4365 | */ |
4366 | b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr); |
4367 | gen_and(b2, b1); |
4368 | |
4369 | /* |
4370 | * Now OR together the last two checks. That gives |
4371 | * the complete set of checks for data frames. |
4372 | */ |
4373 | gen_or(b1, b0); |
4374 | |
4375 | /* |
4376 | * Now check for a data frame. |
4377 | * I.e, check "link[0] & 0x08". |
4378 | */ |
4379 | s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B); |
4380 | b1 = new_block(cstate, JMP(BPF_JSET)); |
4381 | b1->s.k = 0x08; |
4382 | b1->stmts = s; |
4383 | |
4384 | /* |
4385 | * AND that with the checks done for data frames. |
4386 | */ |
4387 | gen_and(b1, b0); |
4388 | |
4389 | /* |
4390 | * If the high-order bit of the type value is 0, this |
4391 | * is a management frame. |
4392 | * I.e, check "!(link[0] & 0x08)". |
4393 | */ |
4394 | s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B); |
4395 | b2 = new_block(cstate, JMP(BPF_JSET)); |
4396 | b2->s.k = 0x08; |
4397 | b2->stmts = s; |
4398 | gen_not(b2); |
4399 | |
4400 | /* |
4401 | * For management frames, the DA is at 4. |
4402 | */ |
4403 | b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr); |
4404 | gen_and(b2, b1); |
4405 | |
4406 | /* |
4407 | * OR that with the checks done for data frames. |
4408 | * That gives the checks done for management and |
4409 | * data frames. |
4410 | */ |
4411 | gen_or(b1, b0); |
4412 | |
4413 | /* |
4414 | * If the low-order bit of the type value is 1, |
4415 | * this is either a control frame or a frame |
4416 | * with a reserved type, and thus not a |
4417 | * frame with an SA. |
4418 | * |
4419 | * I.e., check "!(link[0] & 0x04)". |
4420 | */ |
4421 | s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B); |
4422 | b1 = new_block(cstate, JMP(BPF_JSET)); |
4423 | b1->s.k = 0x04; |
4424 | b1->stmts = s; |
4425 | gen_not(b1); |
4426 | |
4427 | /* |
4428 | * AND that with the checks for data and management |
4429 | * frames. |
4430 | */ |
4431 | gen_and(b1, b0); |
4432 | return b0; |
4433 | |
4434 | case Q_RA: |
4435 | /* |
4436 | * Not present in management frames; addr1 in other |
4437 | * frames. |
4438 | */ |
4439 | |
4440 | /* |
4441 | * If the high-order bit of the type value is 0, this |
4442 | * is a management frame. |
4443 | * I.e, check "(link[0] & 0x08)". |
4444 | */ |
4445 | s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B); |
4446 | b1 = new_block(cstate, JMP(BPF_JSET)); |
4447 | b1->s.k = 0x08; |
4448 | b1->stmts = s; |
4449 | |
4450 | /* |
4451 | * Check addr1. |
4452 | */ |
4453 | b0 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr); |
4454 | |
4455 | /* |
4456 | * AND that with the check of addr1. |
4457 | */ |
4458 | gen_and(b1, b0); |
4459 | return (b0); |
4460 | |
4461 | case Q_TA: |
4462 | /* |
4463 | * Not present in management frames; addr2, if present, |
4464 | * in other frames. |
4465 | */ |
4466 | |
4467 | /* |
4468 | * Not present in CTS or ACK control frames. |
4469 | */ |
4470 | b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL, |
4471 | IEEE80211_FC0_TYPE_MASK); |
4472 | gen_not(b0); |
4473 | b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS, |
4474 | IEEE80211_FC0_SUBTYPE_MASK); |
4475 | gen_not(b1); |
4476 | b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK, |
4477 | IEEE80211_FC0_SUBTYPE_MASK); |
4478 | gen_not(b2); |
4479 | gen_and(b1, b2); |
4480 | gen_or(b0, b2); |
4481 | |
4482 | /* |
4483 | * If the high-order bit of the type value is 0, this |
4484 | * is a management frame. |
4485 | * I.e, check "(link[0] & 0x08)". |
4486 | */ |
4487 | s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B); |
4488 | b1 = new_block(cstate, JMP(BPF_JSET)); |
4489 | b1->s.k = 0x08; |
4490 | b1->stmts = s; |
4491 | |
4492 | /* |
4493 | * AND that with the check for frames other than |
4494 | * CTS and ACK frames. |
4495 | */ |
4496 | gen_and(b1, b2); |
4497 | |
4498 | /* |
4499 | * Check addr2. |
4500 | */ |
4501 | b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr); |
4502 | gen_and(b2, b1); |
4503 | return b1; |
4504 | |
4505 | /* |
4506 | * XXX - add BSSID keyword? |
4507 | */ |
4508 | case Q_ADDR1: |
4509 | return (gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr)); |
4510 | |
4511 | case Q_ADDR2: |
4512 | /* |
4513 | * Not present in CTS or ACK control frames. |
4514 | */ |
4515 | b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL, |
4516 | IEEE80211_FC0_TYPE_MASK); |
4517 | gen_not(b0); |
4518 | b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS, |
4519 | IEEE80211_FC0_SUBTYPE_MASK); |
4520 | gen_not(b1); |
4521 | b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK, |
4522 | IEEE80211_FC0_SUBTYPE_MASK); |
4523 | gen_not(b2); |
4524 | gen_and(b1, b2); |
4525 | gen_or(b0, b2); |
4526 | b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr); |
4527 | gen_and(b2, b1); |
4528 | return b1; |
4529 | |
4530 | case Q_ADDR3: |
4531 | /* |
4532 | * Not present in control frames. |
4533 | */ |
4534 | b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL, |
4535 | IEEE80211_FC0_TYPE_MASK); |
4536 | gen_not(b0); |
4537 | b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr); |
4538 | gen_and(b0, b1); |
4539 | return b1; |
4540 | |
4541 | case Q_ADDR4: |
4542 | /* |
4543 | * Present only if the direction mask has both "From DS" |
4544 | * and "To DS" set. Neither control frames nor management |
4545 | * frames should have both of those set, so we don't |
4546 | * check the frame type. |
4547 | */ |
4548 | b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B, |
4549 | IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK); |
4550 | b1 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr); |
4551 | gen_and(b0, b1); |
4552 | return b1; |
4553 | |
4554 | case Q_AND: |
4555 | b0 = gen_wlanhostop(cstate, eaddr, Q_SRC); |
4556 | b1 = gen_wlanhostop(cstate, eaddr, Q_DST); |
4557 | gen_and(b0, b1); |
4558 | return b1; |
4559 | |
4560 | case Q_DEFAULT: |
4561 | case Q_OR: |
4562 | b0 = gen_wlanhostop(cstate, eaddr, Q_SRC); |
4563 | b1 = gen_wlanhostop(cstate, eaddr, Q_DST); |
4564 | gen_or(b0, b1); |
4565 | return b1; |
4566 | } |
4567 | abort(); |
4568 | /* NOTREACHED */ |
4569 | } |
4570 | |
4571 | /* |
4572 | * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel. |
4573 | * (We assume that the addresses are IEEE 48-bit MAC addresses, |
4574 | * as the RFC states.) |
4575 | */ |
4576 | static struct block * |
4577 | gen_ipfchostop(compiler_state_t *cstate, const u_char *eaddr, int dir) |
4578 | { |
4579 | register struct block *b0, *b1; |
4580 | |
4581 | switch (dir) { |
4582 | case Q_SRC: |
4583 | return gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr); |
4584 | |
4585 | case Q_DST: |
4586 | return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr); |
4587 | |
4588 | case Q_AND: |
4589 | b0 = gen_ipfchostop(cstate, eaddr, Q_SRC); |
4590 | b1 = gen_ipfchostop(cstate, eaddr, Q_DST); |
4591 | gen_and(b0, b1); |
4592 | return b1; |
4593 | |
4594 | case Q_DEFAULT: |
4595 | case Q_OR: |
4596 | b0 = gen_ipfchostop(cstate, eaddr, Q_SRC); |
4597 | b1 = gen_ipfchostop(cstate, eaddr, Q_DST); |
4598 | gen_or(b0, b1); |
4599 | return b1; |
4600 | |
4601 | case Q_ADDR1: |
4602 | bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11" ); |
4603 | break; |
4604 | |
4605 | case Q_ADDR2: |
4606 | bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11" ); |
4607 | break; |
4608 | |
4609 | case Q_ADDR3: |
4610 | bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11" ); |
4611 | break; |
4612 | |
4613 | case Q_ADDR4: |
4614 | bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11" ); |
4615 | break; |
4616 | |
4617 | case Q_RA: |
4618 | bpf_error(cstate, "'ra' is only supported on 802.11" ); |
4619 | break; |
4620 | |
4621 | case Q_TA: |
4622 | bpf_error(cstate, "'ta' is only supported on 802.11" ); |
4623 | break; |
4624 | } |
4625 | abort(); |
4626 | /* NOTREACHED */ |
4627 | } |
4628 | |
4629 | /* |
4630 | * This is quite tricky because there may be pad bytes in front of the |
4631 | * DECNET header, and then there are two possible data packet formats that |
4632 | * carry both src and dst addresses, plus 5 packet types in a format that |
4633 | * carries only the src node, plus 2 types that use a different format and |
4634 | * also carry just the src node. |
4635 | * |
4636 | * Yuck. |
4637 | * |
4638 | * Instead of doing those all right, we just look for data packets with |
4639 | * 0 or 1 bytes of padding. If you want to look at other packets, that |
4640 | * will require a lot more hacking. |
4641 | * |
4642 | * To add support for filtering on DECNET "areas" (network numbers) |
4643 | * one would want to add a "mask" argument to this routine. That would |
4644 | * make the filter even more inefficient, although one could be clever |
4645 | * and not generate masking instructions if the mask is 0xFFFF. |
4646 | */ |
4647 | static struct block * |
4648 | gen_dnhostop(compiler_state_t *cstate, bpf_u_int32 addr, int dir) |
4649 | { |
4650 | struct block *b0, *b1, *b2, *tmp; |
4651 | u_int offset_lh; /* offset if long header is received */ |
4652 | u_int offset_sh; /* offset if short header is received */ |
4653 | |
4654 | switch (dir) { |
4655 | |
4656 | case Q_DST: |
4657 | offset_sh = 1; /* follows flags */ |
4658 | offset_lh = 7; /* flgs,darea,dsubarea,HIORD */ |
4659 | break; |
4660 | |
4661 | case Q_SRC: |
4662 | offset_sh = 3; /* follows flags, dstnode */ |
4663 | offset_lh = 15; /* flgs,darea,dsubarea,did,sarea,ssub,HIORD */ |
4664 | break; |
4665 | |
4666 | case Q_AND: |
4667 | /* Inefficient because we do our Calvinball dance twice */ |
4668 | b0 = gen_dnhostop(cstate, addr, Q_SRC); |
4669 | b1 = gen_dnhostop(cstate, addr, Q_DST); |
4670 | gen_and(b0, b1); |
4671 | return b1; |
4672 | |
4673 | case Q_OR: |
4674 | case Q_DEFAULT: |
4675 | /* Inefficient because we do our Calvinball dance twice */ |
4676 | b0 = gen_dnhostop(cstate, addr, Q_SRC); |
4677 | b1 = gen_dnhostop(cstate, addr, Q_DST); |
4678 | gen_or(b0, b1); |
4679 | return b1; |
4680 | |
4681 | case Q_ISO: |
4682 | bpf_error(cstate, "ISO host filtering not implemented" ); |
4683 | |
4684 | default: |
4685 | abort(); |
4686 | } |
4687 | b0 = gen_linktype(cstate, ETHERTYPE_DN); |
4688 | /* Check for pad = 1, long header case */ |
4689 | tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H, |
4690 | (bpf_int32)ntohs(0x0681), (bpf_int32)ntohs(0x07FF)); |
4691 | b1 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_lh, |
4692 | BPF_H, (bpf_int32)ntohs((u_short)addr)); |
4693 | gen_and(tmp, b1); |
4694 | /* Check for pad = 0, long header case */ |
4695 | tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, (bpf_int32)0x06, (bpf_int32)0x7); |
4696 | b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_lh, BPF_H, (bpf_int32)ntohs((u_short)addr)); |
4697 | gen_and(tmp, b2); |
4698 | gen_or(b2, b1); |
4699 | /* Check for pad = 1, short header case */ |
4700 | tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H, |
4701 | (bpf_int32)ntohs(0x0281), (bpf_int32)ntohs(0x07FF)); |
4702 | b2 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr)); |
4703 | gen_and(tmp, b2); |
4704 | gen_or(b2, b1); |
4705 | /* Check for pad = 0, short header case */ |
4706 | tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, (bpf_int32)0x02, (bpf_int32)0x7); |
4707 | b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr)); |
4708 | gen_and(tmp, b2); |
4709 | gen_or(b2, b1); |
4710 | |
4711 | /* Combine with test for cstate->linktype */ |
4712 | gen_and(b0, b1); |
4713 | return b1; |
4714 | } |
4715 | |
4716 | /* |
4717 | * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets; |
4718 | * test the bottom-of-stack bit, and then check the version number |
4719 | * field in the IP header. |
4720 | */ |
4721 | static struct block * |
4722 | gen_mpls_linktype(compiler_state_t *cstate, int proto) |
4723 | { |
4724 | struct block *b0, *b1; |
4725 | |
4726 | switch (proto) { |
4727 | |
4728 | case Q_IP: |
4729 | /* match the bottom-of-stack bit */ |
4730 | b0 = gen_mcmp(cstate, OR_LINKPL, (u_int)-2, BPF_B, 0x01, 0x01); |
4731 | /* match the IPv4 version number */ |
4732 | b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x40, 0xf0); |
4733 | gen_and(b0, b1); |
4734 | return b1; |
4735 | |
4736 | case Q_IPV6: |
4737 | /* match the bottom-of-stack bit */ |
4738 | b0 = gen_mcmp(cstate, OR_LINKPL, (u_int)-2, BPF_B, 0x01, 0x01); |
4739 | /* match the IPv4 version number */ |
4740 | b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x60, 0xf0); |
4741 | gen_and(b0, b1); |
4742 | return b1; |
4743 | |
4744 | default: |
4745 | abort(); |
4746 | } |
4747 | } |
4748 | |
4749 | static struct block * |
4750 | gen_host(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask, |
4751 | int proto, int dir, int type) |
4752 | { |
4753 | struct block *b0, *b1; |
4754 | const char *typestr; |
4755 | |
4756 | if (type == Q_NET) |
4757 | typestr = "net" ; |
4758 | else |
4759 | typestr = "host" ; |
4760 | |
4761 | switch (proto) { |
4762 | |
4763 | case Q_DEFAULT: |
4764 | b0 = gen_host(cstate, addr, mask, Q_IP, dir, type); |
4765 | /* |
4766 | * Only check for non-IPv4 addresses if we're not |
4767 | * checking MPLS-encapsulated packets. |
4768 | */ |
4769 | if (cstate->label_stack_depth == 0) { |
4770 | b1 = gen_host(cstate, addr, mask, Q_ARP, dir, type); |
4771 | gen_or(b0, b1); |
4772 | b0 = gen_host(cstate, addr, mask, Q_RARP, dir, type); |
4773 | gen_or(b1, b0); |
4774 | } |
4775 | return b0; |
4776 | |
4777 | case Q_IP: |
4778 | return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_IP, 12, 16); |
4779 | |
4780 | case Q_RARP: |
4781 | return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_REVARP, 14, 24); |
4782 | |
4783 | case Q_ARP: |
4784 | return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_ARP, 14, 24); |
4785 | |
4786 | case Q_TCP: |
4787 | bpf_error(cstate, "'tcp' modifier applied to %s" , typestr); |
4788 | |
4789 | case Q_SCTP: |
4790 | bpf_error(cstate, "'sctp' modifier applied to %s" , typestr); |
4791 | |
4792 | case Q_UDP: |
4793 | bpf_error(cstate, "'udp' modifier applied to %s" , typestr); |
4794 | |
4795 | case Q_ICMP: |
4796 | bpf_error(cstate, "'icmp' modifier applied to %s" , typestr); |
4797 | |
4798 | case Q_IGMP: |
4799 | bpf_error(cstate, "'igmp' modifier applied to %s" , typestr); |
4800 | |
4801 | case Q_IGRP: |
4802 | bpf_error(cstate, "'igrp' modifier applied to %s" , typestr); |
4803 | |
4804 | case Q_PIM: |
4805 | bpf_error(cstate, "'pim' modifier applied to %s" , typestr); |
4806 | |
4807 | case Q_VRRP: |
4808 | bpf_error(cstate, "'vrrp' modifier applied to %s" , typestr); |
4809 | |
4810 | case Q_CARP: |
4811 | bpf_error(cstate, "'carp' modifier applied to %s" , typestr); |
4812 | |
4813 | case Q_ATALK: |
4814 | bpf_error(cstate, "ATALK host filtering not implemented" ); |
4815 | |
4816 | case Q_AARP: |
4817 | bpf_error(cstate, "AARP host filtering not implemented" ); |
4818 | |
4819 | case Q_DECNET: |
4820 | return gen_dnhostop(cstate, addr, dir); |
4821 | |
4822 | case Q_SCA: |
4823 | bpf_error(cstate, "SCA host filtering not implemented" ); |
4824 | |
4825 | case Q_LAT: |
4826 | bpf_error(cstate, "LAT host filtering not implemented" ); |
4827 | |
4828 | case Q_MOPDL: |
4829 | bpf_error(cstate, "MOPDL host filtering not implemented" ); |
4830 | |
4831 | case Q_MOPRC: |
4832 | bpf_error(cstate, "MOPRC host filtering not implemented" ); |
4833 | |
4834 | case Q_IPV6: |
4835 | bpf_error(cstate, "'ip6' modifier applied to ip host" ); |
4836 | |
4837 | case Q_ICMPV6: |
4838 | bpf_error(cstate, "'icmp6' modifier applied to %s" , typestr); |
4839 | |
4840 | case Q_AH: |
4841 | bpf_error(cstate, "'ah' modifier applied to %s" , typestr); |
4842 | |
4843 | case Q_ESP: |
4844 | bpf_error(cstate, "'esp' modifier applied to %s" , typestr); |
4845 | |
4846 | case Q_ISO: |
4847 | bpf_error(cstate, "ISO host filtering not implemented" ); |
4848 | |
4849 | case Q_ESIS: |
4850 | bpf_error(cstate, "'esis' modifier applied to %s" , typestr); |
4851 | |
4852 | case Q_ISIS: |
4853 | bpf_error(cstate, "'isis' modifier applied to %s" , typestr); |
4854 | |
4855 | case Q_CLNP: |
4856 | bpf_error(cstate, "'clnp' modifier applied to %s" , typestr); |
4857 | |
4858 | case Q_STP: |
4859 | bpf_error(cstate, "'stp' modifier applied to %s" , typestr); |
4860 | |
4861 | case Q_IPX: |
4862 | bpf_error(cstate, "IPX host filtering not implemented" ); |
4863 | |
4864 | case Q_NETBEUI: |
4865 | bpf_error(cstate, "'netbeui' modifier applied to %s" , typestr); |
4866 | |
4867 | case Q_RADIO: |
4868 | bpf_error(cstate, "'radio' modifier applied to %s" , typestr); |
4869 | |
4870 | default: |
4871 | abort(); |
4872 | } |
4873 | /* NOTREACHED */ |
4874 | } |
4875 | |
4876 | #ifdef INET6 |
4877 | static struct block * |
4878 | gen_host6(compiler_state_t *cstate, struct in6_addr *addr, |
4879 | struct in6_addr *mask, int proto, int dir, int type) |
4880 | { |
4881 | const char *typestr; |
4882 | |
4883 | if (type == Q_NET) |
4884 | typestr = "net" ; |
4885 | else |
4886 | typestr = "host" ; |
4887 | |
4888 | switch (proto) { |
4889 | |
4890 | case Q_DEFAULT: |
4891 | return gen_host6(cstate, addr, mask, Q_IPV6, dir, type); |
4892 | |
4893 | case Q_LINK: |
4894 | bpf_error(cstate, "link-layer modifier applied to ip6 %s" , typestr); |
4895 | |
4896 | case Q_IP: |
4897 | bpf_error(cstate, "'ip' modifier applied to ip6 %s" , typestr); |
4898 | |
4899 | case Q_RARP: |
4900 | bpf_error(cstate, "'rarp' modifier applied to ip6 %s" , typestr); |
4901 | |
4902 | case Q_ARP: |
4903 | bpf_error(cstate, "'arp' modifier applied to ip6 %s" , typestr); |
4904 | |
4905 | case Q_SCTP: |
4906 | bpf_error(cstate, "'sctp' modifier applied to %s" , typestr); |
4907 | |
4908 | case Q_TCP: |
4909 | bpf_error(cstate, "'tcp' modifier applied to %s" , typestr); |
4910 | |
4911 | case Q_UDP: |
4912 | bpf_error(cstate, "'udp' modifier applied to %s" , typestr); |
4913 | |
4914 | case Q_ICMP: |
4915 | bpf_error(cstate, "'icmp' modifier applied to %s" , typestr); |
4916 | |
4917 | case Q_IGMP: |
4918 | bpf_error(cstate, "'igmp' modifier applied to %s" , typestr); |
4919 | |
4920 | case Q_IGRP: |
4921 | bpf_error(cstate, "'igrp' modifier applied to %s" , typestr); |
4922 | |
4923 | case Q_PIM: |
4924 | bpf_error(cstate, "'pim' modifier applied to %s" , typestr); |
4925 | |
4926 | case Q_VRRP: |
4927 | bpf_error(cstate, "'vrrp' modifier applied to %s" , typestr); |
4928 | |
4929 | case Q_CARP: |
4930 | bpf_error(cstate, "'carp' modifier applied to %s" , typestr); |
4931 | |
4932 | case Q_ATALK: |
4933 | bpf_error(cstate, "ATALK host filtering not implemented" ); |
4934 | |
4935 | case Q_AARP: |
4936 | bpf_error(cstate, "AARP host filtering not implemented" ); |
4937 | |
4938 | case Q_DECNET: |
4939 | bpf_error(cstate, "'decnet' modifier applied to ip6 %s" , typestr); |
4940 | |
4941 | case Q_SCA: |
4942 | bpf_error(cstate, "SCA host filtering not implemented" ); |
4943 | |
4944 | case Q_LAT: |
4945 | bpf_error(cstate, "LAT host filtering not implemented" ); |
4946 | |
4947 | case Q_MOPDL: |
4948 | bpf_error(cstate, "MOPDL host filtering not implemented" ); |
4949 | |
4950 | case Q_MOPRC: |
4951 | bpf_error(cstate, "MOPRC host filtering not implemented" ); |
4952 | |
4953 | case Q_IPV6: |
4954 | return gen_hostop6(cstate, addr, mask, dir, ETHERTYPE_IPV6, 8, 24); |
4955 | |
4956 | case Q_ICMPV6: |
4957 | bpf_error(cstate, "'icmp6' modifier applied to %s" , typestr); |
4958 | |
4959 | case Q_AH: |
4960 | bpf_error(cstate, "'ah' modifier applied to %s" , typestr); |
4961 | |
4962 | case Q_ESP: |
4963 | bpf_error(cstate, "'esp' modifier applied to %s" , typestr); |
4964 | |
4965 | case Q_ISO: |
4966 | bpf_error(cstate, "ISO host filtering not implemented" ); |
4967 | |
4968 | case Q_ESIS: |
4969 | bpf_error(cstate, "'esis' modifier applied to %s" , typestr); |
4970 | |
4971 | case Q_ISIS: |
4972 | bpf_error(cstate, "'isis' modifier applied to %s" , typestr); |
4973 | |
4974 | case Q_CLNP: |
4975 | bpf_error(cstate, "'clnp' modifier applied to %s" , typestr); |
4976 | |
4977 | case Q_STP: |
