1 | /* $NetBSD: kern_proc.c,v 1.233 2019/06/11 23:18:55 kamil Exp $ */ |
2 | |
3 | /*- |
4 | * Copyright (c) 1999, 2006, 2007, 2008 The NetBSD Foundation, Inc. |
5 | * All rights reserved. |
6 | * |
7 | * This code is derived from software contributed to The NetBSD Foundation |
8 | * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, |
9 | * NASA Ames Research Center, and by Andrew Doran. |
10 | * |
11 | * Redistribution and use in source and binary forms, with or without |
12 | * modification, are permitted provided that the following conditions |
13 | * are met: |
14 | * 1. Redistributions of source code must retain the above copyright |
15 | * notice, this list of conditions and the following disclaimer. |
16 | * 2. Redistributions in binary form must reproduce the above copyright |
17 | * notice, this list of conditions and the following disclaimer in the |
18 | * documentation and/or other materials provided with the distribution. |
19 | * |
20 | * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS |
21 | * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
22 | * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
23 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS |
24 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
25 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
26 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
27 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
28 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
29 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
30 | * POSSIBILITY OF SUCH DAMAGE. |
31 | */ |
32 | |
33 | /* |
34 | * Copyright (c) 1982, 1986, 1989, 1991, 1993 |
35 | * The Regents of the University of California. All rights reserved. |
36 | * |
37 | * Redistribution and use in source and binary forms, with or without |
38 | * modification, are permitted provided that the following conditions |
39 | * are met: |
40 | * 1. Redistributions of source code must retain the above copyright |
41 | * notice, this list of conditions and the following disclaimer. |
42 | * 2. Redistributions in binary form must reproduce the above copyright |
43 | * notice, this list of conditions and the following disclaimer in the |
44 | * documentation and/or other materials provided with the distribution. |
45 | * 3. Neither the name of the University nor the names of its contributors |
46 | * may be used to endorse or promote products derived from this software |
47 | * without specific prior written permission. |
48 | * |
49 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
50 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
51 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
52 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
53 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
54 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
55 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
56 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
57 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
58 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
59 | * SUCH DAMAGE. |
60 | * |
61 | * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 |
62 | */ |
63 | |
64 | #include <sys/cdefs.h> |
65 | __KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.233 2019/06/11 23:18:55 kamil Exp $" ); |