4978 | bpf_error(cstate, "'stp' modifier applied to %s" , typestr); |
4979 | |
4980 | case Q_IPX: |
4981 | bpf_error(cstate, "IPX host filtering not implemented" ); |
4982 | |
4983 | case Q_NETBEUI: |
4984 | bpf_error(cstate, "'netbeui' modifier applied to %s" , typestr); |
4985 | |
4986 | case Q_RADIO: |
4987 | bpf_error(cstate, "'radio' modifier applied to %s" , typestr); |
4988 | |
4989 | default: |
4990 | abort(); |
4991 | } |
4992 | /* NOTREACHED */ |
4993 | } |
4994 | #endif |
4995 | |
4996 | #ifndef INET6 |
4997 | static struct block * |
4998 | gen_gateway(compiler_state_t *cstate, const u_char *eaddr, |
4999 | struct addrinfo *alist, int proto, int dir) |
5000 | { |
5001 | struct block *b0, *b1, *tmp; |
5002 | struct addrinfo *ai; |
5003 | struct sockaddr_in *sin; |
5004 | |
5005 | if (dir != 0) |
5006 | bpf_error(cstate, "direction applied to 'gateway'" ); |
5007 | |
5008 | switch (proto) { |
5009 | case Q_DEFAULT: |
5010 | case Q_IP: |
5011 | case Q_ARP: |
5012 | case Q_RARP: |
5013 | switch (cstate->linktype) { |
5014 | case DLT_EN10MB: |
5015 | case DLT_NETANALYZER: |
5016 | case DLT_NETANALYZER_TRANSPARENT: |
5017 | b1 = gen_prevlinkhdr_check(cstate); |
5018 | b0 = gen_ehostop(cstate, eaddr, Q_OR); |
5019 | if (b1 != NULL) |
5020 | gen_and(b1, b0); |
5021 | break; |
5022 | case DLT_FDDI: |
5023 | b0 = gen_fhostop(cstate, eaddr, Q_OR); |
5024 | break; |
5025 | case DLT_IEEE802: |
5026 | b0 = gen_thostop(cstate, eaddr, Q_OR); |
5027 | break; |
5028 | case DLT_IEEE802_11: |
5029 | case DLT_PRISM_HEADER: |
5030 | case DLT_IEEE802_11_RADIO_AVS: |
5031 | case DLT_IEEE802_11_RADIO: |
5032 | case DLT_PPI: |
5033 | b0 = gen_wlanhostop(cstate, eaddr, Q_OR); |
5034 | break; |
5035 | case DLT_SUNATM: |
5036 | /* |
5037 | * This is LLC-multiplexed traffic; if it were |
5038 | * LANE, cstate->linktype would have been set to |
5039 | * DLT_EN10MB. |
5040 | */ |
5041 | bpf_error(cstate, |
5042 | "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel" ); |
5043 | break; |
5044 | case DLT_IP_OVER_FC: |
5045 | b0 = gen_ipfchostop(cstate, eaddr, Q_OR); |
5046 | break; |
5047 | default: |
5048 | bpf_error(cstate, |
5049 | "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel" ); |
5050 | } |
5051 | b1 = NULL; |
5052 | for (ai = alist; ai != NULL; ai = ai->ai_next) { |
5053 | /* |
5054 | * Does it have an address? |
5055 | */ |
5056 | if (ai->ai_addr != NULL) { |
5057 | /* |
5058 | * Yes. Is it an IPv4 address? |
5059 | */ |
5060 | if (ai->ai_addr->sa_family == AF_INET) { |
5061 | /* |
5062 | * Generate an entry for it. |
5063 | */ |
5064 | sin = (struct sockaddr_in *)ai->ai_addr; |
5065 | tmp = gen_host(cstate, |
5066 | ntohl(sin->sin_addr.s_addr), |
5067 | 0xffffffff, proto, Q_OR, Q_HOST); |
5068 | /* |
5069 | * Is it the *first* IPv4 address? |
5070 | */ |
5071 | if (b1 == NULL) { |
5072 | /* |
5073 | * Yes, so start with it. |
5074 | */ |
5075 | b1 = tmp; |
5076 | } else { |
5077 | /* |
5078 | * No, so OR it into the |
5079 | * existing set of |
5080 | * addresses. |
5081 | */ |
5082 | gen_or(b1, tmp); |
5083 | b1 = tmp; |
5084 | } |
5085 | } |
5086 | } |
5087 | } |
5088 | if (b1 == NULL) { |
5089 | /* |
5090 | * No IPv4 addresses found. |
5091 | */ |
5092 | return (NULL); |
5093 | } |
5094 | gen_not(b1); |
5095 | gen_and(b0, b1); |
5096 | return b1; |
5097 | } |
5098 | bpf_error(cstate, "illegal modifier of 'gateway'" ); |
5099 | /* NOTREACHED */ |
5100 | } |
5101 | #endif |
5102 | |
5103 | struct block * |
5104 | gen_proto_abbrev(compiler_state_t *cstate, int proto) |
5105 | { |
5106 | struct block *b0; |
5107 | struct block *b1; |
5108 | |
5109 | switch (proto) { |
5110 | |
5111 | case Q_SCTP: |
5112 | b1 = gen_proto(cstate, IPPROTO_SCTP, Q_IP, Q_DEFAULT); |
5113 | b0 = gen_proto(cstate, IPPROTO_SCTP, Q_IPV6, Q_DEFAULT); |
5114 | gen_or(b0, b1); |
5115 | break; |
5116 | |
5117 | case Q_TCP: |
5118 | b1 = gen_proto(cstate, IPPROTO_TCP, Q_IP, Q_DEFAULT); |
5119 | b0 = gen_proto(cstate, IPPROTO_TCP, Q_IPV6, Q_DEFAULT); |
5120 | gen_or(b0, b1); |
5121 | break; |
5122 | |
5123 | case Q_UDP: |
5124 | b1 = gen_proto(cstate, IPPROTO_UDP, Q_IP, Q_DEFAULT); |
5125 | b0 = gen_proto(cstate, IPPROTO_UDP, Q_IPV6, Q_DEFAULT); |
5126 | gen_or(b0, b1); |
5127 | break; |
5128 | |
5129 | case Q_ICMP: |
5130 | b1 = gen_proto(cstate, IPPROTO_ICMP, Q_IP, Q_DEFAULT); |
5131 | break; |
5132 | |
5133 | #ifndef IPPROTO_IGMP |
5134 | #define IPPROTO_IGMP 2 |
5135 | #endif |
5136 | |
5137 | case Q_IGMP: |
5138 | b1 = gen_proto(cstate, IPPROTO_IGMP, Q_IP, Q_DEFAULT); |
5139 | break; |
5140 | |
5141 | #ifndef IPPROTO_IGRP |
5142 | #define IPPROTO_IGRP 9 |
5143 | #endif |
5144 | case Q_IGRP: |
5145 | b1 = gen_proto(cstate, IPPROTO_IGRP, Q_IP, Q_DEFAULT); |
5146 | break; |
5147 | |
5148 | #ifndef IPPROTO_PIM |
5149 | #define IPPROTO_PIM 103 |
5150 | #endif |
5151 | |
5152 | case Q_PIM: |
5153 | b1 = gen_proto(cstate, IPPROTO_PIM, Q_IP, Q_DEFAULT); |
5154 | b0 = gen_proto(cstate, IPPROTO_PIM, Q_IPV6, Q_DEFAULT); |
5155 | gen_or(b0, b1); |
5156 | break; |
5157 | |
5158 | #ifndef IPPROTO_VRRP |
5159 | #define IPPROTO_VRRP 112 |
5160 | #endif |
5161 | |
5162 | case Q_VRRP: |
5163 | b1 = gen_proto(cstate, IPPROTO_VRRP, Q_IP, Q_DEFAULT); |
5164 | break; |
5165 | |
5166 | #ifndef IPPROTO_CARP |
5167 | #define IPPROTO_CARP 112 |
5168 | #endif |
5169 | |
5170 | case Q_CARP: |
5171 | b1 = gen_proto(cstate, IPPROTO_CARP, Q_IP, Q_DEFAULT); |
5172 | break; |
5173 | |
5174 | case Q_IP: |
5175 | b1 = gen_linktype(cstate, ETHERTYPE_IP); |
5176 | break; |
5177 | |
5178 | case Q_ARP: |
5179 | b1 = gen_linktype(cstate, ETHERTYPE_ARP); |
5180 | break; |
5181 | |
5182 | case Q_RARP: |
5183 | b1 = gen_linktype(cstate, ETHERTYPE_REVARP); |
5184 | break; |
5185 | |
5186 | case Q_LINK: |
5187 | bpf_error(cstate, "link layer applied in wrong context" ); |
5188 | |
5189 | case Q_ATALK: |
5190 | b1 = gen_linktype(cstate, ETHERTYPE_ATALK); |
5191 | break; |
5192 | |
5193 | case Q_AARP: |
5194 | b1 = gen_linktype(cstate, ETHERTYPE_AARP); |
5195 | break; |
5196 | |
5197 | case Q_DECNET: |
5198 | b1 = gen_linktype(cstate, ETHERTYPE_DN); |
5199 | break; |
5200 | |
5201 | case Q_SCA: |
5202 | b1 = gen_linktype(cstate, ETHERTYPE_SCA); |
5203 | break; |
5204 | |
5205 | case Q_LAT: |
5206 | b1 = gen_linktype(cstate, ETHERTYPE_LAT); |
5207 | break; |
5208 | |
5209 | case Q_MOPDL: |
5210 | b1 = gen_linktype(cstate, ETHERTYPE_MOPDL); |
5211 | break; |
5212 | |
5213 | case Q_MOPRC: |
5214 | b1 = gen_linktype(cstate, ETHERTYPE_MOPRC); |
5215 | break; |
5216 | |
5217 | case Q_IPV6: |
5218 | b1 = gen_linktype(cstate, ETHERTYPE_IPV6); |
5219 | break; |
5220 | |
5221 | #ifndef IPPROTO_ICMPV6 |
5222 | #define IPPROTO_ICMPV6 58 |
5223 | #endif |
5224 | case Q_ICMPV6: |
5225 | b1 = gen_proto(cstate, IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT); |
5226 | break; |
5227 | |
5228 | #ifndef IPPROTO_AH |
5229 | #define IPPROTO_AH 51 |
5230 | #endif |
5231 | case Q_AH: |
5232 | b1 = gen_proto(cstate, IPPROTO_AH, Q_IP, Q_DEFAULT); |
5233 | b0 = gen_proto(cstate, IPPROTO_AH, Q_IPV6, Q_DEFAULT); |
5234 | gen_or(b0, b1); |
5235 | break; |
5236 | |
5237 | #ifndef IPPROTO_ESP |
5238 | #define IPPROTO_ESP 50 |
5239 | #endif |
5240 | case Q_ESP: |
5241 | b1 = gen_proto(cstate, IPPROTO_ESP, Q_IP, Q_DEFAULT); |
5242 | b0 = gen_proto(cstate, IPPROTO_ESP, Q_IPV6, Q_DEFAULT); |
5243 | gen_or(b0, b1); |
5244 | break; |
5245 | |
5246 | case Q_ISO: |
5247 | b1 = gen_linktype(cstate, LLCSAP_ISONS); |
5248 | break; |
5249 | |
5250 | case Q_ESIS: |
5251 | b1 = gen_proto(cstate, ISO9542_ESIS, Q_ISO, Q_DEFAULT); |
5252 | break; |
5253 | |
5254 | case Q_ISIS: |
5255 | b1 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT); |
5256 | break; |
5257 | |
5258 | case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */ |
5259 | b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT); |
5260 | b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */ |
5261 | gen_or(b0, b1); |
5262 | b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT); |
5263 | gen_or(b0, b1); |
5264 | b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT); |
5265 | gen_or(b0, b1); |
5266 | b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT); |
5267 | gen_or(b0, b1); |
5268 | break; |
5269 | |
5270 | case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */ |
5271 | b0 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT); |
5272 | b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */ |
5273 | gen_or(b0, b1); |
5274 | b0 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT); |
5275 | gen_or(b0, b1); |
5276 | b0 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT); |
5277 | gen_or(b0, b1); |
5278 | b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT); |
5279 | gen_or(b0, b1); |
5280 | break; |
5281 | |
5282 | case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */ |
5283 | b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT); |
5284 | b1 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT); |
5285 | gen_or(b0, b1); |
5286 | b0 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); |
5287 | gen_or(b0, b1); |
5288 | break; |
5289 | |
5290 | case Q_ISIS_LSP: |
5291 | b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT); |
5292 | b1 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT); |
5293 | gen_or(b0, b1); |
5294 | break; |
5295 | |
5296 | case Q_ISIS_SNP: |
5297 | b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT); |
5298 | b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT); |
5299 | gen_or(b0, b1); |
5300 | b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT); |
5301 | gen_or(b0, b1); |
5302 | b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT); |
5303 | gen_or(b0, b1); |
5304 | break; |
5305 | |
5306 | case Q_ISIS_CSNP: |
5307 | b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT); |
5308 | b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT); |
5309 | gen_or(b0, b1); |
5310 | break; |
5311 | |
5312 | case Q_ISIS_PSNP: |
5313 | b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT); |
5314 | b1 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT); |
5315 | gen_or(b0, b1); |
5316 | break; |
5317 | |
5318 | case Q_CLNP: |
5319 | b1 = gen_proto(cstate, ISO8473_CLNP, Q_ISO, Q_DEFAULT); |
5320 | break; |
5321 | |
5322 | case Q_STP: |
5323 | b1 = gen_linktype(cstate, LLCSAP_8021D); |
5324 | break; |
5325 | |
5326 | case Q_IPX: |
5327 | b1 = gen_linktype(cstate, LLCSAP_IPX); |
5328 | break; |
5329 | |
5330 | case Q_NETBEUI: |
5331 | b1 = gen_linktype(cstate, LLCSAP_NETBEUI); |
5332 | break; |
5333 | |
5334 | case Q_RADIO: |
5335 | bpf_error(cstate, "'radio' is not a valid protocol type" ); |
5336 | |
5337 | default: |
5338 | abort(); |
5339 | } |
5340 | return b1; |
5341 | } |
5342 | |
5343 | static struct block * |
5344 | gen_ipfrag(compiler_state_t *cstate) |
5345 | { |
5346 | struct slist *s; |
5347 | struct block *b; |
5348 | |
5349 | /* not IPv4 frag other than the first frag */ |
5350 | s = gen_load_a(cstate, OR_LINKPL, 6, BPF_H); |
5351 | b = new_block(cstate, JMP(BPF_JSET)); |
5352 | b->s.k = 0x1fff; |
5353 | b->stmts = s; |
5354 | gen_not(b); |
5355 | |
5356 | return b; |
5357 | } |
5358 | |
5359 | /* |
5360 | * Generate a comparison to a port value in the transport-layer header |
5361 | * at the specified offset from the beginning of that header. |
5362 | * |
5363 | * XXX - this handles a variable-length prefix preceding the link-layer |
5364 | * header, such as the radiotap or AVS radio prefix, but doesn't handle |
5365 | * variable-length link-layer headers (such as Token Ring or 802.11 |
5366 | * headers). |
5367 | */ |
5368 | static struct block * |
5369 | gen_portatom(compiler_state_t *cstate, int off, bpf_int32 v) |
5370 | { |
5371 | return gen_cmp(cstate, OR_TRAN_IPV4, off, BPF_H, v); |
5372 | } |
5373 | |
5374 | static struct block * |
5375 | gen_portatom6(compiler_state_t *cstate, int off, bpf_int32 v) |
5376 | { |
5377 | return gen_cmp(cstate, OR_TRAN_IPV6, off, BPF_H, v); |
5378 | } |
5379 | |
5380 | struct block * |
5381 | gen_portop(compiler_state_t *cstate, int port, int proto, int dir) |
5382 | { |
5383 | struct block *b0, *b1, *tmp; |
5384 | |
5385 | /* ip proto 'proto' and not a fragment other than the first fragment */ |
5386 | tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, (bpf_int32)proto); |
5387 | b0 = gen_ipfrag(cstate); |
5388 | gen_and(tmp, b0); |
5389 | |
5390 | switch (dir) { |
5391 | case Q_SRC: |
5392 | b1 = gen_portatom(cstate, 0, (bpf_int32)port); |
5393 | break; |
5394 | |
5395 | case Q_DST: |
5396 | b1 = gen_portatom(cstate, 2, (bpf_int32)port); |
5397 | break; |
5398 | |
5399 | case Q_OR: |
5400 | case Q_DEFAULT: |
5401 | tmp = gen_portatom(cstate, 0, (bpf_int32)port); |
5402 | b1 = gen_portatom(cstate, 2, (bpf_int32)port); |
5403 | gen_or(tmp, b1); |
5404 | break; |
5405 | |
5406 | case Q_AND: |
5407 | tmp = gen_portatom(cstate, 0, (bpf_int32)port); |
5408 | b1 = gen_portatom(cstate, 2, (bpf_int32)port); |
5409 | gen_and(tmp, b1); |
5410 | break; |
5411 | |
5412 | default: |
5413 | abort(); |
5414 | } |
5415 | gen_and(b0, b1); |
5416 | |
5417 | return b1; |
5418 | } |
5419 | |
5420 | static struct block * |
5421 | gen_port(compiler_state_t *cstate, int port, int ip_proto, int dir) |
5422 | { |
5423 | struct block *b0, *b1, *tmp; |
5424 | |
5425 | /* |
5426 | * ether proto ip |
5427 | * |
5428 | * For FDDI, RFC 1188 says that SNAP encapsulation is used, |
5429 | * not LLC encapsulation with LLCSAP_IP. |
5430 | * |
5431 | * For IEEE 802 networks - which includes 802.5 token ring |
5432 | * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042 |
5433 | * says that SNAP encapsulation is used, not LLC encapsulation |
5434 | * with LLCSAP_IP. |
5435 | * |
5436 | * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and |
5437 | * RFC 2225 say that SNAP encapsulation is used, not LLC |
5438 | * encapsulation with LLCSAP_IP. |
5439 | * |
5440 | * So we always check for ETHERTYPE_IP. |
5441 | */ |
5442 | b0 = gen_linktype(cstate, ETHERTYPE_IP); |
5443 | |
5444 | switch (ip_proto) { |
5445 | case IPPROTO_UDP: |
5446 | case IPPROTO_TCP: |
5447 | case IPPROTO_SCTP: |
5448 | b1 = gen_portop(cstate, port, ip_proto, dir); |
5449 | break; |
5450 | |
5451 | case PROTO_UNDEF: |
5452 | tmp = gen_portop(cstate, port, IPPROTO_TCP, dir); |
5453 | b1 = gen_portop(cstate, port, IPPROTO_UDP, dir); |
5454 | gen_or(tmp, b1); |
5455 | tmp = gen_portop(cstate, port, IPPROTO_SCTP, dir); |
5456 | gen_or(tmp, b1); |
5457 | break; |
5458 | |
5459 | default: |
5460 | abort(); |
5461 | } |
5462 | gen_and(b0, b1); |
5463 | return b1; |
5464 | } |
5465 | |
5466 | struct block * |
5467 | gen_portop6(compiler_state_t *cstate, int port, int proto, int dir) |
5468 | { |
5469 | struct block *b0, *b1, *tmp; |
5470 | |
5471 | /* ip6 proto 'proto' */ |
5472 | /* XXX - catch the first fragment of a fragmented packet? */ |
5473 | b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, (bpf_int32)proto); |
5474 | |
5475 | switch (dir) { |
5476 | case Q_SRC: |
5477 | b1 = gen_portatom6(cstate, 0, (bpf_int32)port); |
5478 | break; |
5479 | |
5480 | case Q_DST: |
5481 | b1 = gen_portatom6(cstate, 2, (bpf_int32)port); |
5482 | break; |
5483 | |
5484 | case Q_OR: |
5485 | case Q_DEFAULT: |
5486 | tmp = gen_portatom6(cstate, 0, (bpf_int32)port); |
5487 | b1 = gen_portatom6(cstate, 2, (bpf_int32)port); |
5488 | gen_or(tmp, b1); |
5489 | break; |
5490 | |
5491 | case Q_AND: |
5492 | tmp = gen_portatom6(cstate, 0, (bpf_int32)port); |
5493 | b1 = gen_portatom6(cstate, 2, (bpf_int32)port); |
5494 | gen_and(tmp, b1); |
5495 | break; |
5496 | |
5497 | default: |
5498 | abort(); |
5499 | } |
5500 | gen_and(b0, b1); |
5501 | |
5502 | return b1; |
5503 | } |
5504 | |
5505 | static struct block * |
5506 | gen_port6(compiler_state_t *cstate, int port, int ip_proto, int dir) |
5507 | { |
5508 | struct block *b0, *b1, *tmp; |
5509 | |
5510 | /* link proto ip6 */ |
5511 | b0 = gen_linktype(cstate, ETHERTYPE_IPV6); |
5512 | |
5513 | switch (ip_proto) { |
5514 | case IPPROTO_UDP: |
5515 | case IPPROTO_TCP: |
5516 | case IPPROTO_SCTP: |
5517 | b1 = gen_portop6(cstate, port, ip_proto, dir); |
5518 | break; |
5519 | |
5520 | case PROTO_UNDEF: |
5521 | tmp = gen_portop6(cstate, port, IPPROTO_TCP, dir); |
5522 | b1 = gen_portop6(cstate, port, IPPROTO_UDP, dir); |
5523 | gen_or(tmp, b1); |
5524 | tmp = gen_portop6(cstate, port, IPPROTO_SCTP, dir); |
5525 | gen_or(tmp, b1); |
5526 | break; |
5527 | |
5528 | default: |
5529 | abort(); |
5530 | } |
5531 | gen_and(b0, b1); |
5532 | return b1; |
5533 | } |
5534 | |
5535 | /* gen_portrange code */ |
5536 | static struct block * |
5537 | gen_portrangeatom(compiler_state_t *cstate, int off, bpf_int32 v1, |
5538 | bpf_int32 v2) |
5539 | { |
5540 | struct block *b1, *b2; |
5541 | |
5542 | if (v1 > v2) { |
5543 | /* |
5544 | * Reverse the order of the ports, so v1 is the lower one. |
5545 | */ |
5546 | bpf_int32 vtemp; |
5547 | |
5548 | vtemp = v1; |
5549 | v1 = v2; |
5550 | v2 = vtemp; |
5551 | } |
5552 | |
5553 | b1 = gen_cmp_ge(cstate, OR_TRAN_IPV4, off, BPF_H, v1); |
5554 | b2 = gen_cmp_le(cstate, OR_TRAN_IPV4, off, BPF_H, v2); |
5555 | |
5556 | gen_and(b1, b2); |
5557 | |
5558 | return b2; |
5559 | } |
5560 | |
5561 | struct block * |
5562 | gen_portrangeop(compiler_state_t *cstate, int port1, int port2, int proto, |
5563 | int dir) |
5564 | { |
5565 | struct block *b0, *b1, *tmp; |
5566 | |
5567 | /* ip proto 'proto' and not a fragment other than the first fragment */ |
5568 | tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, (bpf_int32)proto); |
5569 | b0 = gen_ipfrag(cstate); |
5570 | gen_and(tmp, b0); |
5571 | |
5572 | switch (dir) { |
5573 | case Q_SRC: |
5574 | b1 = gen_portrangeatom(cstate, 0, (bpf_int32)port1, (bpf_int32)port2); |
5575 | break; |
5576 | |
5577 | case Q_DST: |
5578 | b1 = gen_portrangeatom(cstate, 2, (bpf_int32)port1, (bpf_int32)port2); |
5579 | break; |
5580 | |
5581 | case Q_OR: |
5582 | case Q_DEFAULT: |
5583 | tmp = gen_portrangeatom(cstate, 0, (bpf_int32)port1, (bpf_int32)port2); |
5584 | b1 = gen_portrangeatom(cstate, 2, (bpf_int32)port1, (bpf_int32)port2); |
5585 | gen_or(tmp, b1); |
5586 | break; |
5587 | |
5588 | case Q_AND: |
5589 | tmp = gen_portrangeatom(cstate, 0, (bpf_int32)port1, (bpf_int32)port2); |
5590 | b1 = gen_portrangeatom(cstate, 2, (bpf_int32)port1, (bpf_int32)port2); |
5591 | gen_and(tmp, b1); |
5592 | break; |
5593 | |
5594 | default: |
5595 | abort(); |
5596 | } |
5597 | gen_and(b0, b1); |
5598 | |
5599 | return b1; |
5600 | } |
5601 | |
5602 | static struct block * |
5603 | gen_portrange(compiler_state_t *cstate, int port1, int port2, int ip_proto, |
5604 | int dir) |
5605 | { |
5606 | struct block *b0, *b1, *tmp; |
5607 | |
5608 | /* link proto ip */ |
5609 | b0 = gen_linktype(cstate, ETHERTYPE_IP); |
5610 | |
5611 | switch (ip_proto) { |
5612 | case IPPROTO_UDP: |
5613 | case IPPROTO_TCP: |
5614 | case IPPROTO_SCTP: |
5615 | b1 = gen_portrangeop(cstate, port1, port2, ip_proto, dir); |
5616 | break; |
5617 | |
5618 | case PROTO_UNDEF: |
5619 | tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_TCP, dir); |
5620 | b1 = gen_portrangeop(cstate, port1, port2, IPPROTO_UDP, dir); |
5621 | gen_or(tmp, b1); |
5622 | tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_SCTP, dir); |
5623 | gen_or(tmp, b1); |
5624 | break; |
5625 | |
5626 | default: |
5627 | abort(); |
5628 | } |
5629 | gen_and(b0, b1); |
5630 | return b1; |
5631 | } |
5632 | |
5633 | static struct block * |
5634 | gen_portrangeatom6(compiler_state_t *cstate, int off, bpf_int32 v1, |
5635 | bpf_int32 v2) |
5636 | { |
5637 | struct block *b1, *b2; |
5638 | |
5639 | if (v1 > v2) { |
5640 | /* |
5641 | * Reverse the order of the ports, so v1 is the lower one. |
5642 | */ |
5643 | bpf_int32 vtemp; |
5644 | |
5645 | vtemp = v1; |
5646 | v1 = v2; |
5647 | v2 = vtemp; |
5648 | } |
5649 | |
5650 | b1 = gen_cmp_ge(cstate, OR_TRAN_IPV6, off, BPF_H, v1); |
5651 | b2 = gen_cmp_le(cstate, OR_TRAN_IPV6, off, BPF_H, v2); |
5652 | |
5653 | gen_and(b1, b2); |
5654 | |
5655 | return b2; |
5656 | } |
5657 | |
5658 | struct block * |
5659 | gen_portrangeop6(compiler_state_t *cstate, int port1, int port2, int proto, |
5660 | int dir) |
5661 | { |
5662 | struct block *b0, *b1, *tmp; |
5663 | |
5664 | /* ip6 proto 'proto' */ |
5665 | /* XXX - catch the first fragment of a fragmented packet? */ |
5666 | b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, (bpf_int32)proto); |
5667 | |
5668 | switch (dir) { |
5669 | case Q_SRC: |
5670 | b1 = gen_portrangeatom6(cstate, 0, (bpf_int32)port1, (bpf_int32)port2); |
5671 | break; |
5672 | |
5673 | case Q_DST: |
5674 | b1 = gen_portrangeatom6(cstate, 2, (bpf_int32)port1, (bpf_int32)port2); |
5675 | break; |
5676 | |
5677 | case Q_OR: |
5678 | case Q_DEFAULT: |
5679 | tmp = gen_portrangeatom6(cstate, 0, (bpf_int32)port1, (bpf_int32)port2); |
5680 | b1 = gen_portrangeatom6(cstate, 2, (bpf_int32)port1, (bpf_int32)port2); |
5681 | gen_or(tmp, b1); |
5682 | break; |
5683 | |
5684 | case Q_AND: |
5685 | tmp = gen_portrangeatom6(cstate, 0, (bpf_int32)port1, (bpf_int32)port2); |
5686 | b1 = gen_portrangeatom6(cstate, 2, (bpf_int32)port1, (bpf_int32)port2); |
5687 | gen_and(tmp, b1); |
5688 | break; |
5689 | |
5690 | default: |
5691 | abort(); |
5692 | } |
5693 | gen_and(b0, b1); |
5694 | |
5695 | return b1; |
5696 | } |
5697 | |
5698 | static struct block * |
5699 | gen_portrange6(compiler_state_t *cstate, int port1, int port2, int ip_proto, |
5700 | int dir) |
5701 | { |
5702 | struct block *b0, *b1, *tmp; |
5703 | |
5704 | /* link proto ip6 */ |
5705 | b0 = gen_linktype(cstate, ETHERTYPE_IPV6); |
5706 | |
5707 | switch (ip_proto) { |
5708 | case IPPROTO_UDP: |
5709 | case IPPROTO_TCP: |
5710 | case IPPROTO_SCTP: |
5711 | b1 = gen_portrangeop6(cstate, port1, port2, ip_proto, dir); |
5712 | break; |
5713 | |
5714 | case PROTO_UNDEF: |
5715 | tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_TCP, dir); |
5716 | b1 = gen_portrangeop6(cstate, port1, port2, IPPROTO_UDP, dir); |
5717 | gen_or(tmp, b1); |
5718 | tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_SCTP, dir); |
5719 | gen_or(tmp, b1); |
5720 | break; |
5721 | |
5722 | default: |
5723 | abort(); |
5724 | } |
5725 | gen_and(b0, b1); |
5726 | return b1; |
5727 | } |
5728 | |
5729 | static int |
5730 | lookup_proto(compiler_state_t *cstate, const char *name, int proto) |
5731 | { |
5732 | register int v; |
5733 | |
5734 | switch (proto) { |
5735 | |
5736 | case Q_DEFAULT: |
5737 | case Q_IP: |
5738 | case Q_IPV6: |
5739 | v = pcap_nametoproto(name); |
5740 | if (v == PROTO_UNDEF) |
5741 | bpf_error(cstate, "unknown ip proto '%s'" , name); |
5742 | break; |
5743 | |
5744 | case Q_LINK: |
5745 | /* XXX should look up h/w protocol type based on cstate->linktype */ |
5746 | v = pcap_nametoeproto(name); |
5747 | if (v == PROTO_UNDEF) { |
5748 | v = pcap_nametollc(name); |
5749 | if (v == PROTO_UNDEF) |
5750 | bpf_error(cstate, "unknown ether proto '%s'" , name); |
5751 | } |
5752 | break; |
5753 | |
5754 | case Q_ISO: |
5755 | if (strcmp(name, "esis" ) == 0) |
5756 | v = ISO9542_ESIS; |
5757 | else if (strcmp(name, "isis" ) == 0) |
5758 | v = ISO10589_ISIS; |
5759 | else if (strcmp(name, "clnp" ) == 0) |
5760 | v = ISO8473_CLNP; |
5761 | else |
5762 | bpf_error(cstate, "unknown osi proto '%s'" , name); |
5763 | break; |
5764 | |
5765 | default: |
5766 | v = PROTO_UNDEF; |
5767 | break; |
5768 | } |
5769 | return v; |
5770 | } |
5771 | |
5772 | #if 0 |
5773 | struct stmt * |
5774 | gen_joinsp(struct stmt **s, int n) |
5775 | { |
5776 | return NULL; |
5777 | } |
5778 | #endif |
5779 | |
5780 | static struct block * |
5781 | gen_protochain(compiler_state_t *cstate, int v, int proto, int dir) |
5782 | { |
5783 | #ifdef NO_PROTOCHAIN |
5784 | return gen_proto(cstate, v, proto, dir); |
5785 | #else |
5786 | struct block *b0, *b; |
5787 | struct slist *s[100]; |
5788 | int fix2, fix3, fix4, fix5; |
5789 | int ahcheck, again, end; |
5790 | int i, max; |
5791 | int reg2 = alloc_reg(cstate); |
5792 | |
5793 | memset(s, 0, sizeof(s)); |
5794 | fix3 = fix4 = fix5 = 0; |
5795 | |
5796 | switch (proto) { |
5797 | case Q_IP: |
5798 | case Q_IPV6: |
5799 | break; |
5800 | case Q_DEFAULT: |
5801 | b0 = gen_protochain(cstate, v, Q_IP, dir); |
5802 | b = gen_protochain(cstate, v, Q_IPV6, dir); |
5803 | gen_or(b0, b); |
5804 | return b; |
5805 | default: |
5806 | bpf_error(cstate, "bad protocol applied for 'protochain'" ); |
5807 | /*NOTREACHED*/ |
5808 | } |
5809 | |
5810 | /* |
5811 | * We don't handle variable-length prefixes before the link-layer |
5812 | * header, or variable-length link-layer headers, here yet. |
5813 | * We might want to add BPF instructions to do the protochain |
5814 | * work, to simplify that and, on platforms that have a BPF |
5815 | * interpreter with the new instructions, let the filtering |
5816 | * be done in the kernel. (We already require a modified BPF |
5817 | * engine to do the protochain stuff, to support backward |
5818 | * branches, and backward branch support is unlikely to appear |
5819 | * in kernel BPF engines.) |
5820 | */ |
5821 | if (cstate->off_linkpl.is_variable) |
5822 | bpf_error(cstate, "'protochain' not supported with variable length headers" ); |
5823 | |
5824 | cstate->no_optimize = 1; /* this code is not compatible with optimizer yet */ |
5825 | |
5826 | /* |
5827 | * s[0] is a dummy entry to protect other BPF insn from damage |
5828 | * by s[fix] = foo with uninitialized variable "fix". It is somewhat |
5829 | * hard to find interdependency made by jump table fixup. |
5830 | */ |
5831 | i = 0; |
5832 | s[i] = new_stmt(cstate, 0); /*dummy*/ |
5833 | i++; |
5834 | |
5835 | switch (proto) { |
5836 | case Q_IP: |
5837 | b0 = gen_linktype(cstate, ETHERTYPE_IP); |
5838 | |
5839 | /* A = ip->ip_p */ |
5840 | s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B); |
5841 | s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 9; |
5842 | i++; |
5843 | /* X = ip->ip_hl << 2 */ |
5844 | s[i] = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B); |
5845 | s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl; |
5846 | i++; |
5847 | break; |
5848 | |
5849 | case Q_IPV6: |
5850 | b0 = gen_linktype(cstate, ETHERTYPE_IPV6); |
5851 | |
5852 | /* A = ip6->ip_nxt */ |
5853 | s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B); |
5854 | s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 6; |
5855 | i++; |
5856 | /* X = sizeof(struct ip6_hdr) */ |
5857 | s[i] = new_stmt(cstate, BPF_LDX|BPF_IMM); |
5858 | s[i]->s.k = 40; |
5859 | i++; |
5860 | break; |
5861 | |
5862 | default: |
5863 | bpf_error(cstate, "unsupported proto to gen_protochain" ); |
5864 | /*NOTREACHED*/ |
5865 | } |
5866 | |
5867 | /* again: if (A == v) goto end; else fall through; */ |
5868 | again = i; |
5869 | s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K); |
5870 | s[i]->s.k = v; |
5871 | s[i]->s.jt = NULL; /*later*/ |
5872 | s[i]->s.jf = NULL; /*update in next stmt*/ |
5873 | fix5 = i; |
5874 | i++; |
5875 | |
5876 | #ifndef IPPROTO_NONE |
5877 | #define IPPROTO_NONE 59 |
5878 | #endif |
5879 | /* if (A == IPPROTO_NONE) goto end */ |
5880 | s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K); |
5881 | s[i]->s.jt = NULL; /*later*/ |
5882 | s[i]->s.jf = NULL; /*update in next stmt*/ |
5883 | s[i]->s.k = IPPROTO_NONE; |
5884 | s[fix5]->s.jf = s[i]; |
5885 | fix2 = i; |
5886 | i++; |
5887 | |
5888 | if (proto == Q_IPV6) { |
5889 | int v6start, v6end, v6advance, j; |
5890 | |
5891 | v6start = i; |
5892 | /* if (A == IPPROTO_HOPOPTS) goto v6advance */ |
5893 | s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K); |
5894 | s[i]->s.jt = NULL; /*later*/ |
5895 | s[i]->s.jf = NULL; /*update in next stmt*/ |
5896 | s[i]->s.k = IPPROTO_HOPOPTS; |
5897 | s[fix2]->s.jf = s[i]; |
5898 | i++; |
5899 | /* if (A == IPPROTO_DSTOPTS) goto v6advance */ |
5900 | s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K); |
5901 | s[i]->s.jt = NULL; /*later*/ |
5902 | s[i]->s.jf = NULL; /*update in next stmt*/ |
5903 | s[i]->s.k = IPPROTO_DSTOPTS; |
5904 | i++; |
5905 | /* if (A == IPPROTO_ROUTING) goto v6advance */ |
5906 | s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K); |
5907 | s[i]->s.jt = NULL; /*later*/ |
5908 | s[i]->s.jf = NULL; /*update in next stmt*/ |
5909 | s[i]->s.k = IPPROTO_ROUTING; |
5910 | i++; |
5911 | /* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */ |
5912 | s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K); |
5913 | s[i]->s.jt = NULL; /*later*/ |
5914 | s[i]->s.jf = NULL; /*later*/ |
5915 | s[i]->s.k = IPPROTO_FRAGMENT; |
5916 | fix3 = i; |
5917 | v6end = i; |
5918 | i++; |
5919 | |
5920 | /* v6advance: */ |
5921 | v6advance = i; |
5922 | |
5923 | /* |
5924 | * in short, |
5925 | * A = P[X + packet head]; |
5926 | * X = X + (P[X + packet head + 1] + 1) * 8; |
5927 | */ |
5928 | /* A = P[X + packet head] */ |
5929 | s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B); |
5930 | s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl; |
5931 | i++; |
5932 | /* MEM[reg2] = A */ |
5933 | s[i] = new_stmt(cstate, BPF_ST); |
5934 | s[i]->s.k = reg2; |
5935 | i++; |
5936 | /* A = P[X + packet head + 1]; */ |
5937 | s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B); |
5938 | s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 1; |
5939 | i++; |
5940 | /* A += 1 */ |
5941 | s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K); |
5942 | s[i]->s.k = 1; |
5943 | i++; |
5944 | /* A *= 8 */ |
5945 | s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K); |
5946 | s[i]->s.k = 8; |
5947 | i++; |
5948 | /* A += X */ |
5949 | s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X); |
5950 | s[i]->s.k = 0; |
5951 | i++; |
5952 | /* X = A; */ |
5953 | s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX); |
5954 | i++; |
5955 | /* A = MEM[reg2] */ |
5956 | s[i] = new_stmt(cstate, BPF_LD|BPF_MEM); |
5957 | s[i]->s.k = reg2; |
5958 | i++; |
5959 | |
5960 | /* goto again; (must use BPF_JA for backward jump) */ |
5961 | s[i] = new_stmt(cstate, BPF_JMP|BPF_JA); |
5962 | s[i]->s.k = again - i - 1; |
5963 | s[i - 1]->s.jf = s[i]; |
5964 | i++; |
5965 | |
5966 | /* fixup */ |
5967 | for (j = v6start; j <= v6end; j++) |
5968 | s[j]->s.jt = s[v6advance]; |
5969 | } else { |
5970 | /* nop */ |
5971 | s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K); |
5972 | s[i]->s.k = 0; |
5973 | s[fix2]->s.jf = s[i]; |
5974 | i++; |
5975 | } |
5976 | |
5977 | /* ahcheck: */ |
5978 | ahcheck = i; |
5979 | /* if (A == IPPROTO_AH) then fall through; else goto end; */ |
5980 | s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K); |
5981 | s[i]->s.jt = NULL; /*later*/ |
5982 | s[i]->s.jf = NULL; /*later*/ |
5983 | s[i]->s.k = IPPROTO_AH; |
5984 | if (fix3) |
5985 | s[fix3]->s.jf = s[ahcheck]; |
5986 | fix4 = i; |
5987 | i++; |
5988 | |
5989 | /* |
5990 | * in short, |
5991 | * A = P[X]; |
5992 | * X = X + (P[X + 1] + 2) * 4; |
5993 | */ |
5994 | /* A = X */ |
5995 | s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA); |
5996 | i++; |
5997 | /* A = P[X + packet head]; */ |
5998 | s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B); |
5999 | s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl; |
6000 | i++; |
6001 | /* MEM[reg2] = A */ |
6002 | s[i] = new_stmt(cstate, BPF_ST); |
6003 | s[i]->s.k = reg2; |
6004 | i++; |
6005 | /* A = X */ |
6006 | s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA); |
6007 | i++; |
6008 | /* A += 1 */ |
6009 | s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K); |
6010 | s[i]->s.k = 1; |
6011 | i++; |
6012 | /* X = A */ |
6013 | s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX); |
6014 | i++; |
6015 | /* A = P[X + packet head] */ |
6016 | s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B); |
6017 | s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl; |
6018 | i++; |
6019 | /* A += 2 */ |
6020 | s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K); |
6021 | s[i]->s.k = 2; |
6022 | i++; |
6023 | /* A *= 4 */ |
6024 | s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K); |
6025 | s[i]->s.k = 4; |
6026 | i++; |
6027 | /* X = A; */ |
6028 | s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX); |
6029 | i++; |
6030 | /* A = MEM[reg2] */ |
6031 | s[i] = new_stmt(cstate, BPF_LD|BPF_MEM); |
6032 | s[i]->s.k = reg2; |
6033 | i++; |
6034 | |
6035 | /* goto again; (must use BPF_JA for backward jump) */ |
6036 | s[i] = new_stmt(cstate, BPF_JMP|BPF_JA); |
6037 | s[i]->s.k = again - i - 1; |
6038 | i++; |
6039 | |
6040 | /* end: nop */ |
6041 | end = i; |
6042 | s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K); |
6043 | s[i]->s.k = 0; |
6044 | s[fix2]->s.jt = s[end]; |
6045 | s[fix4]->s.jf = s[end]; |
6046 | s[fix5]->s.jt = s[end]; |
6047 | i++; |
6048 | |
6049 | /* |
6050 | * make slist chain |
6051 | */ |
6052 | max = i; |
6053 | for (i = 0; i < max - 1; i++) |
6054 | s[i]->next = s[i + 1]; |
6055 | s[max - 1]->next = NULL; |
6056 | |
6057 | /* |
6058 | * emit final check |
6059 | */ |
6060 | b = new_block(cstate, JMP(BPF_JEQ)); |
6061 | b->stmts = s[1]; /*remember, s[0] is dummy*/ |
6062 | b->s.k = v; |
6063 | |
6064 | free_reg(cstate, reg2); |
6065 | |
6066 | gen_and(b0, b); |
6067 | return b; |
6068 | #endif |
6069 | } |
6070 | |
6071 | static struct block * |
6072 | gen_check_802_11_data_frame(compiler_state_t *cstate) |
6073 | { |
6074 | struct slist *s; |
6075 | struct block *b0, *b1; |
6076 | |
6077 | /* |
6078 | * A data frame has the 0x08 bit (b3) in the frame control field set |
6079 | * and the 0x04 bit (b2) clear. |
6080 | */ |
6081 | s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B); |
6082 | b0 = new_block(cstate, JMP(BPF_JSET)); |
6083 | b0->s.k = 0x08; |
6084 | b0->stmts = s; |
6085 | |
6086 | s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B); |
6087 | b1 = new_block(cstate, JMP(BPF_JSET)); |
6088 | b1->s.k = 0x04; |
6089 | b1->stmts = s; |
6090 | gen_not(b1); |
6091 | |
6092 | gen_and(b1, b0); |
6093 | |
6094 | return b0; |
6095 | } |
6096 | |
6097 | /* |
6098 | * Generate code that checks whether the packet is a packet for protocol |
6099 | * <proto> and whether the type field in that protocol's header has |
6100 | * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an |
6101 | * IP packet and checks the protocol number in the IP header against <v>. |
6102 | * |
6103 | * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks |
6104 | * against Q_IP and Q_IPV6. |
6105 | */ |
6106 | static struct block * |
6107 | gen_proto(compiler_state_t *cstate, int v, int proto, int dir) |
6108 | { |
6109 | struct block *b0, *b1; |
6110 | #ifndef CHASE_CHAIN |
6111 | struct block *b2; |
6112 | #endif |
6113 | |
6114 | if (dir != Q_DEFAULT) |
6115 | bpf_error(cstate, "direction applied to 'proto'" ); |
6116 | |
6117 | switch (proto) { |
6118 | case Q_DEFAULT: |
6119 | b0 = gen_proto(cstate, v, Q_IP, dir); |
6120 | b1 = gen_proto(cstate, v, Q_IPV6, dir); |
6121 | gen_or(b0, b1); |
6122 | return b1; |
6123 | |
6124 | case Q_IP: |
6125 | /* |
6126 | * For FDDI, RFC 1188 says that SNAP encapsulation is used, |
6127 | * not LLC encapsulation with LLCSAP_IP. |
6128 | * |
6129 | * For IEEE 802 networks - which includes 802.5 token ring |
6130 | * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042 |
6131 | * says that SNAP encapsulation is used, not LLC encapsulation |
6132 | * with LLCSAP_IP. |
6133 | * |
6134 | * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and |
6135 | * RFC 2225 say that SNAP encapsulation is used, not LLC |
6136 | * encapsulation with LLCSAP_IP. |
6137 | * |
6138 | * So we always check for ETHERTYPE_IP. |
6139 | */ |
6140 | b0 = gen_linktype(cstate, ETHERTYPE_IP); |
6141 | #ifndef CHASE_CHAIN |
6142 | b1 = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, (bpf_int32)v); |
6143 | #else |
6144 | b1 = gen_protochain(cstate, v, Q_IP); |
6145 | #endif |
6146 | gen_and(b0, b1); |
6147 | return b1; |
6148 | |
6149 | case Q_ISO: |
6150 | switch (cstate->linktype) { |
6151 | |
6152 | case DLT_FRELAY: |
6153 | /* |
6154 | * Frame Relay packets typically have an OSI |
6155 | * NLPID at the beginning; "gen_linktype(cstate, LLCSAP_ISONS)" |
6156 | * generates code to check for all the OSI |
6157 | * NLPIDs, so calling it and then adding a check |
6158 | * for the particular NLPID for which we're |
6159 | * looking is bogus, as we can just check for |
6160 | * the NLPID. |
6161 | * |
6162 | * What we check for is the NLPID and a frame |
6163 | * control field value of UI, i.e. 0x03 followed |
6164 | * by the NLPID. |
6165 | * |
6166 | * XXX - assumes a 2-byte Frame Relay header with |
6167 | * DLCI and flags. What if the address is longer? |
6168 | * |
6169 | * XXX - what about SNAP-encapsulated frames? |
6170 | */ |
6171 | return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | v); |
6172 | /*NOTREACHED*/ |
6173 | break; |
6174 | |
6175 | case DLT_C_HDLC: |
6176 | /* |
6177 | * Cisco uses an Ethertype lookalike - for OSI, |
6178 | * it's 0xfefe. |
6179 | */ |
6180 | b0 = gen_linktype(cstate, LLCSAP_ISONS<<8 | LLCSAP_ISONS); |
6181 | /* OSI in C-HDLC is stuffed with a fudge byte */ |
6182 | b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 1, BPF_B, (long)v); |
6183 | gen_and(b0, b1); |
6184 | return b1; |
6185 | |
6186 | default: |
6187 | b0 = gen_linktype(cstate, LLCSAP_ISONS); |
6188 | b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 0, BPF_B, (long)v); |
6189 | gen_and(b0, b1); |
6190 | return b1; |
6191 | } |
6192 | |
6193 | case Q_ISIS: |
6194 | b0 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT); |
6195 | /* |
6196 | * 4 is the offset of the PDU type relative to the IS-IS |
6197 | * header. |
6198 | */ |
6199 | b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 4, BPF_B, (long)v); |
6200 | gen_and(b0, b1); |
6201 | return b1; |
6202 | |
6203 | case Q_ARP: |
6204 | bpf_error(cstate, "arp does not encapsulate another protocol" ); |
6205 | /* NOTREACHED */ |
6206 | |
6207 | case Q_RARP: |
6208 | bpf_error(cstate, "rarp does not encapsulate another protocol" ); |
6209 | /* NOTREACHED */ |
6210 | |
6211 | case Q_ATALK: |
6212 | bpf_error(cstate, "atalk encapsulation is not specifiable" ); |
6213 | /* NOTREACHED */ |
6214 | |
6215 | case Q_DECNET: |
6216 | bpf_error(cstate, "decnet encapsulation is not specifiable" ); |
6217 | /* NOTREACHED */ |
6218 | |
6219 | case Q_SCA: |
6220 | bpf_error(cstate, "sca does not encapsulate another protocol" ); |
6221 | /* NOTREACHED */ |
6222 | |
6223 | case Q_LAT: |
6224 | bpf_error(cstate, "lat does not encapsulate another protocol" ); |
6225 | /* NOTREACHED */ |
6226 | |
6227 | case Q_MOPRC: |
6228 | bpf_error(cstate, "moprc does not encapsulate another protocol" ); |
6229 | /* NOTREACHED */ |
6230 | |
6231 | case Q_MOPDL: |
6232 | bpf_error(cstate, "mopdl does not encapsulate another protocol" ); |
6233 | /* NOTREACHED */ |
6234 | |
6235 | case Q_LINK: |
6236 | return gen_linktype(cstate, v); |
6237 | |
6238 | case Q_UDP: |
6239 | bpf_error(cstate, "'udp proto' is bogus" ); |
6240 | /* NOTREACHED */ |
6241 | |
6242 | case Q_TCP: |
6243 | bpf_error(cstate, "'tcp proto' is bogus" ); |
6244 | /* NOTREACHED */ |
6245 | |
6246 | case Q_SCTP: |
6247 | bpf_error(cstate, "'sctp proto' is bogus" ); |
6248 | /* NOTREACHED */ |
6249 | |
6250 | case Q_ICMP: |
6251 | bpf_error(cstate, "'icmp proto' is bogus" ); |
6252 | /* NOTREACHED */ |
6253 | |
6254 | case Q_IGMP: |
6255 | bpf_error(cstate, "'igmp proto' is bogus" ); |
6256 | /* NOTREACHED */ |
6257 | |
6258 | case Q_IGRP: |
6259 | bpf_error(cstate, "'igrp proto' is bogus" ); |
6260 | /* NOTREACHED */ |
6261 | |
6262 | case Q_PIM: |
6263 | bpf_error(cstate, "'pim proto' is bogus" ); |
6264 | /* NOTREACHED */ |
6265 | |
6266 | case Q_VRRP: |
6267 | bpf_error(cstate, "'vrrp proto' is bogus" ); |
6268 | /* NOTREACHED */ |
6269 | |
6270 | case Q_CARP: |
6271 | bpf_error(cstate, "'carp proto' is bogus" ); |
6272 | /* NOTREACHED */ |
6273 | |
6274 | case Q_IPV6: |
6275 | b0 = gen_linktype(cstate, ETHERTYPE_IPV6); |
6276 | #ifndef CHASE_CHAIN |
6277 | /* |
6278 | * Also check for a fragment header before the final |
6279 | * header. |
6280 | */ |