66 | |
67 | #ifdef _KERNEL_OPT |
68 | #include "opt_kstack.h" |
69 | #include "opt_maxuprc.h" |
70 | #include "opt_dtrace.h" |
71 | #include "opt_compat_netbsd32.h" |
72 | #include "opt_kaslr.h" |
73 | #endif |
74 | |
75 | #if defined(__HAVE_COMPAT_NETBSD32) && !defined(COMPAT_NETBSD32) \ |
76 | && !defined(_RUMPKERNEL) |
77 | #define COMPAT_NETBSD32 |
78 | #endif |
79 | |
80 | #include <sys/param.h> |
81 | #include <sys/systm.h> |
82 | #include <sys/kernel.h> |
83 | #include <sys/proc.h> |
84 | #include <sys/resourcevar.h> |
85 | #include <sys/buf.h> |
86 | #include <sys/acct.h> |
87 | #include <sys/wait.h> |
88 | #include <sys/file.h> |
89 | #include <ufs/ufs/quota.h> |
90 | #include <sys/uio.h> |
91 | #include <sys/pool.h> |
92 | #include <sys/pset.h> |
93 | #include <sys/ioctl.h> |
94 | #include <sys/tty.h> |
95 | #include <sys/signalvar.h> |
96 | #include <sys/ras.h> |
97 | #include <sys/filedesc.h> |
98 | #include <sys/syscall_stats.h> |
99 | #include <sys/kauth.h> |
100 | #include <sys/sleepq.h> |
101 | #include <sys/atomic.h> |
102 | #include <sys/kmem.h> |
103 | #include <sys/namei.h> |
104 | #include <sys/dtrace_bsd.h> |
105 | #include <sys/sysctl.h> |
106 | #include <sys/exec.h> |
107 | #include <sys/cpu.h> |
108 | #include <sys/compat_stub.h> |
109 | |
110 | #include <uvm/uvm_extern.h> |
111 | #include <uvm/uvm.h> |
112 | |
113 | /* |
114 | * Process lists. |
115 | */ |
116 | |
117 | struct proclist allproc __cacheline_aligned; |
118 | struct proclist zombproc __cacheline_aligned; |
119 | |
120 | kmutex_t * proc_lock __cacheline_aligned; |
121 | |
122 | /* |
123 | * pid to proc lookup is done by indexing the pid_table array. |
124 | * Since pid numbers are only allocated when an empty slot |
125 | * has been found, there is no need to search any lists ever. |
126 | * (an orphaned pgrp will lock the slot, a session will lock |
127 | * the pgrp with the same number.) |
128 | * If the table is too small it is reallocated with twice the |
129 | * previous size and the entries 'unzipped' into the two halves. |
130 | * A linked list of free entries is passed through the pt_proc |
131 | * field of 'free' items - set odd to be an invalid ptr. |
132 | */ |
133 | |
134 | struct pid_table { |
135 | struct proc *pt_proc; |
136 | struct pgrp *pt_pgrp; |
137 | pid_t pt_pid; |
138 | }; |
139 | #if 1 /* strongly typed cast - should be a noop */ |
140 | static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; } |
141 | #else |
142 | #define p2u(p) ((uint)p) |
143 | #endif |
144 | #define P_VALID(p) (!(p2u(p) & 1)) |
145 | #define P_NEXT(p) (p2u(p) >> 1) |
146 | #define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1)) |
147 | |
148 | /* |
149 | * Table of process IDs (PIDs). |
150 | */ |
151 | static struct pid_table *pid_table __read_mostly; |
152 | |
153 | #define INITIAL_PID_TABLE_SIZE (1 << 5) |
154 | |
155 | /* Table mask, threshold for growing and number of allocated PIDs. */ |
156 | static u_int pid_tbl_mask __read_mostly; |
157 | static u_int pid_alloc_lim __read_mostly; |
158 | static u_int pid_alloc_cnt __cacheline_aligned; |
159 | |
160 | /* Next free, last free and maximum PIDs. */ |
161 | static u_int next_free_pt __cacheline_aligned; |
162 | static u_int last_free_pt __cacheline_aligned; |
163 | static pid_t pid_max __read_mostly; |
164 | |