6281 | b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, IPPROTO_FRAGMENT); |
6282 | b1 = gen_cmp(cstate, OR_LINKPL, 40, BPF_B, (bpf_int32)v); |
6283 | gen_and(b2, b1); |
6284 | b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, (bpf_int32)v); |
6285 | gen_or(b2, b1); |
6286 | #else |
6287 | b1 = gen_protochain(cstate, v, Q_IPV6); |
6288 | #endif |
6289 | gen_and(b0, b1); |
6290 | return b1; |
6291 | |
6292 | case Q_ICMPV6: |
6293 | bpf_error(cstate, "'icmp6 proto' is bogus" ); |
6294 | |
6295 | case Q_AH: |
6296 | bpf_error(cstate, "'ah proto' is bogus" ); |
6297 | |
6298 | case Q_ESP: |
6299 | bpf_error(cstate, "'ah proto' is bogus" ); |
6300 | |
6301 | case Q_STP: |
6302 | bpf_error(cstate, "'stp proto' is bogus" ); |
6303 | |
6304 | case Q_IPX: |
6305 | bpf_error(cstate, "'ipx proto' is bogus" ); |
6306 | |
6307 | case Q_NETBEUI: |
6308 | bpf_error(cstate, "'netbeui proto' is bogus" ); |
6309 | |
6310 | case Q_RADIO: |
6311 | bpf_error(cstate, "'radio proto' is bogus" ); |
6312 | |
6313 | default: |
6314 | abort(); |
6315 | /* NOTREACHED */ |
6316 | } |
6317 | /* NOTREACHED */ |
6318 | } |
6319 | |
6320 | struct block * |
6321 | gen_scode(compiler_state_t *cstate, const char *name, struct qual q) |
6322 | { |
6323 | int proto = q.proto; |
6324 | int dir = q.dir; |
6325 | int tproto; |
6326 | u_char *eaddr; |
6327 | bpf_u_int32 mask, addr; |
6328 | struct addrinfo *res, *res0; |
6329 | struct sockaddr_in *sin4; |
6330 | #ifdef INET6 |
6331 | int tproto6; |
6332 | struct sockaddr_in6 *sin6; |
6333 | struct in6_addr mask128; |
6334 | #endif /*INET6*/ |
6335 | struct block *b, *tmp; |
6336 | int port, real_proto; |
6337 | int port1, port2; |
6338 | |
6339 | switch (q.addr) { |
6340 | |
6341 | case Q_NET: |
6342 | addr = pcap_nametonetaddr(name); |
6343 | if (addr == 0) |
6344 | bpf_error(cstate, "unknown network '%s'" , name); |
6345 | /* Left justify network addr and calculate its network mask */ |
6346 | mask = 0xffffffff; |
6347 | while (addr && (addr & 0xff000000) == 0) { |
6348 | addr <<= 8; |
6349 | mask <<= 8; |
6350 | } |
6351 | return gen_host(cstate, addr, mask, proto, dir, q.addr); |
6352 | |
6353 | case Q_DEFAULT: |
6354 | case Q_HOST: |
6355 | if (proto == Q_LINK) { |
6356 | switch (cstate->linktype) { |
6357 | |
6358 | case DLT_EN10MB: |
6359 | case DLT_NETANALYZER: |
6360 | case DLT_NETANALYZER_TRANSPARENT: |
6361 | eaddr = pcap_ether_hostton(name); |
6362 | if (eaddr == NULL) |
6363 | bpf_error(cstate, |
6364 | "unknown ether host '%s'" , name); |
6365 | tmp = gen_prevlinkhdr_check(cstate); |
6366 | b = gen_ehostop(cstate, eaddr, dir); |
6367 | if (tmp != NULL) |
6368 | gen_and(tmp, b); |
6369 | free(eaddr); |
6370 | return b; |
6371 | |
6372 | case DLT_FDDI: |
6373 | eaddr = pcap_ether_hostton(name); |
6374 | if (eaddr == NULL) |
6375 | bpf_error(cstate, |
6376 | "unknown FDDI host '%s'" , name); |
6377 | b = gen_fhostop(cstate, eaddr, dir); |
6378 | free(eaddr); |
6379 | return b; |
6380 | |
6381 | case DLT_IEEE802: |
6382 | eaddr = pcap_ether_hostton(name); |
6383 | if (eaddr == NULL) |
6384 | bpf_error(cstate, |
6385 | "unknown token ring host '%s'" , name); |
6386 | b = gen_thostop(cstate, eaddr, dir); |
6387 | free(eaddr); |
6388 | return b; |
6389 | |
6390 | case DLT_IEEE802_11: |
6391 | case DLT_PRISM_HEADER: |
6392 | case DLT_IEEE802_11_RADIO_AVS: |
6393 | case DLT_IEEE802_11_RADIO: |
6394 | case DLT_PPI: |
6395 | eaddr = pcap_ether_hostton(name); |
6396 | if (eaddr == NULL) |
6397 | bpf_error(cstate, |
6398 | "unknown 802.11 host '%s'" , name); |
6399 | b = gen_wlanhostop(cstate, eaddr, dir); |
6400 | free(eaddr); |
6401 | return b; |
6402 | |
6403 | case DLT_IP_OVER_FC: |
6404 | eaddr = pcap_ether_hostton(name); |
6405 | if (eaddr == NULL) |
6406 | bpf_error(cstate, |
6407 | "unknown Fibre Channel host '%s'" , name); |
6408 | b = gen_ipfchostop(cstate, eaddr, dir); |
6409 | free(eaddr); |
6410 | return b; |
6411 | } |
6412 | |
6413 | bpf_error(cstate, "only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name" ); |
6414 | } else if (proto == Q_DECNET) { |
6415 | unsigned short dn_addr; |
6416 | |
6417 | if (!__pcap_nametodnaddr(name, &dn_addr)) { |
6418 | #ifdef DECNETLIB |
6419 | bpf_error(cstate, "unknown decnet host name '%s'\n" , name); |
6420 | #else |
6421 | bpf_error(cstate, "decnet name support not included, '%s' cannot be translated\n" , |
6422 | name); |
6423 | #endif |
6424 | } |
6425 | /* |
6426 | * I don't think DECNET hosts can be multihomed, so |
6427 | * there is no need to build up a list of addresses |
6428 | */ |
6429 | return (gen_host(cstate, dn_addr, 0, proto, dir, q.addr)); |
6430 | } else { |
6431 | #ifdef INET6 |
6432 | memset(&mask128, 0xff, sizeof(mask128)); |
6433 | #endif |
6434 | res0 = res = pcap_nametoaddrinfo(name); |
6435 | if (res == NULL) |
6436 | bpf_error(cstate, "unknown host '%s'" , name); |
6437 | cstate->ai = res; |
6438 | b = tmp = NULL; |
6439 | tproto = proto; |
6440 | #ifdef INET6 |
6441 | tproto6 = proto; |
6442 | #endif |
6443 | if (cstate->off_linktype.constant_part == OFFSET_NOT_SET && |
6444 | tproto == Q_DEFAULT) { |
6445 | tproto = Q_IP; |
6446 | #ifdef INET6 |
6447 | tproto6 = Q_IPV6; |
6448 | #endif |
6449 | } |
6450 | for (res = res0; res; res = res->ai_next) { |
6451 | switch (res->ai_family) { |
6452 | case AF_INET: |
6453 | #ifdef INET6 |
6454 | if (tproto == Q_IPV6) |
6455 | continue; |
6456 | #endif |
6457 | |
6458 | sin4 = (struct sockaddr_in *) |
6459 | res->ai_addr; |
6460 | tmp = gen_host(cstate, ntohl(sin4->sin_addr.s_addr), |
6461 | 0xffffffff, tproto, dir, q.addr); |
6462 | break; |
6463 | #ifdef INET6 |
6464 | case AF_INET6: |
6465 | if (tproto6 == Q_IP) |
6466 | continue; |
6467 | |
6468 | sin6 = (struct sockaddr_in6 *) |
6469 | res->ai_addr; |
6470 | tmp = gen_host6(cstate, &sin6->sin6_addr, |
6471 | &mask128, tproto6, dir, q.addr); |
6472 | break; |
6473 | #endif |
6474 | default: |
6475 | continue; |
6476 | } |
6477 | if (b) |
6478 | gen_or(b, tmp); |
6479 | b = tmp; |
6480 | } |
6481 | cstate->ai = NULL; |
6482 | freeaddrinfo(res0); |
6483 | if (b == NULL) { |
6484 | bpf_error(cstate, "unknown host '%s'%s" , name, |
6485 | (proto == Q_DEFAULT) |
6486 | ? "" |
6487 | : " for specified address family" ); |
6488 | } |
6489 | return b; |
6490 | } |
6491 | |
6492 | case Q_PORT: |
6493 | if (proto != Q_DEFAULT && |
6494 | proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP) |
6495 | bpf_error(cstate, "illegal qualifier of 'port'" ); |
6496 | if (pcap_nametoport(name, &port, &real_proto) == 0) |
6497 | bpf_error(cstate, "unknown port '%s'" , name); |
6498 | if (proto == Q_UDP) { |
6499 | if (real_proto == IPPROTO_TCP) |
6500 | bpf_error(cstate, "port '%s' is tcp" , name); |
6501 | else if (real_proto == IPPROTO_SCTP) |
6502 | bpf_error(cstate, "port '%s' is sctp" , name); |
6503 | else |
6504 | /* override PROTO_UNDEF */ |
6505 | real_proto = IPPROTO_UDP; |
6506 | } |
6507 | if (proto == Q_TCP) { |
6508 | if (real_proto == IPPROTO_UDP) |
6509 | bpf_error(cstate, "port '%s' is udp" , name); |
6510 | |
6511 | else if (real_proto == IPPROTO_SCTP) |
6512 | bpf_error(cstate, "port '%s' is sctp" , name); |
6513 | else |
6514 | /* override PROTO_UNDEF */ |
6515 | real_proto = IPPROTO_TCP; |
6516 | } |
6517 | if (proto == Q_SCTP) { |
6518 | if (real_proto == IPPROTO_UDP) |
6519 | bpf_error(cstate, "port '%s' is udp" , name); |
6520 | |
6521 | else if (real_proto == IPPROTO_TCP) |
6522 | bpf_error(cstate, "port '%s' is tcp" , name); |
6523 | else |
6524 | /* override PROTO_UNDEF */ |
6525 | real_proto = IPPROTO_SCTP; |
6526 | } |
6527 | if (port < 0) |
6528 | bpf_error(cstate, "illegal port number %d < 0" , port); |
6529 | if (port > 65535) |
6530 | bpf_error(cstate, "illegal port number %d > 65535" , port); |
6531 | b = gen_port(cstate, port, real_proto, dir); |
6532 | gen_or(gen_port6(cstate, port, real_proto, dir), b); |
6533 | return b; |
6534 | |
6535 | case Q_PORTRANGE: |
6536 | if (proto != Q_DEFAULT && |
6537 | proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP) |
6538 | bpf_error(cstate, "illegal qualifier of 'portrange'" ); |
6539 | if (pcap_nametoportrange(name, &port1, &port2, &real_proto) == 0) |
6540 | bpf_error(cstate, "unknown port in range '%s'" , name); |
6541 | if (proto == Q_UDP) { |
6542 | if (real_proto == IPPROTO_TCP) |
6543 | bpf_error(cstate, "port in range '%s' is tcp" , name); |
6544 | else if (real_proto == IPPROTO_SCTP) |
6545 | bpf_error(cstate, "port in range '%s' is sctp" , name); |
6546 | else |
6547 | /* override PROTO_UNDEF */ |
6548 | real_proto = IPPROTO_UDP; |
6549 | } |
6550 | if (proto == Q_TCP) { |
6551 | if (real_proto == IPPROTO_UDP) |
6552 | bpf_error(cstate, "port in range '%s' is udp" , name); |
6553 | else if (real_proto == IPPROTO_SCTP) |
6554 | bpf_error(cstate, "port in range '%s' is sctp" , name); |
6555 | else |
6556 | /* override PROTO_UNDEF */ |
6557 | real_proto = IPPROTO_TCP; |
6558 | } |
6559 | if (proto == Q_SCTP) { |
6560 | if (real_proto == IPPROTO_UDP) |
6561 | bpf_error(cstate, "port in range '%s' is udp" , name); |
6562 | else if (real_proto == IPPROTO_TCP) |
6563 | bpf_error(cstate, "port in range '%s' is tcp" , name); |
6564 | else |
6565 | /* override PROTO_UNDEF */ |
6566 | real_proto = IPPROTO_SCTP; |
6567 | } |
6568 | if (port1 < 0) |
6569 | bpf_error(cstate, "illegal port number %d < 0" , port1); |
6570 | if (port1 > 65535) |
6571 | bpf_error(cstate, "illegal port number %d > 65535" , port1); |
6572 | if (port2 < 0) |
6573 | bpf_error(cstate, "illegal port number %d < 0" , port2); |
6574 | if (port2 > 65535) |
6575 | bpf_error(cstate, "illegal port number %d > 65535" , port2); |
6576 | |
6577 | b = gen_portrange(cstate, port1, port2, real_proto, dir); |
6578 | gen_or(gen_portrange6(cstate, port1, port2, real_proto, dir), b); |
6579 | return b; |
6580 | |
6581 | case Q_GATEWAY: |
6582 | #ifndef INET6 |
6583 | eaddr = pcap_ether_hostton(name); |
6584 | if (eaddr == NULL) |
6585 | bpf_error(cstate, "unknown ether host: %s" , name); |
6586 | |
6587 | res = pcap_nametoaddrinfo(name); |
6588 | cstate->ai = res; |
6589 | if (res == NULL) |
6590 | bpf_error(cstate, "unknown host '%s'" , name); |
6591 | b = gen_gateway(cstate, eaddr, res, proto, dir); |
6592 | cstate->ai = NULL; |
6593 | freeaddrinfo(res); |
6594 | if (b == NULL) |
6595 | bpf_error(cstate, "unknown host '%s'" , name); |
6596 | return b; |
6597 | #else |
6598 | bpf_error(cstate, "'gateway' not supported in this configuration" ); |
6599 | #endif /*INET6*/ |
6600 | |
6601 | case Q_PROTO: |
6602 | real_proto = lookup_proto(cstate, name, proto); |
6603 | if (real_proto >= 0) |
6604 | return gen_proto(cstate, real_proto, proto, dir); |
6605 | else |
6606 | bpf_error(cstate, "unknown protocol: %s" , name); |
6607 | |
6608 | case Q_PROTOCHAIN: |
6609 | real_proto = lookup_proto(cstate, name, proto); |
6610 | if (real_proto >= 0) |
6611 | return gen_protochain(cstate, real_proto, proto, dir); |
6612 | else |
6613 | bpf_error(cstate, "unknown protocol: %s" , name); |
6614 | |
6615 | case Q_UNDEF: |
6616 | syntax(cstate); |
6617 | /* NOTREACHED */ |
6618 | } |
6619 | abort(); |
6620 | /* NOTREACHED */ |
6621 | } |
6622 | |
6623 | struct block * |
6624 | gen_mcode(compiler_state_t *cstate, const char *s1, const char *s2, |
6625 | unsigned int masklen, struct qual q) |
6626 | { |
6627 | register int nlen, mlen; |
6628 | bpf_u_int32 n, m; |
6629 | |
6630 | nlen = __pcap_atoin(s1, &n); |
6631 | /* Promote short ipaddr */ |
6632 | n <<= 32 - nlen; |
6633 | |
6634 | if (s2 != NULL) { |
6635 | mlen = __pcap_atoin(s2, &m); |
6636 | /* Promote short ipaddr */ |
6637 | m <<= 32 - mlen; |
6638 | if ((n & ~m) != 0) |
6639 | bpf_error(cstate, "non-network bits set in \"%s mask %s\"" , |
6640 | s1, s2); |
6641 | } else { |
6642 | /* Convert mask len to mask */ |
6643 | if (masklen > 32) |
6644 | bpf_error(cstate, "mask length must be <= 32" ); |
6645 | if (masklen == 0) { |
6646 | /* |
6647 | * X << 32 is not guaranteed by C to be 0; it's |
6648 | * undefined. |
6649 | */ |
6650 | m = 0; |
6651 | } else |
6652 | m = 0xffffffff << (32 - masklen); |
6653 | if ((n & ~m) != 0) |
6654 | bpf_error(cstate, "non-network bits set in \"%s/%d\"" , |
6655 | s1, masklen); |
6656 | } |
6657 | |
6658 | switch (q.addr) { |
6659 | |
6660 | case Q_NET: |
6661 | return gen_host(cstate, n, m, q.proto, q.dir, q.addr); |
6662 | |
6663 | default: |
6664 | bpf_error(cstate, "Mask syntax for networks only" ); |
6665 | /* NOTREACHED */ |
6666 | } |
6667 | /* NOTREACHED */ |
6668 | } |
6669 | |
6670 | struct block * |
6671 | gen_ncode(compiler_state_t *cstate, const char *s, bpf_u_int32 v, struct qual q) |
6672 | { |
6673 | bpf_u_int32 mask; |
6674 | int proto = q.proto; |
6675 | int dir = q.dir; |
6676 | register int vlen; |
6677 | |
6678 | if (s == NULL) |
6679 | vlen = 32; |
6680 | else if (q.proto == Q_DECNET) { |
6681 | vlen = __pcap_atodn(s, &v); |
6682 | if (vlen == 0) |
6683 | bpf_error(cstate, "malformed decnet address '%s'" , s); |
6684 | } else |
6685 | vlen = __pcap_atoin(s, &v); |
6686 | |
6687 | switch (q.addr) { |
6688 | |
6689 | case Q_DEFAULT: |
6690 | case Q_HOST: |
6691 | case Q_NET: |
6692 | if (proto == Q_DECNET) |
6693 | return gen_host(cstate, v, 0, proto, dir, q.addr); |
6694 | else if (proto == Q_LINK) { |
6695 | bpf_error(cstate, "illegal link layer address" ); |
6696 | } else { |
6697 | mask = 0xffffffff; |
6698 | if (s == NULL && q.addr == Q_NET) { |
6699 | /* Promote short net number */ |
6700 | while (v && (v & 0xff000000) == 0) { |
6701 | v <<= 8; |
6702 | mask <<= 8; |
6703 | } |
6704 | } else { |
6705 | /* Promote short ipaddr */ |
6706 | v <<= 32 - vlen; |
6707 | mask <<= 32 - vlen ; |
6708 | } |
6709 | return gen_host(cstate, v, mask, proto, dir, q.addr); |
6710 | } |
6711 | |
6712 | case Q_PORT: |
6713 | if (proto == Q_UDP) |
6714 | proto = IPPROTO_UDP; |
6715 | else if (proto == Q_TCP) |
6716 | proto = IPPROTO_TCP; |
6717 | else if (proto == Q_SCTP) |
6718 | proto = IPPROTO_SCTP; |
6719 | else if (proto == Q_DEFAULT) |
6720 | proto = PROTO_UNDEF; |
6721 | else |
6722 | bpf_error(cstate, "illegal qualifier of 'port'" ); |
6723 | |
6724 | if (v > 65535) |
6725 | bpf_error(cstate, "illegal port number %u > 65535" , v); |
6726 | |
6727 | { |
6728 | struct block *b; |
6729 | b = gen_port(cstate, (int)v, proto, dir); |
6730 | gen_or(gen_port6(cstate, (int)v, proto, dir), b); |
6731 | return b; |
6732 | } |
6733 | |
6734 | case Q_PORTRANGE: |
6735 | if (proto == Q_UDP) |
6736 | proto = IPPROTO_UDP; |
6737 | else if (proto == Q_TCP) |
6738 | proto = IPPROTO_TCP; |
6739 | else if (proto == Q_SCTP) |
6740 | proto = IPPROTO_SCTP; |
6741 | else if (proto == Q_DEFAULT) |
6742 | proto = PROTO_UNDEF; |
6743 | else |
6744 | bpf_error(cstate, "illegal qualifier of 'portrange'" ); |
6745 | |
6746 | if (v > 65535) |
6747 | bpf_error(cstate, "illegal port number %u > 65535" , v); |
6748 | |
6749 | { |
6750 | struct block *b; |
6751 | b = gen_portrange(cstate, (int)v, (int)v, proto, dir); |
6752 | gen_or(gen_portrange6(cstate, (int)v, (int)v, proto, dir), b); |
6753 | return b; |
6754 | } |
6755 | |
6756 | case Q_GATEWAY: |
6757 | bpf_error(cstate, "'gateway' requires a name" ); |
6758 | /* NOTREACHED */ |
6759 | |
6760 | case Q_PROTO: |
6761 | return gen_proto(cstate, (int)v, proto, dir); |
6762 | |
6763 | case Q_PROTOCHAIN: |
6764 | return gen_protochain(cstate, (int)v, proto, dir); |
6765 | |
6766 | case Q_UNDEF: |
6767 | syntax(cstate); |
6768 | /* NOTREACHED */ |
6769 | |
6770 | default: |
6771 | abort(); |
6772 | /* NOTREACHED */ |
6773 | } |
6774 | /* NOTREACHED */ |
6775 | } |
6776 | |
6777 | #ifdef INET6 |
6778 | struct block * |
6779 | gen_mcode6(compiler_state_t *cstate, const char *s1, const char *s2, |
6780 | unsigned int masklen, struct qual q) |
6781 | { |
6782 | struct addrinfo *res; |
6783 | struct in6_addr *addr; |
6784 | struct in6_addr mask; |
6785 | struct block *b; |
6786 | uint32_t *a, *m; |
6787 | |
6788 | if (s2) |
6789 | bpf_error(cstate, "no mask %s supported" , s2); |
6790 | |
6791 | res = pcap_nametoaddrinfo(s1); |
6792 | if (!res) |
6793 | bpf_error(cstate, "invalid ip6 address %s" , s1); |
6794 | cstate->ai = res; |
6795 | if (res->ai_next) |
6796 | bpf_error(cstate, "%s resolved to multiple address" , s1); |
6797 | addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr; |
6798 | |
6799 | if (sizeof(mask) * 8 < masklen) |
6800 | bpf_error(cstate, "mask length must be <= %u" , (unsigned int)(sizeof(mask) * 8)); |
6801 | memset(&mask, 0, sizeof(mask)); |
6802 | memset(&mask, 0xff, masklen / 8); |
6803 | if (masklen % 8) { |
6804 | mask.s6_addr[masklen / 8] = |
6805 | (0xff << (8 - masklen % 8)) & 0xff; |
6806 | } |
6807 | |
6808 | a = (uint32_t *)addr; |
6809 | m = (uint32_t *)&mask; |
6810 | if ((a[0] & ~m[0]) || (a[1] & ~m[1]) |
6811 | || (a[2] & ~m[2]) || (a[3] & ~m[3])) { |
6812 | bpf_error(cstate, "non-network bits set in \"%s/%d\"" , s1, masklen); |
6813 | } |
6814 | |
6815 | switch (q.addr) { |
6816 | |
6817 | case Q_DEFAULT: |
6818 | case Q_HOST: |
6819 | if (masklen != 128) |
6820 | bpf_error(cstate, "Mask syntax for networks only" ); |
6821 | /* FALLTHROUGH */ |
6822 | |
6823 | case Q_NET: |
6824 | b = gen_host6(cstate, addr, &mask, q.proto, q.dir, q.addr); |
6825 | cstate->ai = NULL; |
6826 | freeaddrinfo(res); |
6827 | return b; |
6828 | |
6829 | default: |
6830 | bpf_error(cstate, "invalid qualifier against IPv6 address" ); |
6831 | /* NOTREACHED */ |
6832 | } |
6833 | } |
6834 | #endif /*INET6*/ |
6835 | |
6836 | struct block * |
6837 | gen_ecode(compiler_state_t *cstate, const u_char *eaddr, struct qual q) |
6838 | { |
6839 | struct block *b, *tmp; |
6840 | |
6841 | if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) { |
6842 | switch (cstate->linktype) { |
6843 | case DLT_EN10MB: |
6844 | case DLT_NETANALYZER: |
6845 | case DLT_NETANALYZER_TRANSPARENT: |
6846 | tmp = gen_prevlinkhdr_check(cstate); |
6847 | b = gen_ehostop(cstate, eaddr, (int)q.dir); |
6848 | if (tmp != NULL) |
6849 | gen_and(tmp, b); |
6850 | return b; |
6851 | case DLT_FDDI: |
6852 | return gen_fhostop(cstate, eaddr, (int)q.dir); |
6853 | case DLT_IEEE802: |
6854 | return gen_thostop(cstate, eaddr, (int)q.dir); |
6855 | case DLT_IEEE802_11: |
6856 | case DLT_PRISM_HEADER: |
6857 | case DLT_IEEE802_11_RADIO_AVS: |
6858 | case DLT_IEEE802_11_RADIO: |
6859 | case DLT_PPI: |
6860 | return gen_wlanhostop(cstate, eaddr, (int)q.dir); |
6861 | case DLT_IP_OVER_FC: |
6862 | return gen_ipfchostop(cstate, eaddr, (int)q.dir); |
6863 | default: |
6864 | bpf_error(cstate, "ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel" ); |
6865 | break; |
6866 | } |
6867 | } |
6868 | bpf_error(cstate, "ethernet address used in non-ether expression" ); |
6869 | /* NOTREACHED */ |
6870 | } |
6871 | |
6872 | void |
6873 | sappend(struct slist *s0, struct slist *s1) |
6874 | { |
6875 | /* |
6876 | * This is definitely not the best way to do this, but the |
6877 | * lists will rarely get long. |
6878 | */ |
6879 | while (s0->next) |
6880 | s0 = s0->next; |
6881 | s0->next = s1; |
6882 | } |
6883 | |
6884 | static struct slist * |
6885 | xfer_to_x(compiler_state_t *cstate, struct arth *a) |
6886 | { |
6887 | struct slist *s; |
6888 | |
6889 | s = new_stmt(cstate, BPF_LDX|BPF_MEM); |
6890 | s->s.k = a->regno; |
6891 | return s; |
6892 | } |
6893 | |
6894 | static struct slist * |
6895 | xfer_to_a(compiler_state_t *cstate, struct arth *a) |
6896 | { |
6897 | struct slist *s; |
6898 | |
6899 | s = new_stmt(cstate, BPF_LD|BPF_MEM); |
6900 | s->s.k = a->regno; |
6901 | return s; |
6902 | } |
6903 | |
6904 | /* |
6905 | * Modify "index" to use the value stored into its register as an |
6906 | * offset relative to the beginning of the header for the protocol |
6907 | * "proto", and allocate a register and put an item "size" bytes long |
6908 | * (1, 2, or 4) at that offset into that register, making it the register |
6909 | * for "index". |
6910 | */ |
6911 | struct arth * |
6912 | gen_load(compiler_state_t *cstate, int proto, struct arth *inst, int size) |
6913 | { |
6914 | struct slist *s, *tmp; |
6915 | struct block *b; |