165 | /* Components of the first process -- never freed. */ |
166 | |
167 | extern struct emul emul_netbsd; /* defined in kern_exec.c */ |
168 | |
169 | struct session session0 = { |
170 | .s_count = 1, |
171 | .s_sid = 0, |
172 | }; |
173 | struct pgrp pgrp0 = { |
174 | .pg_members = LIST_HEAD_INITIALIZER(&pgrp0.pg_members), |
175 | .pg_session = &session0, |
176 | }; |
177 | filedesc_t filedesc0; |
178 | struct cwdinfo cwdi0 = { |
179 | .cwdi_cmask = CMASK, |
180 | .cwdi_refcnt = 1, |
181 | }; |
182 | struct plimit limit0; |
183 | struct pstats pstat0; |
184 | struct vmspace vmspace0; |
185 | struct sigacts sigacts0; |
186 | struct proc proc0 = { |
187 | .p_lwps = LIST_HEAD_INITIALIZER(&proc0.p_lwps), |
188 | .p_sigwaiters = LIST_HEAD_INITIALIZER(&proc0.p_sigwaiters), |
189 | .p_nlwps = 1, |
190 | .p_nrlwps = 1, |
191 | .p_nlwpid = 1, /* must match lwp0.l_lid */ |
192 | .p_pgrp = &pgrp0, |
193 | .p_comm = "system" , |
194 | /* |
195 | * Set P_NOCLDWAIT so that kernel threads are reparented to init(8) |
196 | * when they exit. init(8) can easily wait them out for us. |
197 | */ |
198 | .p_flag = PK_SYSTEM | PK_NOCLDWAIT, |
199 | .p_stat = SACTIVE, |
200 | .p_nice = NZERO, |
201 | .p_emul = &emul_netbsd, |
202 | .p_cwdi = &cwdi0, |
203 | .p_limit = &limit0, |
204 | .p_fd = &filedesc0, |
205 | .p_vmspace = &vmspace0, |
206 | .p_stats = &pstat0, |
207 | .p_sigacts = &sigacts0, |
208 | #ifdef PROC0_MD_INITIALIZERS |
209 | PROC0_MD_INITIALIZERS |
210 | #endif |
211 | }; |
212 | kauth_cred_t cred0; |
213 | |
214 | static const int nofile = NOFILE; |
215 | static const int maxuprc = MAXUPRC; |
216 | |
217 | static int sysctl_doeproc(SYSCTLFN_PROTO); |
218 | static int sysctl_kern_proc_args(SYSCTLFN_PROTO); |
219 | static int sysctl_security_expose_address(SYSCTLFN_PROTO); |
220 | |
221 | #ifdef KASLR |
222 | static int kern_expose_address = 0; |
223 | #else |
224 | static int kern_expose_address = 1; |
225 | #endif |
226 | /* |
227 | * The process list descriptors, used during pid allocation and |
228 | * by sysctl. No locking on this data structure is needed since |
229 | * it is completely static. |
230 | */ |
231 | const struct proclist_desc proclists[] = { |
232 | { &allproc }, |
233 | { &zombproc }, |
234 | { NULL }, |
235 | }; |
236 | |
237 | static struct pgrp * pg_remove(pid_t); |
238 | static void pg_delete(pid_t); |
239 | static void orphanpg(struct pgrp *); |
240 | |
241 | static specificdata_domain_t proc_specificdata_domain; |
242 | |
243 | static pool_cache_t proc_cache; |
244 | |
245 | static kauth_listener_t proc_listener; |
246 | |
247 | static void fill_proc(const struct proc *, struct proc *, bool); |
248 | static int fill_pathname(struct lwp *, pid_t, void *, size_t *); |
249 | static int fill_cwd(struct lwp *, pid_t, void *, size_t *); |
250 | |
251 | static int |
252 | proc_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, |
253 | void *arg0, void *arg1, void *arg2, void *arg3) |
254 | { |
255 | struct proc *p; |
256 | int result; |
257 | |
258 | result = KAUTH_RESULT_DEFER; |
259 | p = arg0; |
260 | |
261 | switch (action) { |
262 | case KAUTH_PROCESS_CANSEE: { |
263 | enum kauth_process_req req; |
264 | |
265 | req = (enum kauth_process_req)arg1; |
266 | |
267 | switch (req) { |
268 | case KAUTH_REQ_PROCESS_CANSEE_ARGS: |
269 | case KAUTH_REQ_PROCESS_CANSEE_ENTRY: |
270 | case KAUTH_REQ_PROCESS_CANSEE_OPENFILES: |
271 | case KAUTH_REQ_PROCESS_CANSEE_EPROC: |
272 | result = KAUTH_RESULT_ALLOW; |
273 | break; |
274 | |
275 | case KAUTH_REQ_PROCESS_CANSEE_ENV: |
276 | if (kauth_cred_getuid(cred) != |
277 | kauth_cred_getuid(p->p_cred) || |
278 | kauth_cred_getuid(cred) != |
279 | kauth_cred_getsvuid(p->p_cred)) |
280 | break; |
281 | |
282 | result = KAUTH_RESULT_ALLOW; |
283 | |
284 | break; |
285 | |
286 | case KAUTH_REQ_PROCESS_CANSEE_KPTR: |
287 | if (!kern_expose_address) |
288 | break; |
289 | |
290 | if (kern_expose_address == 1 && !(p->p_flag & PK_KMEM)) |
291 | break; |
292 | |
293 | result = KAUTH_RESULT_ALLOW; |
294 | |
295 | break; |
296 | |
297 | default: |
298 | break; |
299 | } |
300 | |
301 | break; |
302 | } |
303 | |
304 | case KAUTH_PROCESS_FORK: { |
305 | int lnprocs = (int)(unsigned long)arg2; |
306 | |
307 | /* |
308 | * Don't allow a nonprivileged user to use the last few |
309 | * processes. The variable lnprocs is the current number of |
310 | * processes, maxproc is the limit. |
311 | */ |
312 | if (__predict_false((lnprocs >= maxproc - 5))) |
313 | break; |
314 | |
315 | result = KAUTH_RESULT_ALLOW; |
316 | |
317 | break; |
318 | } |
319 | |
320 | case KAUTH_PROCESS_CORENAME: |
321 | case KAUTH_PROCESS_STOPFLAG: |
322 | if (proc_uidmatch(cred, p->p_cred) == 0) |
323 | result = KAUTH_RESULT_ALLOW; |
324 | |
325 | break; |
326 | |
327 | default: |
328 | break; |
329 | } |
330 | |
331 | return result; |
332 | } |
333 | |
334 | static int |
335 | proc_ctor(void *arg __unused, void *obj, int flags __unused) |
336 | { |
337 | memset(obj, 0, sizeof(struct proc)); |
338 | return 0; |
339 | } |
340 | |
341 | /* |
342 | * Initialize global process hashing structures. |
343 | */ |
344 | void |
345 | procinit(void) |
346 | { |
347 | const struct proclist_desc *pd; |
348 | u_int i; |
349 | #define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1)) |
350 | |
351 | for (pd = proclists; pd->pd_list != NULL; pd++) |
352 | LIST_INIT(pd->pd_list); |
353 | |
354 | proc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); |
355 | pid_table = kmem_alloc(INITIAL_PID_TABLE_SIZE |
356 | * sizeof(struct pid_table), KM_SLEEP); |
357 | pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1; |
358 | pid_max = PID_MAX; |
359 | |
360 | /* Set free list running through table... |
361 | Preset 'use count' above PID_MAX so we allocate pid 1 next. */ |
362 | for (i = 0; i <= pid_tbl_mask; i++) { |
363 | pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1); |
364 | pid_table[i].pt_pgrp = 0; |
365 | pid_table[i].pt_pid = 0; |
366 | } |
367 | /* slot 0 is just grabbed */ |
368 | next_free_pt = 1; |
369 | /* Need to fix last entry. */ |
370 | last_free_pt = pid_tbl_mask; |
371 | pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY); |
372 | /* point at which we grow table - to avoid reusing pids too often */ |
373 | pid_alloc_lim = pid_tbl_mask - 1; |
374 | #undef LINK_EMPTY |
375 | |
376 | proc_specificdata_domain = specificdata_domain_create(); |
377 | KASSERT(proc_specificdata_domain != NULL); |
378 | |
379 | proc_cache = pool_cache_init(sizeof(struct proc), 0, 0, 0, |
380 | "procpl" , NULL, IPL_NONE, proc_ctor, NULL, NULL); |
381 | |
382 | proc_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS, |