6916 | int regno = alloc_reg(cstate); |
6917 | |
6918 | free_reg(cstate, inst->regno); |
6919 | switch (size) { |
6920 | |
6921 | default: |
6922 | bpf_error(cstate, "data size must be 1, 2, or 4" ); |
6923 | |
6924 | case 1: |
6925 | size = BPF_B; |
6926 | break; |
6927 | |
6928 | case 2: |
6929 | size = BPF_H; |
6930 | break; |
6931 | |
6932 | case 4: |
6933 | size = BPF_W; |
6934 | break; |
6935 | } |
6936 | switch (proto) { |
6937 | default: |
6938 | bpf_error(cstate, "unsupported index operation" ); |
6939 | |
6940 | case Q_RADIO: |
6941 | /* |
6942 | * The offset is relative to the beginning of the packet |
6943 | * data, if we have a radio header. (If we don't, this |
6944 | * is an error.) |
6945 | */ |
6946 | if (cstate->linktype != DLT_IEEE802_11_RADIO_AVS && |
6947 | cstate->linktype != DLT_IEEE802_11_RADIO && |
6948 | cstate->linktype != DLT_PRISM_HEADER) |
6949 | bpf_error(cstate, "radio information not present in capture" ); |
6950 | |
6951 | /* |
6952 | * Load into the X register the offset computed into the |
6953 | * register specified by "index". |
6954 | */ |
6955 | s = xfer_to_x(cstate, inst); |
6956 | |
6957 | /* |
6958 | * Load the item at that offset. |
6959 | */ |
6960 | tmp = new_stmt(cstate, BPF_LD|BPF_IND|size); |
6961 | sappend(s, tmp); |
6962 | sappend(inst->s, s); |
6963 | break; |
6964 | |
6965 | case Q_LINK: |
6966 | /* |
6967 | * The offset is relative to the beginning of |
6968 | * the link-layer header. |
6969 | * |
6970 | * XXX - what about ATM LANE? Should the index be |
6971 | * relative to the beginning of the AAL5 frame, so |
6972 | * that 0 refers to the beginning of the LE Control |
6973 | * field, or relative to the beginning of the LAN |
6974 | * frame, so that 0 refers, for Ethernet LANE, to |
6975 | * the beginning of the destination address? |
6976 | */ |
6977 | s = gen_abs_offset_varpart(cstate, &cstate->off_linkhdr); |
6978 | |
6979 | /* |
6980 | * If "s" is non-null, it has code to arrange that the |
6981 | * X register contains the length of the prefix preceding |
6982 | * the link-layer header. Add to it the offset computed |
6983 | * into the register specified by "index", and move that |
6984 | * into the X register. Otherwise, just load into the X |
6985 | * register the offset computed into the register specified |
6986 | * by "index". |
6987 | */ |
6988 | if (s != NULL) { |
6989 | sappend(s, xfer_to_a(cstate, inst)); |
6990 | sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X)); |
6991 | sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX)); |
6992 | } else |
6993 | s = xfer_to_x(cstate, inst); |
6994 | |
6995 | /* |
6996 | * Load the item at the sum of the offset we've put in the |
6997 | * X register and the offset of the start of the link |
6998 | * layer header (which is 0 if the radio header is |
6999 | * variable-length; that header length is what we put |
7000 | * into the X register and then added to the index). |
7001 | */ |
7002 | tmp = new_stmt(cstate, BPF_LD|BPF_IND|size); |
7003 | tmp->s.k = cstate->off_linkhdr.constant_part; |
7004 | sappend(s, tmp); |
7005 | sappend(inst->s, s); |
7006 | break; |
7007 | |
7008 | case Q_IP: |
7009 | case Q_ARP: |
7010 | case Q_RARP: |
7011 | case Q_ATALK: |
7012 | case Q_DECNET: |
7013 | case Q_SCA: |
7014 | case Q_LAT: |
7015 | case Q_MOPRC: |
7016 | case Q_MOPDL: |
7017 | case Q_IPV6: |
7018 | /* |
7019 | * The offset is relative to the beginning of |
7020 | * the network-layer header. |
7021 | * XXX - are there any cases where we want |
7022 | * cstate->off_nl_nosnap? |
7023 | */ |
7024 | s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl); |
7025 | |
7026 | /* |
7027 | * If "s" is non-null, it has code to arrange that the |
7028 | * X register contains the variable part of the offset |
7029 | * of the link-layer payload. Add to it the offset |
7030 | * computed into the register specified by "index", |
7031 | * and move that into the X register. Otherwise, just |
7032 | * load into the X register the offset computed into |
7033 | * the register specified by "index". |
7034 | */ |
7035 | if (s != NULL) { |
7036 | sappend(s, xfer_to_a(cstate, inst)); |
7037 | sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X)); |
7038 | sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX)); |
7039 | } else |
7040 | s = xfer_to_x(cstate, inst); |
7041 | |
7042 | /* |
7043 | * Load the item at the sum of the offset we've put in the |
7044 | * X register, the offset of the start of the network |
7045 | * layer header from the beginning of the link-layer |
7046 | * payload, and the constant part of the offset of the |
7047 | * start of the link-layer payload. |
7048 | */ |
7049 | tmp = new_stmt(cstate, BPF_LD|BPF_IND|size); |
7050 | tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl; |
7051 | sappend(s, tmp); |
7052 | sappend(inst->s, s); |
7053 | |
7054 | /* |
7055 | * Do the computation only if the packet contains |
7056 | * the protocol in question. |
7057 | */ |
7058 | b = gen_proto_abbrev(cstate, proto); |
7059 | if (inst->b) |
7060 | gen_and(inst->b, b); |
7061 | inst->b = b; |
7062 | break; |
7063 | |
7064 | case Q_SCTP: |
7065 | case Q_TCP: |
7066 | case Q_UDP: |
7067 | case Q_ICMP: |
7068 | case Q_IGMP: |
7069 | case Q_IGRP: |
7070 | case Q_PIM: |
7071 | case Q_VRRP: |
7072 | case Q_CARP: |
7073 | /* |
7074 | * The offset is relative to the beginning of |
7075 | * the transport-layer header. |
7076 | * |
7077 | * Load the X register with the length of the IPv4 header |
7078 | * (plus the offset of the link-layer header, if it's |
7079 | * a variable-length header), in bytes. |
7080 | * |
7081 | * XXX - are there any cases where we want |
7082 | * cstate->off_nl_nosnap? |
7083 | * XXX - we should, if we're built with |
7084 | * IPv6 support, generate code to load either |
7085 | * IPv4, IPv6, or both, as appropriate. |
7086 | */ |
7087 | s = gen_loadx_iphdrlen(cstate); |
7088 | |
7089 | /* |
7090 | * The X register now contains the sum of the variable |
7091 | * part of the offset of the link-layer payload and the |
7092 | * length of the network-layer header. |
7093 | * |
7094 | * Load into the A register the offset relative to |
7095 | * the beginning of the transport layer header, |
7096 | * add the X register to that, move that to the |
7097 | * X register, and load with an offset from the |
7098 | * X register equal to the sum of the constant part of |
7099 | * the offset of the link-layer payload and the offset, |
7100 | * relative to the beginning of the link-layer payload, |
7101 | * of the network-layer header. |
7102 | */ |
7103 | sappend(s, xfer_to_a(cstate, inst)); |
7104 | sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X)); |
7105 | sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX)); |
7106 | sappend(s, tmp = new_stmt(cstate, BPF_LD|BPF_IND|size)); |
7107 | tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl; |
7108 | sappend(inst->s, s); |
7109 | |
7110 | /* |
7111 | * Do the computation only if the packet contains |
7112 | * the protocol in question - which is true only |
7113 | * if this is an IP datagram and is the first or |
7114 | * only fragment of that datagram. |
7115 | */ |
7116 | gen_and(gen_proto_abbrev(cstate, proto), b = gen_ipfrag(cstate)); |
7117 | if (inst->b) |
7118 | gen_and(inst->b, b); |
7119 | gen_and(gen_proto_abbrev(cstate, Q_IP), b); |
7120 | inst->b = b; |
7121 | break; |
7122 | case Q_ICMPV6: |
7123 | /* |
7124 | * Do the computation only if the packet contains |
7125 | * the protocol in question. |
7126 | */ |
7127 | b = gen_proto_abbrev(cstate, Q_IPV6); |
7128 | if (inst->b) { |
7129 | gen_and(inst->b, b); |
7130 | } |
7131 | inst->b = b; |
7132 | |
7133 | /* |
7134 | * Check if we have an icmp6 next header |
7135 | */ |
7136 | b = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, 58); |
7137 | if (inst->b) { |
7138 | gen_and(inst->b, b); |
7139 | } |
7140 | inst->b = b; |
7141 | |
7142 | |
7143 | s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl); |
7144 | /* |
7145 | * If "s" is non-null, it has code to arrange that the |
7146 | * X register contains the variable part of the offset |
7147 | * of the link-layer payload. Add to it the offset |
7148 | * computed into the register specified by "index", |
7149 | * and move that into the X register. Otherwise, just |
7150 | * load into the X register the offset computed into |
7151 | * the register specified by "index". |
7152 | */ |
7153 | if (s != NULL) { |
7154 | sappend(s, xfer_to_a(cstate, inst)); |
7155 | sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X)); |
7156 | sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX)); |
7157 | } else { |
7158 | s = xfer_to_x(cstate, inst); |
7159 | } |
7160 | |
7161 | /* |
7162 | * Load the item at the sum of the offset we've put in the |
7163 | * X register, the offset of the start of the network |
7164 | * layer header from the beginning of the link-layer |
7165 | * payload, and the constant part of the offset of the |
7166 | * start of the link-layer payload. |
7167 | */ |
7168 | tmp = new_stmt(cstate, BPF_LD|BPF_IND|size); |
7169 | tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 40; |
7170 | |
7171 | sappend(s, tmp); |
7172 | sappend(inst->s, s); |
7173 | |
7174 | break; |
7175 | } |
7176 | inst->regno = regno; |
7177 | s = new_stmt(cstate, BPF_ST); |
7178 | s->s.k = regno; |
7179 | sappend(inst->s, s); |
7180 | |
7181 | return inst; |
7182 | } |
7183 | |
7184 | struct block * |
7185 | gen_relation(compiler_state_t *cstate, int code, struct arth *a0, |
7186 | struct arth *a1, int reversed) |
7187 | { |
7188 | struct slist *s0, *s1, *s2; |
7189 | struct block *b, *tmp; |
7190 | |
7191 | s0 = xfer_to_x(cstate, a1); |
7192 | s1 = xfer_to_a(cstate, a0); |
7193 | if (code == BPF_JEQ) { |
7194 | s2 = new_stmt(cstate, BPF_ALU|BPF_SUB|BPF_X); |
7195 | b = new_block(cstate, JMP(code)); |
7196 | sappend(s1, s2); |
7197 | } |
7198 | else |
7199 | b = new_block(cstate, BPF_JMP|code|BPF_X); |
7200 | if (reversed) |
7201 | gen_not(b); |
7202 | |
7203 | sappend(s0, s1); |
7204 | sappend(a1->s, s0); |
7205 | sappend(a0->s, a1->s); |
7206 | |
7207 | b->stmts = a0->s; |
7208 | |
7209 | free_reg(cstate, a0->regno); |
7210 | free_reg(cstate, a1->regno); |
7211 | |
7212 | /* 'and' together protocol checks */ |
7213 | if (a0->b) { |
7214 | if (a1->b) { |
7215 | gen_and(a0->b, tmp = a1->b); |
7216 | } |
7217 | else |
7218 | tmp = a0->b; |
7219 | } else |
7220 | tmp = a1->b; |
7221 | |
7222 | if (tmp) |
7223 | gen_and(tmp, b); |
7224 | |
7225 | return b; |
7226 | } |
7227 | |
7228 | struct arth * |
7229 | gen_loadlen(compiler_state_t *cstate) |
7230 | { |
7231 | int regno = alloc_reg(cstate); |
7232 | struct arth *a = (struct arth *)newchunk(cstate, sizeof(*a)); |
7233 | struct slist *s; |
7234 | |
7235 | s = new_stmt(cstate, BPF_LD|BPF_LEN); |
7236 | s->next = new_stmt(cstate, BPF_ST); |
7237 | s->next->s.k = regno; |
7238 | a->s = s; |
7239 | a->regno = regno; |
7240 | |
7241 | return a; |
7242 | } |
7243 | |
7244 | struct arth * |
7245 | gen_loadi(compiler_state_t *cstate, int val) |
7246 | { |
7247 | struct arth *a; |
7248 | struct slist *s; |
7249 | int reg; |
7250 | |
7251 | a = (struct arth *)newchunk(cstate, sizeof(*a)); |
7252 | |
7253 | reg = alloc_reg(cstate); |
7254 | |
7255 | s = new_stmt(cstate, BPF_LD|BPF_IMM); |
7256 | s->s.k = val; |
7257 | s->next = new_stmt(cstate, BPF_ST); |
7258 | s->next->s.k = reg; |
7259 | a->s = s; |
7260 | a->regno = reg; |
7261 | |
7262 | return a; |
7263 | } |
7264 | |
7265 | struct arth * |
7266 | gen_neg(compiler_state_t *cstate, struct arth *a) |
7267 | { |
7268 | struct slist *s; |
7269 | |
7270 | s = xfer_to_a(cstate, a); |
7271 | sappend(a->s, s); |
7272 | s = new_stmt(cstate, BPF_ALU|BPF_NEG); |
7273 | s->s.k = 0; |
7274 | sappend(a->s, s); |
7275 | s = new_stmt(cstate, BPF_ST); |
7276 | s->s.k = a->regno; |
7277 | sappend(a->s, s); |
7278 | |
7279 | return a; |
7280 | } |
7281 | |
7282 | struct arth * |
7283 | gen_arth(compiler_state_t *cstate, int code, struct arth *a0, |
7284 | struct arth *a1) |
7285 | { |
7286 | struct slist *s0, *s1, *s2; |
7287 | |
7288 | /* |
7289 | * Disallow division by, or modulus by, zero; we do this here |
7290 | * so that it gets done even if the optimizer is disabled. |
7291 | */ |
7292 | if (code == BPF_DIV) { |
7293 | if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0) |
7294 | bpf_error(cstate, "division by zero" ); |
7295 | } else if (code == BPF_MOD) { |
7296 | if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0) |
7297 | bpf_error(cstate, "modulus by zero" ); |
7298 | } |
7299 | s0 = xfer_to_x(cstate, a1); |
7300 | s1 = xfer_to_a(cstate, a0); |
7301 | s2 = new_stmt(cstate, BPF_ALU|BPF_X|code); |
7302 | |
7303 | sappend(s1, s2); |
7304 | sappend(s0, s1); |
7305 | sappend(a1->s, s0); |
7306 | sappend(a0->s, a1->s); |
7307 | |
7308 | free_reg(cstate, a0->regno); |
7309 | free_reg(cstate, a1->regno); |
7310 | |
7311 | s0 = new_stmt(cstate, BPF_ST); |
7312 | a0->regno = s0->s.k = alloc_reg(cstate); |
7313 | sappend(a0->s, s0); |
7314 | |
7315 | return a0; |
7316 | } |
7317 | |
7318 | /* |
7319 | * Initialize the table of used registers and the current register. |
7320 | */ |
7321 | static void |
7322 | init_regs(compiler_state_t *cstate) |
7323 | { |
7324 | cstate->curreg = 0; |
7325 | memset(cstate->regused, 0, sizeof cstate->regused); |
7326 | } |
7327 | |
7328 | /* |
7329 | * Return the next free register. |
7330 | */ |
7331 | static int |
7332 | alloc_reg(compiler_state_t *cstate) |
7333 | { |
7334 | int n = BPF_MEMWORDS; |
7335 | |
7336 | while (--n >= 0) { |
7337 | if (cstate->regused[cstate->curreg]) |
7338 | cstate->curreg = (cstate->curreg + 1) % BPF_MEMWORDS; |
7339 | else { |
7340 | cstate->regused[cstate->curreg] = 1; |
7341 | return cstate->curreg; |
7342 | } |
7343 | } |
7344 | bpf_error(cstate, "too many registers needed to evaluate expression" ); |
7345 | /* NOTREACHED */ |
7346 | } |
7347 | |
7348 | /* |
7349 | * Return a register to the table so it can |
7350 | * be used later. |
7351 | */ |
7352 | static void |
7353 | free_reg(compiler_state_t *cstate, int n) |
7354 | { |
7355 | cstate->regused[n] = 0; |
7356 | } |
7357 | |
7358 | static struct block * |
7359 | gen_len(compiler_state_t *cstate, int jmp, int n) |
7360 | { |
7361 | struct slist *s; |
7362 | struct block *b; |
7363 | |
7364 | s = new_stmt(cstate, BPF_LD|BPF_LEN); |
7365 | b = new_block(cstate, JMP(jmp)); |
7366 | b->stmts = s; |
7367 | b->s.k = n; |
7368 | |
7369 | return b; |
7370 | } |
7371 | |
7372 | struct block * |
7373 | gen_greater(compiler_state_t *cstate, int n) |
7374 | { |
7375 | return gen_len(cstate, BPF_JGE, n); |
7376 | } |
7377 | |
7378 | /* |
7379 | * Actually, this is less than or equal. |
7380 | */ |
7381 | struct block * |
7382 | gen_less(compiler_state_t *cstate, int n) |
7383 | { |
7384 | struct block *b; |
7385 | |
7386 | b = gen_len(cstate, BPF_JGT, n); |
7387 | gen_not(b); |
7388 | |
7389 | return b; |
7390 | } |
7391 | |
7392 | /* |
7393 | * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to |
7394 | * the beginning of the link-layer header. |
7395 | * XXX - that means you can't test values in the radiotap header, but |
7396 | * as that header is difficult if not impossible to parse generally |
7397 | * without a loop, that might not be a severe problem. A new keyword |
7398 | * "radio" could be added for that, although what you'd really want |
7399 | * would be a way of testing particular radio header values, which |
7400 | * would generate code appropriate to the radio header in question. |
7401 | */ |
7402 | struct block * |
7403 | gen_byteop(compiler_state_t *cstate, int op, int idx, int val) |
7404 | { |
7405 | struct block *b; |
7406 | struct slist *s; |
7407 | |
7408 | switch (op) { |
7409 | default: |
7410 | abort(); |
7411 | |
7412 | case '=': |
7413 | return gen_cmp(cstate, OR_LINKHDR, (u_int)idx, BPF_B, (bpf_int32)val); |
7414 | |
7415 | case '<': |
7416 | b = gen_cmp_lt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, (bpf_int32)val); |
7417 | return b; |
7418 | |
7419 | case '>': |
7420 | b = gen_cmp_gt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, (bpf_int32)val); |
7421 | return b; |
7422 | |
7423 | case '|': |
7424 | s = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_K); |
7425 | break; |
7426 | |
7427 | case '&': |
7428 | s = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K); |
7429 | break; |
7430 | } |
7431 | s->s.k = val; |
7432 | b = new_block(cstate, JMP(BPF_JEQ)); |
7433 | b->stmts = s; |
7434 | gen_not(b); |
7435 | |
7436 | return b; |
7437 | } |
7438 | |
7439 | static const u_char abroadcast[] = { 0x0 }; |
7440 | |
7441 | struct block * |
7442 | gen_broadcast(compiler_state_t *cstate, int proto) |
7443 | { |
7444 | bpf_u_int32 hostmask; |
7445 | struct block *b0, *b1, *b2; |
7446 | static const u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; |
7447 | |
7448 | switch (proto) { |
7449 | |
7450 | case Q_DEFAULT: |
7451 | case Q_LINK: |
7452 | switch (cstate->linktype) { |
7453 | case DLT_ARCNET: |
7454 | case DLT_ARCNET_LINUX: |
7455 | return gen_ahostop(cstate, abroadcast, Q_DST); |
7456 | case DLT_EN10MB: |
7457 | case DLT_NETANALYZER: |
7458 | case DLT_NETANALYZER_TRANSPARENT: |
7459 | b1 = gen_prevlinkhdr_check(cstate); |
7460 | b0 = gen_ehostop(cstate, ebroadcast, Q_DST); |
7461 | if (b1 != NULL) |
7462 | gen_and(b1, b0); |
7463 | return b0; |
7464 | case DLT_FDDI: |
7465 | return gen_fhostop(cstate, ebroadcast, Q_DST); |
7466 | case DLT_IEEE802: |
7467 | return gen_thostop(cstate, ebroadcast, Q_DST); |
7468 | case DLT_IEEE802_11: |
7469 | case DLT_PRISM_HEADER: |
7470 | case DLT_IEEE802_11_RADIO_AVS: |
7471 | case DLT_IEEE802_11_RADIO: |
7472 | case DLT_PPI: |
7473 | return gen_wlanhostop(cstate, ebroadcast, Q_DST); |
7474 | case DLT_IP_OVER_FC: |
7475 | return gen_ipfchostop(cstate, ebroadcast, Q_DST); |
7476 | default: |
7477 | bpf_error(cstate, "not a broadcast link" ); |
7478 | } |
7479 | break; |
7480 | |
7481 | case Q_IP: |
7482 | /* |
7483 | * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff) |
7484 | * as an indication that we don't know the netmask, and fail |
7485 | * in that case. |
7486 | */ |
7487 | if (cstate->netmask == PCAP_NETMASK_UNKNOWN) |
7488 | bpf_error(cstate, "netmask not known, so 'ip broadcast' not supported" ); |
7489 | b0 = gen_linktype(cstate, ETHERTYPE_IP); |
7490 | hostmask = ~cstate->netmask; |
7491 | b1 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W, (bpf_int32)0, hostmask); |
7492 | b2 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W, |
7493 | (bpf_int32)(~0 & hostmask), hostmask); |
7494 | gen_or(b1, b2); |
7495 | gen_and(b0, b2); |
7496 | return b2; |
7497 | } |
7498 | bpf_error(cstate, "only link-layer/IP broadcast filters supported" ); |
7499 | /* NOTREACHED */ |
7500 | } |
7501 | |
7502 | /* |
7503 | * Generate code to test the low-order bit of a MAC address (that's |
7504 | * the bottom bit of the *first* byte). |
7505 | */ |
7506 | static struct block * |
7507 | gen_mac_multicast(compiler_state_t *cstate, int offset) |
7508 | { |
7509 | register struct block *b0; |
7510 | register struct slist *s; |
7511 | |
7512 | /* link[offset] & 1 != 0 */ |
7513 | s = gen_load_a(cstate, OR_LINKHDR, offset, BPF_B); |
7514 | b0 = new_block(cstate, JMP(BPF_JSET)); |
7515 | b0->s.k = 1; |
7516 | b0->stmts = s; |
7517 | return b0; |
7518 | } |
7519 | |
7520 | struct block * |
7521 | gen_multicast(compiler_state_t *cstate, int proto) |
7522 | { |
7523 | register struct block *b0, *b1, *b2; |
7524 | register struct slist *s; |
7525 | |
7526 | switch (proto) { |
7527 | |
7528 | case Q_DEFAULT: |
7529 | case Q_LINK: |
7530 | switch (cstate->linktype) { |
7531 | case DLT_ARCNET: |
7532 | case DLT_ARCNET_LINUX: |
7533 | /* all ARCnet multicasts use the same address */ |
7534 | return gen_ahostop(cstate, abroadcast, Q_DST); |
7535 | case DLT_EN10MB: |
7536 | case DLT_NETANALYZER: |
7537 | case DLT_NETANALYZER_TRANSPARENT: |
7538 | b1 = gen_prevlinkhdr_check(cstate); |
7539 | /* ether[0] & 1 != 0 */ |