383 | proc_listener_cb, NULL); |
384 | } |
385 | |
386 | void |
387 | procinit_sysctl(void) |
388 | { |
389 | static struct sysctllog *clog; |
390 | |
391 | sysctl_createv(&clog, 0, NULL, NULL, |
392 | CTLFLAG_PERMANENT|CTLFLAG_READWRITE, |
393 | CTLTYPE_INT, "expose_address" , |
394 | SYSCTL_DESCR("Enable exposing kernel addresses" ), |
395 | sysctl_security_expose_address, 0, |
396 | &kern_expose_address, 0, CTL_KERN, CTL_CREATE, CTL_EOL); |
397 | sysctl_createv(&clog, 0, NULL, NULL, |
398 | CTLFLAG_PERMANENT, |
399 | CTLTYPE_NODE, "proc" , |
400 | SYSCTL_DESCR("System-wide process information" ), |
401 | sysctl_doeproc, 0, NULL, 0, |
402 | CTL_KERN, KERN_PROC, CTL_EOL); |
403 | sysctl_createv(&clog, 0, NULL, NULL, |
404 | CTLFLAG_PERMANENT, |
405 | CTLTYPE_NODE, "proc2" , |
406 | SYSCTL_DESCR("Machine-independent process information" ), |
407 | sysctl_doeproc, 0, NULL, 0, |
408 | CTL_KERN, KERN_PROC2, CTL_EOL); |
409 | sysctl_createv(&clog, 0, NULL, NULL, |
410 | CTLFLAG_PERMANENT, |
411 | CTLTYPE_NODE, "proc_args" , |
412 | SYSCTL_DESCR("Process argument information" ), |
413 | sysctl_kern_proc_args, 0, NULL, 0, |
414 | CTL_KERN, KERN_PROC_ARGS, CTL_EOL); |
415 | |
416 | /* |
417 | "nodes" under these: |
418 | |
419 | KERN_PROC_ALL |
420 | KERN_PROC_PID pid |
421 | KERN_PROC_PGRP pgrp |
422 | KERN_PROC_SESSION sess |
423 | KERN_PROC_TTY tty |
424 | KERN_PROC_UID uid |
425 | KERN_PROC_RUID uid |
426 | KERN_PROC_GID gid |
427 | KERN_PROC_RGID gid |
428 | |
429 | all in all, probably not worth the effort... |
430 | */ |
431 | } |
432 | |
433 | /* |
434 | * Initialize process 0. |
435 | */ |
436 | void |
437 | proc0_init(void) |
438 | { |
439 | struct proc *p; |
440 | struct pgrp *pg; |
441 | struct rlimit *rlim; |
442 | rlim_t lim; |
443 | int i; |
444 | |
445 | p = &proc0; |
446 | pg = &pgrp0; |
447 | |
448 | mutex_init(&p->p_stmutex, MUTEX_DEFAULT, IPL_HIGH); |
449 | mutex_init(&p->p_auxlock, MUTEX_DEFAULT, IPL_NONE); |
450 | p->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); |
451 | |
452 | rw_init(&p->p_reflock); |
453 | cv_init(&p->p_waitcv, "wait" ); |
454 | cv_init(&p->p_lwpcv, "lwpwait" ); |
455 | |
456 | LIST_INSERT_HEAD(&p->p_lwps, &lwp0, l_sibling); |
457 | |
458 | pid_table[0].pt_proc = p; |
459 | LIST_INSERT_HEAD(&allproc, p, p_list); |
460 | |
461 | pid_table[0].pt_pgrp = pg; |
462 | LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist); |
463 | |
464 | #ifdef __HAVE_SYSCALL_INTERN |
465 | (*p->p_emul->e_syscall_intern)(p); |
466 | #endif |
467 | |
468 | /* Create credentials. */ |
469 | cred0 = kauth_cred_alloc(); |
470 | p->p_cred = cred0; |
471 | |
472 | /* Create the CWD info. */ |
473 | rw_init(&cwdi0.cwdi_lock); |
474 | |
475 | /* Create the limits structures. */ |
476 | mutex_init(&limit0.pl_lock, MUTEX_DEFAULT, IPL_NONE); |
477 | |
478 | rlim = limit0.pl_rlimit; |
479 | for (i = 0; i < __arraycount(limit0.pl_rlimit); i++) { |
480 | rlim[i].rlim_cur = RLIM_INFINITY; |
481 | rlim[i].rlim_max = RLIM_INFINITY; |
482 | } |
483 | |
484 | rlim[RLIMIT_NOFILE].rlim_max = maxfiles; |
485 | rlim[RLIMIT_NOFILE].rlim_cur = maxfiles < nofile ? maxfiles : nofile; |
486 | |
487 | rlim[RLIMIT_NPROC].rlim_max = maxproc; |
488 | rlim[RLIMIT_NPROC].rlim_cur = maxproc < maxuprc ? maxproc : maxuprc; |
489 | |
490 | lim = MIN(VM_MAXUSER_ADDRESS, ctob((rlim_t)uvmexp.free)); |