7540 | b0 = gen_mac_multicast(cstate, 0); |
7541 | if (b1 != NULL) |
7542 | gen_and(b1, b0); |
7543 | return b0; |
7544 | case DLT_FDDI: |
7545 | /* |
7546 | * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX |
7547 | * |
7548 | * XXX - was that referring to bit-order issues? |
7549 | */ |
7550 | /* fddi[1] & 1 != 0 */ |
7551 | return gen_mac_multicast(cstate, 1); |
7552 | case DLT_IEEE802: |
7553 | /* tr[2] & 1 != 0 */ |
7554 | return gen_mac_multicast(cstate, 2); |
7555 | case DLT_IEEE802_11: |
7556 | case DLT_PRISM_HEADER: |
7557 | case DLT_IEEE802_11_RADIO_AVS: |
7558 | case DLT_IEEE802_11_RADIO: |
7559 | case DLT_PPI: |
7560 | /* |
7561 | * Oh, yuk. |
7562 | * |
7563 | * For control frames, there is no DA. |
7564 | * |
7565 | * For management frames, DA is at an |
7566 | * offset of 4 from the beginning of |
7567 | * the packet. |
7568 | * |
7569 | * For data frames, DA is at an offset |
7570 | * of 4 from the beginning of the packet |
7571 | * if To DS is clear and at an offset of |
7572 | * 16 from the beginning of the packet |
7573 | * if To DS is set. |
7574 | */ |
7575 | |
7576 | /* |
7577 | * Generate the tests to be done for data frames. |
7578 | * |
7579 | * First, check for To DS set, i.e. "link[1] & 0x01". |
7580 | */ |
7581 | s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B); |
7582 | b1 = new_block(cstate, JMP(BPF_JSET)); |
7583 | b1->s.k = 0x01; /* To DS */ |
7584 | b1->stmts = s; |
7585 | |
7586 | /* |
7587 | * If To DS is set, the DA is at 16. |
7588 | */ |
7589 | b0 = gen_mac_multicast(cstate, 16); |
7590 | gen_and(b1, b0); |
7591 | |
7592 | /* |
7593 | * Now, check for To DS not set, i.e. check |
7594 | * "!(link[1] & 0x01)". |
7595 | */ |
7596 | s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B); |
7597 | b2 = new_block(cstate, JMP(BPF_JSET)); |
7598 | b2->s.k = 0x01; /* To DS */ |
7599 | b2->stmts = s; |
7600 | gen_not(b2); |
7601 | |
7602 | /* |
7603 | * If To DS is not set, the DA is at 4. |
7604 | */ |
7605 | b1 = gen_mac_multicast(cstate, 4); |
7606 | gen_and(b2, b1); |
7607 | |
7608 | /* |
7609 | * Now OR together the last two checks. That gives |
7610 | * the complete set of checks for data frames. |
7611 | */ |
7612 | gen_or(b1, b0); |
7613 | |
7614 | /* |
7615 | * Now check for a data frame. |
7616 | * I.e, check "link[0] & 0x08". |
7617 | */ |
7618 | s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B); |
7619 | b1 = new_block(cstate, JMP(BPF_JSET)); |
7620 | b1->s.k = 0x08; |
7621 | b1->stmts = s; |
7622 | |
7623 | /* |
7624 | * AND that with the checks done for data frames. |
7625 | */ |
7626 | gen_and(b1, b0); |
7627 | |
7628 | /* |
7629 | * If the high-order bit of the type value is 0, this |
7630 | * is a management frame. |
7631 | * I.e, check "!(link[0] & 0x08)". |
7632 | */ |
7633 | s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B); |
7634 | b2 = new_block(cstate, JMP(BPF_JSET)); |
7635 | b2->s.k = 0x08; |
7636 | b2->stmts = s; |
7637 | gen_not(b2); |
7638 | |
7639 | /* |
7640 | * For management frames, the DA is at 4. |
7641 | */ |
7642 | b1 = gen_mac_multicast(cstate, 4); |
7643 | gen_and(b2, b1); |
7644 | |
7645 | /* |
7646 | * OR that with the checks done for data frames. |
7647 | * That gives the checks done for management and |
7648 | * data frames. |
7649 | */ |
7650 | gen_or(b1, b0); |
7651 | |
7652 | /* |
7653 | * If the low-order bit of the type value is 1, |
7654 | * this is either a control frame or a frame |
7655 | * with a reserved type, and thus not a |
7656 | * frame with an SA. |
7657 | * |
7658 | * I.e., check "!(link[0] & 0x04)". |
7659 | */ |
7660 | s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B); |
7661 | b1 = new_block(cstate, JMP(BPF_JSET)); |
7662 | b1->s.k = 0x04; |
7663 | b1->stmts = s; |
7664 | gen_not(b1); |
7665 | |
7666 | /* |
7667 | * AND that with the checks for data and management |
7668 | * frames. |
7669 | */ |
7670 | gen_and(b1, b0); |
7671 | return b0; |
7672 | case DLT_IP_OVER_FC: |
7673 | b0 = gen_mac_multicast(cstate, 2); |
7674 | return b0; |
7675 | default: |
7676 | break; |
7677 | } |
7678 | /* Link not known to support multicasts */ |
7679 | break; |
7680 | |
7681 | case Q_IP: |
7682 | b0 = gen_linktype(cstate, ETHERTYPE_IP); |
7683 | b1 = gen_cmp_ge(cstate, OR_LINKPL, 16, BPF_B, (bpf_int32)224); |
7684 | gen_and(b0, b1); |
7685 | return b1; |
7686 | |
7687 | case Q_IPV6: |
7688 | b0 = gen_linktype(cstate, ETHERTYPE_IPV6); |
7689 | b1 = gen_cmp(cstate, OR_LINKPL, 24, BPF_B, (bpf_int32)255); |
7690 | gen_and(b0, b1); |
7691 | return b1; |
7692 | } |
7693 | bpf_error(cstate, "link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel" ); |
7694 | /* NOTREACHED */ |
7695 | } |
7696 | |
7697 | /* |
7698 | * Filter on inbound (dir == 0) or outbound (dir == 1) traffic. |
7699 | * Outbound traffic is sent by this machine, while inbound traffic is |
7700 | * sent by a remote machine (and may include packets destined for a |
7701 | * unicast or multicast link-layer address we are not subscribing to). |
7702 | * These are the same definitions implemented by pcap_setdirection(). |
7703 | * Capturing only unicast traffic destined for this host is probably |
7704 | * better accomplished using a higher-layer filter. |
7705 | */ |
7706 | struct block * |
7707 | gen_inbound(compiler_state_t *cstate, int dir) |
7708 | { |
7709 | register struct block *b0; |
7710 | |
7711 | /* |
7712 | * Only some data link types support inbound/outbound qualifiers. |
7713 | */ |
7714 | switch (cstate->linktype) { |
7715 | case DLT_SLIP: |
7716 | b0 = gen_relation(cstate, BPF_JEQ, |
7717 | gen_load(cstate, Q_LINK, gen_loadi(cstate, 0), 1), |
7718 | gen_loadi(cstate, 0), |
7719 | dir); |
7720 | break; |
7721 | |
7722 | case DLT_IPNET: |
7723 | if (dir) { |
7724 | /* match outgoing packets */ |
7725 | b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, IPNET_OUTBOUND); |
7726 | } else { |
7727 | /* match incoming packets */ |
7728 | b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, IPNET_INBOUND); |
7729 | } |
7730 | break; |
7731 | |
7732 | case DLT_LINUX_SLL: |
7733 | /* match outgoing packets */ |
7734 | b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_H, LINUX_SLL_OUTGOING); |
7735 | if (!dir) { |
7736 | /* to filter on inbound traffic, invert the match */ |
7737 | gen_not(b0); |
7738 | } |
7739 | break; |
7740 | |
7741 | #ifdef HAVE_NET_PFVAR_H |
7742 | case DLT_PFLOG: |
7743 | b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, dir), BPF_B, |
7744 | (bpf_int32)((dir == 0) ? PF_IN : PF_OUT)); |
7745 | break; |
7746 | #endif |
7747 | |
7748 | case DLT_PPP_PPPD: |
7749 | if (dir) { |
7750 | /* match outgoing packets */ |
7751 | b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, PPP_PPPD_OUT); |
7752 | } else { |
7753 | /* match incoming packets */ |
7754 | b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, PPP_PPPD_IN); |
7755 | } |
7756 | break; |
7757 | |
7758 | case DLT_JUNIPER_MFR: |
7759 | case DLT_JUNIPER_MLFR: |
7760 | case DLT_JUNIPER_MLPPP: |
7761 | case DLT_JUNIPER_ATM1: |
7762 | case DLT_JUNIPER_ATM2: |
7763 | case DLT_JUNIPER_PPPOE: |
7764 | case DLT_JUNIPER_PPPOE_ATM: |
7765 | case DLT_JUNIPER_GGSN: |
7766 | case DLT_JUNIPER_ES: |
7767 | case DLT_JUNIPER_MONITOR: |
7768 | case DLT_JUNIPER_SERVICES: |
7769 | case DLT_JUNIPER_ETHER: |
7770 | case DLT_JUNIPER_PPP: |
7771 | case DLT_JUNIPER_FRELAY: |
7772 | case DLT_JUNIPER_CHDLC: |
7773 | case DLT_JUNIPER_VP: |
7774 | case DLT_JUNIPER_ST: |
7775 | case DLT_JUNIPER_ISM: |
7776 | case DLT_JUNIPER_VS: |
7777 | case DLT_JUNIPER_SRX_E2E: |
7778 | case DLT_JUNIPER_FIBRECHANNEL: |
7779 | case DLT_JUNIPER_ATM_CEMIC: |
7780 | |
7781 | /* juniper flags (including direction) are stored |
7782 | * the byte after the 3-byte magic number */ |
7783 | if (dir) { |
7784 | /* match outgoing packets */ |
7785 | b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, 0, 0x01); |
7786 | } else { |
7787 | /* match incoming packets */ |
7788 | b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, 1, 0x01); |
7789 | } |
7790 | break; |
7791 | |
7792 | default: |
7793 | /* |
7794 | * If we have packet meta-data indicating a direction, |
7795 | * and that metadata can be checked by BPF code, check |
7796 | * it. Otherwise, give up, as this link-layer type has |
7797 | * nothing in the packet data. |
7798 | * |
7799 | * Currently, the only platform where a BPF filter can |
7800 | * check that metadata is Linux with the in-kernel |
7801 | * BPF interpreter. If other packet capture mechanisms |
7802 | * and BPF filters also supported this, it would be |
7803 | * nice. It would be even better if they made that |
7804 | * metadata available so that we could provide it |
7805 | * with newer capture APIs, allowing it to be saved |
7806 | * in pcapng files. |
7807 | */ |
7808 | #if defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) |
7809 | /* |
7810 | * This is Linux with PF_PACKET support. |
7811 | * If this is a *live* capture, we can look at |
7812 | * special meta-data in the filter expression; |
7813 | * if it's a savefile, we can't. |
7814 | */ |
7815 | if (cstate->bpf_pcap->rfile != NULL) { |
7816 | /* We have a FILE *, so this is a savefile */ |
7817 | bpf_error(cstate, "inbound/outbound not supported on linktype %d when reading savefiles" , |
7818 | cstate->linktype); |
7819 | b0 = NULL; |
7820 | /* NOTREACHED */ |
7821 | } |
7822 | /* match outgoing packets */ |
7823 | b0 = gen_cmp(cstate, OR_LINKHDR, SKF_AD_OFF + SKF_AD_PKTTYPE, BPF_H, |
7824 | PACKET_OUTGOING); |
7825 | if (!dir) { |
7826 | /* to filter on inbound traffic, invert the match */ |
7827 | gen_not(b0); |
7828 | } |
7829 | #else /* defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */ |
7830 | bpf_error(cstate, "inbound/outbound not supported on linktype %d" , |
7831 | cstate->linktype); |
7832 | /* NOTREACHED */ |
7833 | #endif /* defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */ |
7834 | } |
7835 | return (b0); |
7836 | } |
7837 | |
7838 | #ifdef HAVE_NET_PFVAR_H |
7839 | /* PF firewall log matched interface */ |
7840 | struct block * |
7841 | gen_pf_ifname(compiler_state_t *cstate, const char *ifname) |
7842 | { |
7843 | struct block *b0; |
7844 | u_int len, off; |
7845 | |
7846 | if (cstate->linktype != DLT_PFLOG) { |
7847 | bpf_error(cstate, "ifname supported only on PF linktype" ); |
7848 | /* NOTREACHED */ |
7849 | } |
7850 | len = sizeof(((struct pfloghdr *)0)->ifname); |
7851 | off = offsetof(struct pfloghdr, ifname); |
7852 | if (strlen(ifname) >= len) { |
7853 | bpf_error(cstate, "ifname interface names can only be %d characters" , |
7854 | len-1); |
7855 | /* NOTREACHED */ |
7856 | } |
7857 | b0 = gen_bcmp(cstate, OR_LINKHDR, off, strlen(ifname), (const u_char *)ifname); |
7858 | return (b0); |
7859 | } |
7860 | |
7861 | /* PF firewall log ruleset name */ |
7862 | struct block * |
7863 | gen_pf_ruleset(compiler_state_t *cstate, char *ruleset) |
7864 | { |
7865 | struct block *b0; |
7866 | |
7867 | if (cstate->linktype != DLT_PFLOG) { |
7868 | bpf_error(cstate, "ruleset supported only on PF linktype" ); |
7869 | /* NOTREACHED */ |
7870 | } |
7871 | |
7872 | if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) { |
7873 | bpf_error(cstate, "ruleset names can only be %ld characters" , |
7874 | (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1)); |
7875 | /* NOTREACHED */ |
7876 | } |
7877 | |
7878 | b0 = gen_bcmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, ruleset), |
7879 | strlen(ruleset), (const u_char *)ruleset); |
7880 | return (b0); |
7881 | } |
7882 | |
7883 | /* PF firewall log rule number */ |
7884 | struct block * |
7885 | gen_pf_rnr(compiler_state_t *cstate, int rnr) |
7886 | { |
7887 | struct block *b0; |
7888 | |
7889 | if (cstate->linktype != DLT_PFLOG) { |
7890 | bpf_error(cstate, "rnr supported only on PF linktype" ); |
7891 | /* NOTREACHED */ |
7892 | } |
7893 | |
7894 | b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, rulenr), BPF_W, |
7895 | (bpf_int32)rnr); |
7896 | return (b0); |
7897 | } |
7898 | |
7899 | /* PF firewall log sub-rule number */ |
7900 | struct block * |
7901 | gen_pf_srnr(compiler_state_t *cstate, int srnr) |
7902 | { |
7903 | struct block *b0; |
7904 | |
7905 | if (cstate->linktype != DLT_PFLOG) { |
7906 | bpf_error(cstate, "srnr supported only on PF linktype" ); |
7907 | /* NOTREACHED */ |
7908 | } |
7909 | |
7910 | b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, subrulenr), BPF_W, |
7911 | (bpf_int32)srnr); |
7912 | return (b0); |
7913 | } |
7914 | |
7915 | /* PF firewall log reason code */ |
7916 | struct block * |
7917 | gen_pf_reason(compiler_state_t *cstate, int reason) |
7918 | { |
7919 | struct block *b0; |
7920 | |
7921 | if (cstate->linktype != DLT_PFLOG) { |
7922 | bpf_error(cstate, "reason supported only on PF linktype" ); |
7923 | /* NOTREACHED */ |
7924 | } |
7925 | |
7926 | b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, reason), BPF_B, |
7927 | (bpf_int32)reason); |
7928 | return (b0); |
7929 | } |
7930 | |
7931 | /* PF firewall log action */ |
7932 | struct block * |
7933 | gen_pf_action(compiler_state_t *cstate, int action) |
7934 | { |
7935 | struct block *b0; |
7936 | |
7937 | if (cstate->linktype != DLT_PFLOG) { |
7938 | bpf_error(cstate, "action supported only on PF linktype" ); |
7939 | /* NOTREACHED */ |
7940 | } |
7941 | |
7942 | b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, action), BPF_B, |
7943 | (bpf_int32)action); |
7944 | return (b0); |
7945 | } |
7946 | #else /* !HAVE_NET_PFVAR_H */ |
7947 | struct block * |
7948 | gen_pf_ifname(compiler_state_t *cstate, const char *ifname _U_) |
7949 | { |
7950 | bpf_error(cstate, "libpcap was compiled without pf support" ); |
7951 | /* NOTREACHED */ |
7952 | } |
7953 | |
7954 | struct block * |
7955 | gen_pf_ruleset(compiler_state_t *cstate, char *ruleset _U_) |
7956 | { |
7957 | bpf_error(cstate, "libpcap was compiled on a machine without pf support" ); |
7958 | /* NOTREACHED */ |
7959 | } |
7960 | |
7961 | struct block * |
7962 | gen_pf_rnr(compiler_state_t *cstate, int rnr _U_) |
7963 | { |
7964 | bpf_error(cstate, "libpcap was compiled on a machine without pf support" ); |
7965 | /* NOTREACHED */ |
7966 | } |
7967 | |
7968 | struct block * |
7969 | gen_pf_srnr(compiler_state_t *cstate, int srnr _U_) |
7970 | { |
7971 | bpf_error(cstate, "libpcap was compiled on a machine without pf support" ); |
7972 | /* NOTREACHED */ |
7973 | } |
7974 | |
7975 | struct block * |
7976 | gen_pf_reason(compiler_state_t *cstate, int reason _U_) |
7977 | { |
7978 | bpf_error(cstate, "libpcap was compiled on a machine without pf support" ); |
7979 | /* NOTREACHED */ |
7980 | } |
7981 | |
7982 | struct block * |
7983 | gen_pf_action(compiler_state_t *cstate, int action _U_) |
7984 | { |
7985 | bpf_error(cstate, "libpcap was compiled on a machine without pf support" ); |
7986 | /* NOTREACHED */ |
7987 | } |
7988 | #endif /* HAVE_NET_PFVAR_H */ |
7989 | |
7990 | /* IEEE 802.11 wireless header */ |
7991 | struct block * |
7992 | gen_p80211_type(compiler_state_t *cstate, int type, int mask) |
7993 | { |
7994 | struct block *b0; |
7995 | |
7996 | switch (cstate->linktype) { |
7997 | |
7998 | case DLT_IEEE802_11: |
7999 | case DLT_PRISM_HEADER: |
8000 | case DLT_IEEE802_11_RADIO_AVS: |
8001 | case DLT_IEEE802_11_RADIO: |
8002 | b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, (bpf_int32)type, |
8003 | (bpf_int32)mask); |
8004 | break; |
8005 | |
8006 | default: |
8007 | bpf_error(cstate, "802.11 link-layer types supported only on 802.11" ); |
8008 | /* NOTREACHED */ |
8009 | } |
8010 | |
8011 | return (b0); |
8012 | } |
8013 | |
8014 | struct block * |
8015 | gen_p80211_fcdir(compiler_state_t *cstate, int fcdir) |
8016 | { |
8017 | struct block *b0; |
8018 | |
8019 | switch (cstate->linktype) { |
8020 | |
8021 | case DLT_IEEE802_11: |
8022 | case DLT_PRISM_HEADER: |
8023 | case DLT_IEEE802_11_RADIO_AVS: |
8024 | case DLT_IEEE802_11_RADIO: |
8025 | break; |
8026 | |
8027 | default: |
8028 | bpf_error(cstate, "frame direction supported only with 802.11 headers" ); |
8029 | /* NOTREACHED */ |
8030 | } |
8031 | |
8032 | b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B, (bpf_int32)fcdir, |
8033 | (bpf_u_int32)IEEE80211_FC1_DIR_MASK); |
8034 | |
8035 | return (b0); |
8036 | } |
8037 | |
8038 | struct block * |
8039 | gen_acode(compiler_state_t *cstate, const u_char *eaddr, struct qual q) |
8040 | { |
8041 | switch (cstate->linktype) { |
8042 | |
8043 | case DLT_ARCNET: |
8044 | case DLT_ARCNET_LINUX: |
8045 | if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && |
8046 | q.proto == Q_LINK) |
8047 | return (gen_ahostop(cstate, eaddr, (int)q.dir)); |
8048 | else { |
8049 | bpf_error(cstate, "ARCnet address used in non-arc expression" ); |
8050 | /* NOTREACHED */ |
8051 | } |
8052 | break; |
8053 | |
8054 | default: |
8055 | bpf_error(cstate, "aid supported only on ARCnet" ); |
8056 | /* NOTREACHED */ |
8057 | } |
8058 | } |
8059 | |
8060 | static struct block * |
8061 | gen_ahostop(compiler_state_t *cstate, const u_char *eaddr, int dir) |
8062 | { |
8063 | register struct block *b0, *b1; |
8064 | |
8065 | switch (dir) { |
8066 | /* src comes first, different from Ethernet */ |
8067 | case Q_SRC: |
8068 | return gen_bcmp(cstate, OR_LINKHDR, 0, 1, eaddr); |
8069 | |
8070 | case Q_DST: |
8071 | return gen_bcmp(cstate, OR_LINKHDR, 1, 1, eaddr); |
8072 | |
8073 | case Q_AND: |
8074 | b0 = gen_ahostop(cstate, eaddr, Q_SRC); |
8075 | b1 = gen_ahostop(cstate, eaddr, Q_DST); |
8076 | gen_and(b0, b1); |
8077 | return b1; |
8078 | |
8079 | case Q_DEFAULT: |
8080 | case Q_OR: |
8081 | b0 = gen_ahostop(cstate, eaddr, Q_SRC); |
8082 | b1 = gen_ahostop(cstate, eaddr, Q_DST); |
8083 | gen_or(b0, b1); |
8084 | return b1; |
8085 | |
8086 | case Q_ADDR1: |
8087 | bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11" ); |
8088 | break; |
8089 | |
8090 | case Q_ADDR2: |
8091 | bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11" ); |
8092 | break; |
8093 | |
8094 | case Q_ADDR3: |
8095 | bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11" ); |
8096 | break; |
8097 | |
8098 | case Q_ADDR4: |
8099 | bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11" ); |
8100 | break; |
8101 | |
8102 | case Q_RA: |
8103 | bpf_error(cstate, "'ra' is only supported on 802.11" ); |
8104 | break; |
8105 | |
8106 | case Q_TA: |
8107 | bpf_error(cstate, "'ta' is only supported on 802.11" ); |
8108 | break; |
8109 | } |
8110 | abort(); |
8111 | /* NOTREACHED */ |
8112 | } |
8113 | |
8114 | static struct block * |
8115 | gen_vlan_tpid_test(compiler_state_t *cstate) |
8116 | { |
8117 | struct block *b0, *b1; |
8118 | |
8119 | /* check for VLAN, including QinQ */ |
8120 | b0 = gen_linktype(cstate, ETHERTYPE_8021Q); |
8121 | b1 = gen_linktype(cstate, ETHERTYPE_8021AD); |
8122 | gen_or(b0,b1); |
8123 | b0 = b1; |
8124 | b1 = gen_linktype(cstate, ETHERTYPE_8021QINQ); |
8125 | gen_or(b0,b1); |
8126 | |
8127 | return b1; |
8128 | } |
8129 | |
8130 | static struct block * |
8131 | gen_vlan_vid_test(compiler_state_t *cstate, int vlan_num) |
8132 | { |
8133 | return gen_mcmp(cstate, OR_LINKPL, 0, BPF_H, (bpf_int32)vlan_num, 0x0fff); |
8134 | } |
8135 | |
8136 | static struct block * |
8137 | gen_vlan_no_bpf_extensions(compiler_state_t *cstate, int vlan_num) |
8138 | { |
8139 | struct block *b0, *b1; |
8140 | |
8141 | b0 = gen_vlan_tpid_test(cstate); |
8142 | |
8143 | if (vlan_num >= 0) { |
8144 | b1 = gen_vlan_vid_test(cstate, vlan_num); |
8145 | gen_and(b0, b1); |
8146 | b0 = b1; |
8147 | } |
8148 | |
8149 | /* |
8150 | * Both payload and link header type follow the VLAN tags so that |
8151 | * both need to be updated. |
8152 | */ |
8153 | cstate->off_linkpl.constant_part += 4; |
8154 | cstate->off_linktype.constant_part += 4; |
8155 | |
8156 | return b0; |
8157 | } |
8158 | |
8159 | #if defined(SKF_AD_VLAN_TAG_PRESENT) |
8160 | /* add v to variable part of off */ |
8161 | static void |
8162 | gen_vlan_vloffset_add(compiler_state_t *cstate, bpf_abs_offset *off, int v, struct slist *s) |
8163 | { |
8164 | struct slist *s2; |
8165 | |
8166 | if (!off->is_variable) |
8167 | off->is_variable = 1; |
8168 | if (off->reg == -1) |
8169 | off->reg = alloc_reg(cstate); |
8170 | |
8171 | s2 = new_stmt(cstate, BPF_LD|BPF_MEM); |
8172 | s2->s.k = off->reg; |
8173 | sappend(s, s2); |
8174 | s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM); |
8175 | s2->s.k = v; |
8176 | sappend(s, s2); |
8177 | s2 = new_stmt(cstate, BPF_ST); |
8178 | s2->s.k = off->reg; |
8179 | sappend(s, s2); |
8180 | } |
8181 | |
8182 | /* |
8183 | * patch block b_tpid (VLAN TPID test) to update variable parts of link payload |
8184 | * and link type offsets first |
8185 | */ |
8186 | static void |
8187 | gen_vlan_patch_tpid_test(compiler_state_t *cstate, struct block *b_tpid) |
8188 | { |
8189 | struct slist s; |
8190 | |
8191 | /* offset determined at run time, shift variable part */ |
8192 | s.next = NULL; |
8193 | cstate->is_vlan_vloffset = 1; |
8194 | gen_vlan_vloffset_add(cstate, &cstate->off_linkpl, 4, &s); |
8195 | gen_vlan_vloffset_add(cstate, &cstate->off_linktype, 4, &s); |
8196 | |
8197 | /* we get a pointer to a chain of or-ed blocks, patch first of them */ |
8198 | sappend(s.next, b_tpid->head->stmts); |
8199 | b_tpid->head->stmts = s.next; |
8200 | } |
8201 | |
8202 | /* |
8203 | * patch block b_vid (VLAN id test) to load VID value either from packet |
8204 | * metadata (using BPF extensions) if SKF_AD_VLAN_TAG_PRESENT is true |
8205 | */ |
8206 | static void |
8207 | gen_vlan_patch_vid_test(compiler_state_t *cstate, struct block *b_vid) |
8208 | { |
8209 | struct slist *s, *s2, *sjeq; |
8210 | unsigned cnt; |
8211 | |
8212 | s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS); |
8213 | s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT; |
8214 | |
8215 | /* true -> next instructions, false -> beginning of b_vid */ |
8216 | sjeq = new_stmt(cstate, JMP(BPF_JEQ)); |
8217 | sjeq->s.k = 1; |
8218 | sjeq->s.jf = b_vid->stmts; |
8219 | sappend(s, sjeq); |
8220 | |
8221 | s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS); |
8222 | s2->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG; |
8223 | sappend(s, s2); |
8224 | sjeq->s.jt = s2; |
8225 | |
8226 | /* jump to the test in b_vid (bypass loading VID from packet data) */ |
8227 | cnt = 0; |
8228 | for (s2 = b_vid->stmts; s2; s2 = s2->next) |
8229 | cnt++; |
8230 | s2 = new_stmt(cstate, JMP(BPF_JA)); |
8231 | s2->s.k = cnt; |
8232 | sappend(s, s2); |
8233 | |
8234 | /* insert our statements at the beginning of b_vid */ |
8235 | sappend(s, b_vid->stmts); |
8236 | b_vid->stmts = s; |
8237 | } |
8238 | |
8239 | /* |
8240 | * Generate check for "vlan" or "vlan <id>" on systems with support for BPF |
8241 | * extensions. Even if kernel supports VLAN BPF extensions, (outermost) VLAN |
8242 | * tag can be either in metadata or in packet data; therefore if the |
8243 | * SKF_AD_VLAN_TAG_PRESENT test is negative, we need to check link |
8244 | * header for VLAN tag. As the decision is done at run time, we need |
8245 | * update variable part of the offsets |
8246 | */ |
8247 | static struct block * |
8248 | gen_vlan_bpf_extensions(compiler_state_t *cstate, int vlan_num) |
8249 | { |
8250 | struct block *b0, *b_tpid, *b_vid = NULL; |
8251 | struct slist *s; |
8252 | |
8253 | /* generate new filter code based on extracting packet |
8254 | * metadata */ |
8255 | s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS); |
8256 | s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT; |
8257 | |
8258 | b0 = new_block(cstate, JMP(BPF_JEQ)); |
8259 | b0->stmts = s; |
8260 | b0->s.k = 1; |
8261 | |
8262 | /* |
8263 | * This is tricky. We need to insert the statements updating variable |
8264 | * parts of offsets before the the traditional TPID and VID tests so |
8265 | * that they are called whenever SKF_AD_VLAN_TAG_PRESENT fails but |
8266 | * we do not want this update to affect those checks. That's why we |
8267 | * generate both test blocks first and insert the statements updating |
8268 | * variable parts of both offsets after that. This wouldn't work if |
8269 | * there already were variable length link header when entering this |
8270 | * function but gen_vlan_bpf_extensions() isn't called in that case. |
8271 | */ |
8272 | b_tpid = gen_vlan_tpid_test(cstate); |
8273 | if (vlan_num >= 0) |
8274 | b_vid = gen_vlan_vid_test(cstate, vlan_num); |
8275 | |
8276 | gen_vlan_patch_tpid_test(cstate, b_tpid); |
8277 | gen_or(b0, b_tpid); |
8278 | b0 = b_tpid; |
8279 | |
8280 | if (vlan_num >= 0) { |
8281 | gen_vlan_patch_vid_test(cstate, b_vid); |
8282 | gen_and(b0, b_vid); |
8283 | b0 = b_vid; |
8284 | } |
8285 | |
8286 | return b0; |
8287 | } |
8288 | #endif |
8289 | |
8290 | /* |
8291 | * support IEEE 802.1Q VLAN trunk over ethernet |
8292 | */ |
8293 | struct block * |
8294 | gen_vlan(compiler_state_t *cstate, int vlan_num) |
8295 | { |
8296 | struct block *b0; |
8297 | |
8298 | /* can't check for VLAN-encapsulated packets inside MPLS */ |
8299 | if (cstate->label_stack_depth > 0) |
8300 | bpf_error(cstate, "no VLAN match after MPLS" ); |
8301 | |
8302 | /* |
8303 | * Check for a VLAN packet, and then change the offsets to point |
8304 | * to the type and data fields within the VLAN packet. Just |
8305 | * increment the offsets, so that we can support a hierarchy, e.g. |
8306 | * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within |
8307 | * VLAN 100. |
8308 | * |
8309 | * XXX - this is a bit of a kludge. If we were to split the |
8310 | * compiler into a parser that parses an expression and |
8311 | * generates an expression tree, and a code generator that |
8312 | * takes an expression tree (which could come from our |
8313 | * parser or from some other parser) and generates BPF code, |
8314 | * we could perhaps make the offsets parameters of routines |
8315 | * and, in the handler for an "AND" node, pass to subnodes |
8316 | * other than the VLAN node the adjusted offsets. |
8317 | * |
8318 | * This would mean that "vlan" would, instead of changing the |
8319 | * behavior of *all* tests after it, change only the behavior |
8320 | * of tests ANDed with it. That would change the documented |
8321 | * semantics of "vlan", which might break some expressions. |
8322 | * However, it would mean that "(vlan and ip) or ip" would check |
8323 | * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than |
8324 | * checking only for VLAN-encapsulated IP, so that could still |
8325 | * be considered worth doing; it wouldn't break expressions |
8326 | * that are of the form "vlan and ..." or "vlan N and ...", |
8327 | * which I suspect are the most common expressions involving |
8328 | * "vlan". "vlan or ..." doesn't necessarily do what the user |
8329 | * would really want, now, as all the "or ..." tests would |
8330 | * be done assuming a VLAN, even though the "or" could be viewed |
8331 | * as meaning "or, if this isn't a VLAN packet...". |
8332 | */ |
8333 | switch (cstate->linktype) { |
8334 | |
8335 | case DLT_EN10MB: |
8336 | case DLT_NETANALYZER: |
8337 | case DLT_NETANALYZER_TRANSPARENT: |
8338 | #if defined(SKF_AD_VLAN_TAG_PRESENT) |
8339 | /* Verify that this is the outer part of the packet and |
8340 | * not encapsulated somehow. */ |
8341 | if (cstate->vlan_stack_depth == 0 && !cstate->off_linkhdr.is_variable && |
8342 | cstate->off_linkhdr.constant_part == |
8343 | cstate->off_outermostlinkhdr.constant_part) { |
8344 | /* |
8345 | * Do we need special VLAN handling? |
8346 | */ |
8347 | if (cstate->bpf_pcap->bpf_codegen_flags & BPF_SPECIAL_VLAN_HANDLING) |
8348 | b0 = gen_vlan_bpf_extensions(cstate, vlan_num); |
8349 | else |
8350 | b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num); |
8351 | } else |
8352 | #endif |
8353 | b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num); |
8354 | break; |
8355 | |
8356 | case DLT_IEEE802_11: |
8357 | case DLT_PRISM_HEADER: |
8358 | case DLT_IEEE802_11_RADIO_AVS: |
8359 | case DLT_IEEE802_11_RADIO: |
8360 | b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num); |
8361 | break; |
8362 | |
8363 | default: |
8364 | bpf_error(cstate, "no VLAN support for data link type %d" , |
8365 | cstate->linktype); |
8366 | /*NOTREACHED*/ |
8367 | } |
8368 | |
8369 | cstate->vlan_stack_depth++; |
8370 | |
8371 | return (b0); |
8372 | } |
8373 | |
8374 | /* |
8375 | * support for MPLS |
8376 | */ |
8377 | struct block * |
8378 | gen_mpls(compiler_state_t *cstate, int label_num) |
8379 | { |
8380 | struct block *b0, *b1; |
8381 | |
8382 | if (cstate->label_stack_depth > 0) { |
8383 | /* just match the bottom-of-stack bit clear */ |
8384 | b0 = gen_mcmp(cstate, OR_PREVMPLSHDR, 2, BPF_B, 0, 0x01); |
8385 | } else { |
8386 | /* |
8387 | * We're not in an MPLS stack yet, so check the link-layer |
8388 | * type against MPLS. |
8389 | */ |
8390 | switch (cstate->linktype) { |
8391 | |
8392 | case DLT_C_HDLC: /* fall through */ |
8393 | case DLT_EN10MB: |
8394 | case DLT_NETANALYZER: |
8395 | case DLT_NETANALYZER_TRANSPARENT: |
8396 | b0 = gen_linktype(cstate, ETHERTYPE_MPLS); |
8397 | break; |
8398 | |
8399 | case DLT_PPP: |
8400 | b0 = gen_linktype(cstate, PPP_MPLS_UCAST); |
8401 | break; |
8402 | |
8403 | /* FIXME add other DLT_s ... |
8404 | * for Frame-Relay/and ATM this may get messy due to SNAP headers |
8405 | * leave it for now */ |
8406 | |
8407 | default: |
8408 | bpf_error(cstate, "no MPLS support for data link type %d" , |
8409 | cstate->linktype); |
8410 | /*NOTREACHED*/ |
8411 | break; |
8412 | } |
8413 | } |
8414 | |
8415 | /* If a specific MPLS label is requested, check it */ |
8416 | if (label_num >= 0) { |
8417 | label_num = label_num << 12; /* label is shifted 12 bits on the wire */ |
8418 | b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W, (bpf_int32)label_num, |
8419 | 0xfffff000); /* only compare the first 20 bits */ |
8420 | gen_and(b0, b1); |
8421 | b0 = b1; |
8422 | } |
8423 | |
8424 | /* |
8425 | * Change the offsets to point to the type and data fields within |
8426 | * the MPLS packet. Just increment the offsets, so that we |
8427 | * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to |
8428 | * capture packets with an outer label of 100000 and an inner |
8429 | * label of 1024. |
8430 | * |
8431 | * Increment the MPLS stack depth as well; this indicates that |
8432 | * we're checking MPLS-encapsulated headers, to make sure higher |
8433 | * level code generators don't try to match against IP-related |
8434 | * protocols such as Q_ARP, Q_RARP etc. |
8435 | * |
8436 | * XXX - this is a bit of a kludge. See comments in gen_vlan(). |
8437 | */ |
8438 | cstate->off_nl_nosnap += 4; |
8439 | cstate->off_nl += 4; |
8440 | cstate->label_stack_depth++; |
8441 | return (b0); |
8442 | } |
8443 | |
8444 | /* |
8445 | * Support PPPOE discovery and session. |
8446 | */ |
8447 | struct block * |
8448 | gen_pppoed(compiler_state_t *cstate) |
8449 | { |
8450 | /* check for PPPoE discovery */ |
8451 | return gen_linktype(cstate, (bpf_int32)ETHERTYPE_PPPOED); |
8452 | } |
8453 | |
8454 | struct block * |
8455 | gen_pppoes(compiler_state_t *cstate, int sess_num) |
8456 | { |
8457 | struct block *b0, *b1; |
8458 | |
8459 | /* |
8460 | * Test against the PPPoE session link-layer type. |
8461 | */ |
8462 | b0 = gen_linktype(cstate, (bpf_int32)ETHERTYPE_PPPOES); |
8463 | |
8464 | /* If a specific session is requested, check PPPoE session id */ |
8465 | if (sess_num >= 0) { |
8466 | b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W, |
8467 | (bpf_int32)sess_num, 0x0000ffff); |
8468 | gen_and(b0, b1); |
8469 | b0 = b1; |
8470 | } |
8471 | |
8472 | /* |
8473 | * Change the offsets to point to the type and data fields within |
8474 | * the PPP packet, and note that this is PPPoE rather than |
8475 | * raw PPP. |
8476 | * |
8477 | * XXX - this is a bit of a kludge. If we were to split the |
8478 | * compiler into a parser that parses an expression and |
8479 | * generates an expression tree, and a code generator that |
8480 | * takes an expression tree (which could come from our |
8481 | * parser or from some other parser) and generates BPF code, |
8482 | * we could perhaps make the offsets parameters of routines |
8483 | * and, in the handler for an "AND" node, pass to subnodes |
8484 | * other than the PPPoE node the adjusted offsets. |
8485 | * |
8486 | * This would mean that "pppoes" would, instead of changing the |
8487 | * behavior of *all* tests after it, change only the behavior |
8488 | * of tests ANDed with it. That would change the documented |
8489 | * semantics of "pppoes", which might break some expressions. |
8490 | * However, it would mean that "(pppoes and ip) or ip" would check |
8491 | * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than |
8492 | * checking only for VLAN-encapsulated IP, so that could still |
8493 | * be considered worth doing; it wouldn't break expressions |
8494 | * that are of the form "pppoes and ..." which I suspect are the |
8495 | * most common expressions involving "pppoes". "pppoes or ..." |
8496 | * doesn't necessarily do what the user would really want, now, |
8497 | * as all the "or ..." tests would be done assuming PPPoE, even |
8498 | * though the "or" could be viewed as meaning "or, if this isn't |
8499 | * a PPPoE packet...". |
8500 | * |
8501 | * The "network-layer" protocol is PPPoE, which has a 6-byte |
8502 | * PPPoE header, followed by a PPP packet. |
8503 | * |
8504 | * There is no HDLC encapsulation for the PPP packet (it's |
8505 | * encapsulated in PPPoES instead), so the link-layer type |
8506 | * starts at the first byte of the PPP packet. For PPPoE, |
8507 | * that offset is relative to the beginning of the total |
8508 | * link-layer payload, including any 802.2 LLC header, so |
8509 | * it's 6 bytes past cstate->off_nl. |
8510 | */ |
8511 | PUSH_LINKHDR(cstate, DLT_PPP, cstate->off_linkpl.is_variable, |
8512 | cstate->off_linkpl.constant_part + cstate->off_nl + 6, /* 6 bytes past the PPPoE header */ |
8513 | cstate->off_linkpl.reg); |
8514 | |
8515 | cstate->off_linktype = cstate->off_linkhdr; |
8516 | cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 2; |
8517 | |
8518 | cstate->off_nl = 0; |
8519 | cstate->off_nl_nosnap = 0; /* no 802.2 LLC */ |
8520 | |
8521 | return b0; |
8522 | } |
8523 | |
8524 | /* Check that this is Geneve and the VNI is correct if |
8525 | * specified. Parameterized to handle both IPv4 and IPv6. */ |
8526 | static struct block * |
8527 | gen_geneve_check(compiler_state_t *cstate, |
8528 | struct block *(*gen_portfn)(compiler_state_t *, int, int, int), |
8529 | enum e_offrel offrel, int vni) |
8530 | { |
8531 | struct block *b0, *b1; |
8532 | |
8533 | b0 = gen_portfn(cstate, GENEVE_PORT, IPPROTO_UDP, Q_DST); |
8534 | |
8535 | /* Check that we are operating on version 0. Otherwise, we |
8536 | * can't decode the rest of the fields. The version is 2 bits |
8537 | * in the first byte of the Geneve header. */ |
8538 | b1 = gen_mcmp(cstate, offrel, 8, BPF_B, (bpf_int32)0, 0xc0); |
8539 | gen_and(b0, b1); |
8540 | b0 = b1; |
8541 | |
8542 | if (vni >= 0) { |
8543 | vni <<= 8; /* VNI is in the upper 3 bytes */ |
8544 | b1 = gen_mcmp(cstate, offrel, 12, BPF_W, (bpf_int32)vni, |
8545 | 0xffffff00); |
8546 | gen_and(b0, b1); |
8547 | b0 = b1; |
8548 | } |
8549 | |
8550 | return b0; |
8551 | } |
8552 | |
8553 | /* The IPv4 and IPv6 Geneve checks need to do two things: |
8554 | * - Verify that this actually is Geneve with the right VNI. |
8555 | * - Place the IP header length (plus variable link prefix if |
8556 | * needed) into register A to be used later to compute |
8557 | * the inner packet offsets. */ |
8558 | static struct block * |
8559 | gen_geneve4(compiler_state_t *cstate, int vni) |
8560 | { |
8561 | struct block *b0, *b1; |
8562 | struct slist *s, *s1; |
8563 | |
8564 | b0 = gen_geneve_check(cstate, gen_port, OR_TRAN_IPV4, vni); |
8565 | |
8566 | /* Load the IP header length into A. */ |
8567 | s = gen_loadx_iphdrlen(cstate); |
8568 | |
8569 | s1 = new_stmt(cstate, BPF_MISC|BPF_TXA); |
8570 | sappend(s, s1); |
8571 | |
8572 | /* Forcibly append these statements to the true condition |
8573 | * of the protocol check by creating a new block that is |
8574 | * always true and ANDing them. */ |
8575 | b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X); |
8576 | b1->stmts = s; |
8577 | b1->s.k = 0; |
8578 | |
8579 | gen_and(b0, b1); |
8580 | |
8581 | return b1; |
8582 | } |
8583 | |
8584 | static struct block * |
8585 | gen_geneve6(compiler_state_t *cstate, int vni) |
8586 | { |
8587 | struct block *b0, *b1; |
8588 | struct slist *s, *s1; |
8589 | |
8590 | b0 = gen_geneve_check(cstate, gen_port6, OR_TRAN_IPV6, vni); |
8591 | |
8592 | /* Load the IP header length. We need to account for a |
8593 | * variable length link prefix if there is one. */ |
8594 | s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl); |
8595 | if (s) { |
8596 | s1 = new_stmt(cstate, BPF_LD|BPF_IMM); |
8597 | s1->s.k = 40; |
8598 | sappend(s, s1); |
8599 | |
8600 | s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X); |
8601 | s1->s.k = 0; |
8602 | sappend(s, s1); |
8603 | } else { |
8604 | s = new_stmt(cstate, BPF_LD|BPF_IMM); |
8605 | s->s.k = 40; |
8606 | } |
8607 | |
8608 | /* Forcibly append these statements to the true condition |
8609 | * of the protocol check by creating a new block that is |
8610 | * always true and ANDing them. */ |
8611 | s1 = new_stmt(cstate, BPF_MISC|BPF_TAX); |
8612 | sappend(s, s1); |
8613 | |
8614 | b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X); |
8615 | b1->stmts = s; |
8616 | b1->s.k = 0; |
8617 | |
8618 | gen_and(b0, b1); |
8619 | |
8620 | return b1; |
8621 | } |
8622 | |
8623 | /* We need to store three values based on the Geneve header:: |
8624 | * - The offset of the linktype. |
8625 | * - The offset of the end of the Geneve header. |
8626 | * - The offset of the end of the encapsulated MAC header. */ |
8627 | static struct slist * |
8628 | gen_geneve_offsets(compiler_state_t *cstate) |
8629 | { |
8630 | struct slist *s, *s1, *s_proto; |
8631 | |
8632 | /* First we need to calculate the offset of the Geneve header |
8633 | * itself. This is composed of the IP header previously calculated |
8634 | * (include any variable link prefix) and stored in A plus the |
8635 | * fixed sized headers (fixed link prefix, MAC length, and UDP |
8636 | * header). */ |
8637 | s = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K); |
8638 | s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 8; |
8639 | |
8640 | /* Stash this in X since we'll need it later. */ |
8641 | s1 = new_stmt(cstate, BPF_MISC|BPF_TAX); |
8642 | sappend(s, s1); |
8643 | |
8644 | /* The EtherType in Geneve is 2 bytes in. Calculate this and |
8645 | * store it. */ |
8646 | s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K); |
8647 | s1->s.k = 2; |
8648 | sappend(s, s1); |
8649 | |
8650 | cstate->off_linktype.reg = alloc_reg(cstate); |
8651 | cstate->off_linktype.is_variable = 1; |
8652 | cstate->off_linktype.constant_part = 0; |
8653 | |
8654 | s1 = new_stmt(cstate, BPF_ST); |
8655 | s1->s.k = cstate->off_linktype.reg; |
8656 | sappend(s, s1); |
8657 | |
8658 | /* Load the Geneve option length and mask and shift to get the |
8659 | * number of bytes. It is stored in the first byte of the Geneve |
8660 | * header. */ |
8661 | s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B); |
8662 | s1->s.k = 0; |
8663 | sappend(s, s1); |
8664 | |
8665 | s1 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K); |
8666 | s1->s.k = 0x3f; |
8667 | sappend(s, s1); |
8668 | |
8669 | s1 = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K); |
8670 | s1->s.k = 4; |
8671 | sappend(s, s1); |
8672 | |
8673 | /* Add in the rest of the Geneve base header. */ |
8674 | s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K); |
8675 | s1->s.k = 8; |
8676 | sappend(s, s1); |
8677 | |
8678 | /* Add the Geneve header length to its offset and store. */ |
8679 | s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X); |
8680 | s1->s.k = 0; |
8681 | sappend(s, s1); |
8682 | |
8683 | /* Set the encapsulated type as Ethernet. Even though we may |
8684 | * not actually have Ethernet inside there are two reasons this |
8685 | * is useful: |
8686 | * - The linktype field is always in EtherType format regardless |
8687 | * of whether it is in Geneve or an inner Ethernet frame. |
8688 | * - The only link layer that we have specific support for is |
8689 | * Ethernet. We will confirm that the packet actually is |
8690 | * Ethernet at runtime before executing these checks. */ |
8691 | PUSH_LINKHDR(cstate, DLT_EN10MB, 1, 0, alloc_reg(cstate)); |
8692 | |
8693 | s1 = new_stmt(cstate, BPF_ST); |
8694 | s1->s.k = cstate->off_linkhdr.reg; |
8695 | sappend(s, s1); |
8696 | |
8697 | /* Calculate whether we have an Ethernet header or just raw IP/ |
8698 | * MPLS/etc. If we have Ethernet, advance the end of the MAC offset |
8699 | * and linktype by 14 bytes so that the network header can be found |
8700 | * seamlessly. Otherwise, keep what we've calculated already. */ |
8701 | |
8702 | /* We have a bare jmp so we can't use the optimizer. */ |
8703 | cstate->no_optimize = 1; |
8704 | |
8705 | /* Load the EtherType in the Geneve header, 2 bytes in. */ |
8706 | s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_H); |
8707 | s1->s.k = 2; |
8708 | sappend(s, s1); |
8709 | |
8710 | /* Load X with the end of the Geneve header. */ |
8711 | s1 = new_stmt(cstate, BPF_LDX|BPF_MEM); |
8712 | s1->s.k = cstate->off_linkhdr.reg; |
8713 | sappend(s, s1); |
8714 | |
8715 | /* Check if the EtherType is Transparent Ethernet Bridging. At the |
8716 | * end of this check, we should have the total length in X. In |
8717 | * the non-Ethernet case, it's already there. */ |
8718 | s_proto = new_stmt(cstate, JMP(BPF_JEQ)); |
8719 | s_proto->s.k = ETHERTYPE_TEB; |
8720 | sappend(s, s_proto); |
8721 | |
8722 | s1 = new_stmt(cstate, BPF_MISC|BPF_TXA); |
8723 | sappend(s, s1); |
8724 | s_proto->s.jt = s1; |
8725 | |
8726 | /* Since this is Ethernet, use the EtherType of the payload |
8727 | * directly as the linktype. Overwrite what we already have. */ |
8728 | s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K); |
8729 | s1->s.k = 12; |
8730 | sappend(s, s1); |
8731 | |
8732 | s1 = new_stmt(cstate, BPF_ST); |
8733 | s1->s.k = cstate->off_linktype.reg; |
8734 | sappend(s, s1); |
8735 | |
8736 | /* Advance two bytes further to get the end of the Ethernet |
8737 | * header. */ |
8738 | s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K); |
8739 | s1->s.k = 2; |
8740 | sappend(s, s1); |
8741 | |
8742 | /* Move the result to X. */ |
8743 | s1 = new_stmt(cstate, BPF_MISC|BPF_TAX); |
8744 | sappend(s, s1); |
8745 | |
8746 | /* Store the final result of our linkpl calculation. */ |
8747 | cstate->off_linkpl.reg = alloc_reg(cstate); |
8748 | cstate->off_linkpl.is_variable = 1; |
8749 | cstate->off_linkpl.constant_part = 0; |
8750 | |
8751 | s1 = new_stmt(cstate, BPF_STX); |
8752 | s1->s.k = cstate->off_linkpl.reg; |
8753 | sappend(s, s1); |
8754 | s_proto->s.jf = s1; |
8755 | |
8756 | cstate->off_nl = 0; |
8757 | |
8758 | return s; |
8759 | } |
8760 | |
8761 | /* Check to see if this is a Geneve packet. */ |
8762 | struct block * |
8763 | gen_geneve(compiler_state_t *cstate, int vni) |
8764 | { |
8765 | struct block *b0, *b1; |
8766 | struct slist *s; |
8767 | |
8768 | b0 = gen_geneve4(cstate, vni); |
8769 | b1 = gen_geneve6(cstate, vni); |
8770 | |
8771 | gen_or(b0, b1); |
8772 | b0 = b1; |
8773 | |
8774 | /* Later filters should act on the payload of the Geneve frame, |
8775 | * update all of the header pointers. Attach this code so that |
8776 | * it gets executed in the event that the Geneve filter matches. */ |
8777 | s = gen_geneve_offsets(cstate); |
8778 | |
8779 | b1 = gen_true(cstate); |
8780 | sappend(s, b1->stmts); |
8781 | b1->stmts = s; |
8782 | |
8783 | gen_and(b0, b1); |
8784 | |
8785 | cstate->is_geneve = 1; |
8786 | |
8787 | return b1; |
8788 | } |
8789 | |
8790 | /* Check that the encapsulated frame has a link layer header |
8791 | * for Ethernet filters. */ |
8792 | static struct block * |
8793 | gen_geneve_ll_check(compiler_state_t *cstate) |
8794 | { |
8795 | struct block *b0; |
8796 | struct slist *s, *s1; |
8797 | |
8798 | /* The easiest way to see if there is a link layer present |
8799 | * is to check if the link layer header and payload are not |
8800 | * the same. */ |
8801 | |
8802 | /* Geneve always generates pure variable offsets so we can |
8803 | * compare only the registers. */ |
8804 | s = new_stmt(cstate, BPF_LD|BPF_MEM); |
8805 | s->s.k = cstate->off_linkhdr.reg; |
8806 | |
8807 | s1 = new_stmt(cstate, BPF_LDX|BPF_MEM); |
8808 | s1->s.k = cstate->off_linkpl.reg; |
8809 | sappend(s, s1); |
8810 | |
8811 | b0 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X); |
8812 | b0->stmts = s; |
8813 | b0->s.k = 0; |
8814 | gen_not(b0); |
8815 | |
8816 | return b0; |
8817 | } |
8818 | |
8819 | struct block * |
8820 | gen_atmfield_code(compiler_state_t *cstate, int atmfield, bpf_int32 jvalue, |
8821 | bpf_u_int32 jtype, int reverse) |
8822 | { |
8823 | struct block *b0; |
8824 | |
8825 | switch (atmfield) { |
8826 | |
8827 | case A_VPI: |
8828 | if (!cstate->is_atm) |
8829 | bpf_error(cstate, "'vpi' supported only on raw ATM" ); |
8830 | if (cstate->off_vpi == OFFSET_NOT_SET) |
8831 | abort(); |
8832 | b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vpi, BPF_B, 0xffffffff, jtype, |
8833 | reverse, jvalue); |
8834 | break; |
8835 | |
8836 | case A_VCI: |
8837 | if (!cstate->is_atm) |
8838 | bpf_error(cstate, "'vci' supported only on raw ATM" ); |
8839 | if (cstate->off_vci == OFFSET_NOT_SET) |
8840 | abort(); |
8841 | b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vci, BPF_H, 0xffffffff, jtype, |
8842 | reverse, jvalue); |
8843 | break; |
8844 | |
8845 | case A_PROTOTYPE: |
8846 | if (cstate->off_proto == OFFSET_NOT_SET) |
8847 | abort(); /* XXX - this isn't on FreeBSD */ |
8848 | b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B, 0x0f, jtype, |
8849 | reverse, jvalue); |
8850 | break; |
8851 | |
8852 | case A_MSGTYPE: |
8853 | if (cstate->off_payload == OFFSET_NOT_SET) |
8854 | abort(); |
8855 | b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_payload + MSG_TYPE_POS, BPF_B, |
8856 | 0xffffffff, jtype, reverse, jvalue); |
8857 | break; |
8858 | |
8859 | case A_CALLREFTYPE: |
8860 | if (!cstate->is_atm) |
8861 | bpf_error(cstate, "'callref' supported only on raw ATM" ); |
8862 | if (cstate->off_proto == OFFSET_NOT_SET) |
8863 | abort(); |
8864 | b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B, 0xffffffff, |
8865 | jtype, reverse, jvalue); |
8866 | break; |
8867 | |
8868 | default: |
8869 | abort(); |
8870 | } |
8871 | return b0; |
8872 | } |
8873 | |
8874 | struct block * |
8875 | gen_atmtype_abbrev(compiler_state_t *cstate, int type) |
8876 | { |
8877 | struct block *b0, *b1; |
8878 | |
8879 | switch (type) { |
8880 | |
8881 | case A_METAC: |
8882 | /* Get all packets in Meta signalling Circuit */ |
8883 | if (!cstate->is_atm) |
8884 | bpf_error(cstate, "'metac' supported only on raw ATM" ); |
8885 | b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0); |
8886 | b1 = gen_atmfield_code(cstate, A_VCI, 1, BPF_JEQ, 0); |
8887 | gen_and(b0, b1); |
8888 | break; |
8889 | |
8890 | case A_BCC: |
8891 | /* Get all packets in Broadcast Circuit*/ |
8892 | if (!cstate->is_atm) |
8893 | bpf_error(cstate, "'bcc' supported only on raw ATM" ); |
8894 | b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0); |
8895 | b1 = gen_atmfield_code(cstate, A_VCI, 2, BPF_JEQ, 0); |
8896 | gen_and(b0, b1); |
8897 | break; |
8898 | |
8899 | case A_OAMF4SC: |
8900 | /* Get all cells in Segment OAM F4 circuit*/ |
8901 | if (!cstate->is_atm) |
8902 | bpf_error(cstate, "'oam4sc' supported only on raw ATM" ); |
8903 | b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0); |
8904 | b1 = gen_atmfield_code(cstate, A_VCI, 3, BPF_JEQ, 0); |
8905 | gen_and(b0, b1); |
8906 | break; |
8907 | |
8908 | case A_OAMF4EC: |
8909 | /* Get all cells in End-to-End OAM F4 Circuit*/ |
8910 | if (!cstate->is_atm) |
8911 | bpf_error(cstate, "'oam4ec' supported only on raw ATM" ); |
8912 | b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0); |
8913 | b1 = gen_atmfield_code(cstate, A_VCI, 4, BPF_JEQ, 0); |
8914 | gen_and(b0, b1); |
8915 | break; |
8916 | |
8917 | case A_SC: |
8918 | /* Get all packets in connection Signalling Circuit */ |
8919 | if (!cstate->is_atm) |
8920 | bpf_error(cstate, "'sc' supported only on raw ATM" ); |
8921 | b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0); |
8922 | b1 = gen_atmfield_code(cstate, A_VCI, 5, BPF_JEQ, 0); |
8923 | gen_and(b0, b1); |
8924 | break; |
8925 | |
8926 | case A_ILMIC: |
8927 | /* Get all packets in ILMI Circuit */ |
8928 | if (!cstate->is_atm) |
8929 | bpf_error(cstate, "'ilmic' supported only on raw ATM" ); |
8930 | b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0); |
8931 | b1 = gen_atmfield_code(cstate, A_VCI, 16, BPF_JEQ, 0); |
8932 | gen_and(b0, b1); |
8933 | break; |
8934 | |
8935 | case A_LANE: |
8936 | /* Get all LANE packets */ |
8937 | if (!cstate->is_atm) |
8938 | bpf_error(cstate, "'lane' supported only on raw ATM" ); |
8939 | b1 = gen_atmfield_code(cstate, A_PROTOTYPE, PT_LANE, BPF_JEQ, 0); |
8940 | |
8941 | /* |
8942 | * Arrange that all subsequent tests assume LANE |
8943 | * rather than LLC-encapsulated packets, and set |
8944 | * the offsets appropriately for LANE-encapsulated |
8945 | * Ethernet. |
8946 | * |
8947 | * We assume LANE means Ethernet, not Token Ring. |
8948 | */ |
8949 | PUSH_LINKHDR(cstate, DLT_EN10MB, 0, |
8950 | cstate->off_payload + 2, /* Ethernet header */ |
8951 | -1); |
8952 | cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12; |
8953 | cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14; /* Ethernet */ |
8954 | cstate->off_nl = 0; /* Ethernet II */ |
8955 | cstate->off_nl_nosnap = 3; /* 802.3+802.2 */ |
8956 | break; |
8957 | |
8958 | case A_LLC: |
8959 | /* Get all LLC-encapsulated packets */ |
8960 | if (!cstate->is_atm) |
8961 | bpf_error(cstate, "'llc' supported only on raw ATM" ); |
8962 | b1 = gen_atmfield_code(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0); |
8963 | cstate->linktype = cstate->prevlinktype; |
8964 | break; |
8965 | |
8966 | default: |
8967 | abort(); |
8968 | } |
8969 | return b1; |
8970 | } |
8971 | |
8972 | /* |
8973 | * Filtering for MTP2 messages based on li value |
8974 | * FISU, length is null |
8975 | * LSSU, length is 1 or 2 |
8976 | * MSU, length is 3 or more |
8977 | * For MTP2_HSL, sequences are on 2 bytes, and length on 9 bits |
8978 | */ |
8979 | struct block * |
8980 | gen_mtp2type_abbrev(compiler_state_t *cstate, int type) |
8981 | { |
8982 | struct block *b0, *b1; |
8983 | |
8984 | switch (type) { |
8985 | |
8986 | case M_FISU: |
8987 | if ( (cstate->linktype != DLT_MTP2) && |
8988 | (cstate->linktype != DLT_ERF) && |
8989 | (cstate->linktype != DLT_MTP2_WITH_PHDR) ) |
8990 | bpf_error(cstate, "'fisu' supported only on MTP2" ); |
8991 | /* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */ |
8992 | b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B, 0x3f, BPF_JEQ, 0, 0); |
8993 | break; |
8994 | |
8995 | case M_LSSU: |
8996 | if ( (cstate->linktype != DLT_MTP2) && |
8997 | (cstate->linktype != DLT_ERF) && |
8998 | (cstate->linktype != DLT_MTP2_WITH_PHDR) ) |
8999 | bpf_error(cstate, "'lssu' supported only on MTP2" ); |
9000 | b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B, 0x3f, BPF_JGT, 1, 2); |
9001 | b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B, 0x3f, BPF_JGT, 0, 0); |
9002 | gen_and(b1, b0); |
9003 | break; |
9004 | |
9005 | case M_MSU: |
9006 | if ( (cstate->linktype != DLT_MTP2) && |
9007 | (cstate->linktype != DLT_ERF) && |
9008 | (cstate->linktype != DLT_MTP2_WITH_PHDR) ) |
9009 | bpf_error(cstate, "'msu' supported only on MTP2" ); |
9010 | b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B, 0x3f, BPF_JGT, 0, 2); |
9011 | break; |
9012 | |
9013 | case MH_FISU: |
9014 | if ( (cstate->linktype != DLT_MTP2) && |
9015 | (cstate->linktype != DLT_ERF) && |
9016 | (cstate->linktype != DLT_MTP2_WITH_PHDR) ) |
9017 | bpf_error(cstate, "'hfisu' supported only on MTP2_HSL" ); |
9018 | /* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */ |
9019 | b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H, 0xff80, BPF_JEQ, 0, 0); |
9020 | break; |
9021 | |
9022 | case MH_LSSU: |
9023 | if ( (cstate->linktype != DLT_MTP2) && |
9024 | (cstate->linktype != DLT_ERF) && |
9025 | (cstate->linktype != DLT_MTP2_WITH_PHDR) ) |
9026 | bpf_error(cstate, "'hlssu' supported only on MTP2_HSL" ); |
9027 | b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H, 0xff80, BPF_JGT, 1, 0x0100); |
9028 | b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H, 0xff80, BPF_JGT, 0, 0); |
9029 | gen_and(b1, b0); |
9030 | break; |
9031 | |
9032 | case MH_MSU: |
9033 | if ( (cstate->linktype != DLT_MTP2) && |
9034 | (cstate->linktype != DLT_ERF) && |
9035 | (cstate->linktype != DLT_MTP2_WITH_PHDR) ) |
9036 | bpf_error(cstate, "'hmsu' supported only on MTP2_HSL" ); |
9037 | b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H, 0xff80, BPF_JGT, 0, 0x0100); |
9038 | break; |
9039 | |
9040 | default: |
9041 | abort(); |
9042 | } |
9043 | return b0; |
9044 | } |
9045 | |
9046 | struct block * |
9047 | gen_mtp3field_code(compiler_state_t *cstate, int mtp3field, bpf_u_int32 jvalue, |
9048 | bpf_u_int32 jtype, int reverse) |
9049 | { |
9050 | struct block *b0; |
9051 | bpf_u_int32 val1 , val2 , val3; |
9052 | u_int newoff_sio = cstate->off_sio; |
9053 | u_int newoff_opc = cstate->off_opc; |
9054 | u_int newoff_dpc = cstate->off_dpc; |
9055 | u_int newoff_sls = cstate->off_sls; |
9056 | |
9057 | switch (mtp3field) { |
9058 | |
9059 | case MH_SIO: |
9060 | newoff_sio += 3; /* offset for MTP2_HSL */ |
9061 | /* FALLTHROUGH */ |
9062 | |
9063 | case M_SIO: |
9064 | if (cstate->off_sio == OFFSET_NOT_SET) |
9065 | bpf_error(cstate, "'sio' supported only on SS7" ); |
9066 | /* sio coded on 1 byte so max value 255 */ |
9067 | if(jvalue > 255) |
9068 | bpf_error(cstate, "sio value %u too big; max value = 255" , |
9069 | jvalue); |
9070 | b0 = gen_ncmp(cstate, OR_PACKET, newoff_sio, BPF_B, 0xffffffff, |
9071 | (u_int)jtype, reverse, (u_int)jvalue); |
9072 | break; |
9073 | |
9074 | case MH_OPC: |
9075 | newoff_opc+=3; |
9076 | case M_OPC: |
9077 | if (cstate->off_opc == OFFSET_NOT_SET) |
9078 | bpf_error(cstate, "'opc' supported only on SS7" ); |
9079 | /* opc coded on 14 bits so max value 16383 */ |
9080 | if (jvalue > 16383) |
9081 | bpf_error(cstate, "opc value %u too big; max value = 16383" , |
9082 | jvalue); |
9083 | /* the following instructions are made to convert jvalue |
9084 | * to the form used to write opc in an ss7 message*/ |
9085 | val1 = jvalue & 0x00003c00; |
9086 | val1 = val1 >>10; |
9087 | val2 = jvalue & 0x000003fc; |
9088 | val2 = val2 <<6; |
9089 | val3 = jvalue & 0x00000003; |
9090 | val3 = val3 <<22; |
9091 | jvalue = val1 + val2 + val3; |
9092 | b0 = gen_ncmp(cstate, OR_PACKET, newoff_opc, BPF_W, 0x00c0ff0f, |
9093 | (u_int)jtype, reverse, (u_int)jvalue); |
9094 | break; |
9095 | |
9096 | case MH_DPC: |
9097 | newoff_dpc += 3; |
9098 | /* FALLTHROUGH */ |
9099 | |
9100 | case M_DPC: |
9101 | if (cstate->off_dpc == OFFSET_NOT_SET) |
9102 | bpf_error(cstate, "'dpc' supported only on SS7" ); |
9103 | /* dpc coded on 14 bits so max value 16383 */ |
9104 | if (jvalue > 16383) |
9105 | bpf_error(cstate, "dpc value %u too big; max value = 16383" , |
9106 | jvalue); |
9107 | /* the following instructions are made to convert jvalue |
9108 | * to the forme used to write dpc in an ss7 message*/ |
9109 | val1 = jvalue & 0x000000ff; |
9110 | val1 = val1 << 24; |
9111 | val2 = jvalue & 0x00003f00; |
9112 | val2 = val2 << 8; |
9113 | jvalue = val1 + val2; |
9114 | b0 = gen_ncmp(cstate, OR_PACKET, newoff_dpc, BPF_W, 0xff3f0000, |
9115 | (u_int)jtype, reverse, (u_int)jvalue); |
9116 | break; |
9117 | |
9118 | case MH_SLS: |
9119 | newoff_sls+=3; |
9120 | case M_SLS: |
9121 | if (cstate->off_sls == OFFSET_NOT_SET) |
9122 | bpf_error(cstate, "'sls' supported only on SS7" ); |
9123 | /* sls coded on 4 bits so max value 15 */ |
9124 | if (jvalue > 15) |
9125 | bpf_error(cstate, "sls value %u too big; max value = 15" , |
9126 | jvalue); |
9127 | /* the following instruction is made to convert jvalue |
9128 | * to the forme used to write sls in an ss7 message*/ |
9129 | jvalue = jvalue << 4; |
9130 | b0 = gen_ncmp(cstate, OR_PACKET, newoff_sls, BPF_B, 0xf0, |
9131 | (u_int)jtype,reverse, (u_int)jvalue); |
9132 | break; |
9133 | |
9134 | default: |
9135 | abort(); |
9136 | } |
9137 | return b0; |
9138 | } |
9139 | |
9140 | static struct block * |
9141 | gen_msg_abbrev(compiler_state_t *cstate, int type) |
9142 | { |
9143 | struct block *b1; |
9144 | |
9145 | /* |
9146 | * Q.2931 signalling protocol messages for handling virtual circuits |
9147 | * establishment and teardown |
9148 | */ |
9149 | switch (type) { |
9150 | |
9151 | case A_SETUP: |
9152 | b1 = gen_atmfield_code(cstate, A_MSGTYPE, SETUP, BPF_JEQ, 0); |
9153 | break; |
9154 | |
9155 | case A_CALLPROCEED: |
9156 | b1 = gen_atmfield_code(cstate, A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0); |
9157 | break; |
9158 | |
9159 | case A_CONNECT: |
9160 | b1 = gen_atmfield_code(cstate, A_MSGTYPE, CONNECT, BPF_JEQ, 0); |
9161 | break; |
9162 | |
9163 | case A_CONNECTACK: |
9164 | b1 = gen_atmfield_code(cstate, A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0); |
9165 | break; |
9166 | |
9167 | case A_RELEASE: |
9168 | b1 = gen_atmfield_code(cstate, A_MSGTYPE, RELEASE, BPF_JEQ, 0); |
9169 | break; |
9170 | |
9171 | case A_RELEASE_DONE: |
9172 | b1 = gen_atmfield_code(cstate, A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0); |
9173 | break; |
9174 | |
9175 | default: |
9176 | abort(); |
9177 | } |
9178 | return b1; |
9179 | } |
9180 | |
9181 | struct block * |
9182 | gen_atmmulti_abbrev(compiler_state_t *cstate, int type) |
9183 | { |
9184 | struct block *b0, *b1; |
9185 | |
9186 | switch (type) { |
9187 | |
9188 | case A_OAM: |
9189 | if (!cstate->is_atm) |
9190 | bpf_error(cstate, "'oam' supported only on raw ATM" ); |
9191 | b1 = gen_atmmulti_abbrev(cstate, A_OAMF4); |
9192 | break; |
9193 | |
9194 | case A_OAMF4: |
9195 | if (!cstate->is_atm) |
9196 | bpf_error(cstate, "'oamf4' supported only on raw ATM" ); |
9197 | /* OAM F4 type */ |
9198 | b0 = gen_atmfield_code(cstate, A_VCI, 3, BPF_JEQ, 0); |
9199 | b1 = gen_atmfield_code(cstate, A_VCI, 4, BPF_JEQ, 0); |
9200 | gen_or(b0, b1); |
9201 | b0 = gen_atmfield_code(cstate, A_VPI, 0, BPF_JEQ, 0); |
9202 | gen_and(b0, b1); |
9203 | break; |
9204 | |
9205 | case A_CONNECTMSG: |
9206 | /* |
9207 | * Get Q.2931 signalling messages for switched |
9208 | * virtual connection |
9209 | */ |
9210 | if (!cstate->is_atm) |
9211 | bpf_error(cstate, "'connectmsg' supported only on raw ATM" ); |
9212 | b0 = gen_msg_abbrev(cstate, A_SETUP); |
9213 | b1 = gen_msg_abbrev(cstate, A_CALLPROCEED); |
9214 | gen_or(b0, b1); |
9215 | b0 = gen_msg_abbrev(cstate, A_CONNECT); |
9216 | gen_or(b0, b1); |
9217 | b0 = gen_msg_abbrev(cstate, A_CONNECTACK); |
9218 | gen_or(b0, b1); |
9219 | b0 = gen_msg_abbrev(cstate, A_RELEASE); |
9220 | gen_or(b0, b1); |
9221 | b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE); |
9222 | gen_or(b0, b1); |
9223 | b0 = gen_atmtype_abbrev(cstate, A_SC); |
9224 | gen_and(b0, b1); |
9225 | break; |
9226 | |
9227 | case A_METACONNECT: |
9228 | if (!cstate->is_atm) |
9229 | bpf_error(cstate, "'metaconnect' supported only on raw ATM" ); |
9230 | b0 = gen_msg_abbrev(cstate, A_SETUP); |
9231 | b1 = gen_msg_abbrev(cstate, A_CALLPROCEED); |
9232 | gen_or(b0, b1); |
9233 | b0 = gen_msg_abbrev(cstate, A_CONNECT); |
9234 | gen_or(b0, b1); |
9235 | b0 = gen_msg_abbrev(cstate, A_RELEASE); |
9236 | gen_or(b0, b1); |
9237 | b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE); |
9238 | gen_or(b0, b1); |
9239 | b0 = gen_atmtype_abbrev(cstate, A_METAC); |
9240 | gen_and(b0, b1); |
9241 | break; |
9242 | |
9243 | default: |
9244 | abort(); |
9245 | } |
9246 | return b1; |
9247 | } |
9248 | |