491 | rlim[RLIMIT_RSS].rlim_max = lim; |
492 | rlim[RLIMIT_MEMLOCK].rlim_max = lim; |
493 | rlim[RLIMIT_MEMLOCK].rlim_cur = lim / 3; |
494 | |
495 | rlim[RLIMIT_NTHR].rlim_max = maxlwp; |
496 | rlim[RLIMIT_NTHR].rlim_cur = maxlwp < maxuprc ? maxlwp : maxuprc; |
497 | |
498 | /* Note that default core name has zero length. */ |
499 | limit0.pl_corename = defcorename; |
500 | limit0.pl_cnlen = 0; |
501 | limit0.pl_refcnt = 1; |
502 | limit0.pl_writeable = false; |
503 | limit0.pl_sv_limit = NULL; |
504 | |
505 | /* Configure virtual memory system, set vm rlimits. */ |
506 | uvm_init_limits(p); |
507 | |
508 | /* Initialize file descriptor table for proc0. */ |
509 | fd_init(&filedesc0); |
510 | |
511 | /* |
512 | * Initialize proc0's vmspace, which uses the kernel pmap. |
513 | * All kernel processes (which never have user space mappings) |
514 | * share proc0's vmspace, and thus, the kernel pmap. |
515 | */ |
516 | uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS), |
517 | trunc_page(VM_MAXUSER_ADDRESS), |
518 | #ifdef __USE_TOPDOWN_VM |
519 | true |
520 | #else |
521 | false |
522 | #endif |
523 | ); |
524 | |
525 | /* Initialize signal state for proc0. XXX IPL_SCHED */ |
526 | mutex_init(&p->p_sigacts->sa_mutex, MUTEX_DEFAULT, IPL_SCHED); |
527 | siginit(p); |
528 | |
529 | proc_initspecific(p); |
530 | kdtrace_proc_ctor(NULL, p); |
531 | } |
532 | |
533 | /* |
534 | * Session reference counting. |
535 | */ |
536 | |
537 | void |
538 | proc_sesshold(struct session *ss) |
539 | { |
540 | |
541 | KASSERT(mutex_owned(proc_lock)); |
542 | ss->s_count++; |
543 | } |
544 | |
545 | void |
546 | proc_sessrele(struct session *ss) |
547 | { |
548 | |
549 | KASSERT(mutex_owned(proc_lock)); |
550 | /* |
551 | * We keep the pgrp with the same id as the session in order to |
552 | * stop a process being given the same pid. Since the pgrp holds |
553 | * a reference to the session, it must be a 'zombie' pgrp by now. |
554 | */ |
555 | if (--ss->s_count == 0) { |
556 | struct pgrp *pg; |
557 | |
558 | pg = pg_remove(ss->s_sid); |
559 | mutex_exit(proc_lock); |
560 | |
561 | kmem_free(pg, sizeof(struct pgrp)); |
562 | kmem_free(ss, sizeof(struct session)); |
563 | } else { |
564 | mutex_exit(proc_lock); |
565 | } |
566 | } |
567 | |
568 | /* |
569 | * Check that the specified process group is in the session of the |
570 | * specified process. |
571 | * Treats -ve ids as process ids. |
572 | * Used to validate TIOCSPGRP requests. |
573 | */ |
574 | int |
575 | pgid_in_session(struct proc *p, pid_t pg_id) |
576 | { |
577 | struct pgrp *pgrp; |
578 | struct session *session; |
579 | int error; |
580 | |
581 | mutex_enter(proc_lock); |
582 | if (pg_id < 0) { |
583 | struct proc *p1 = proc_find(-pg_id); |
584 | if (p1 == NULL) { |
585 | error = EINVAL; |
586 | goto fail; |
587 | } |
588 | pgrp = p1->p_pgrp; |
589 | } else { |
590 | pgrp = pgrp_find(pg_id); |
591 | if (pgrp == NULL) { |
592 | error = EINVAL; |
593 | goto fail; |
594 | } |
595 | } |
596 | session = pgrp->pg_session; |
597 | error = (session != p->p_pgrp->pg_session) ? EPERM : 0; |
598 | fail: |
599 | mutex_exit(proc_lock); |
600 | return error; |
601 | } |
602 | |
603 | /* |
604 | * p_inferior: is p an inferior of q? |
605 | */ |
606 | static inline bool |
607 | p_inferior(struct proc *p, struct proc *q) |
608 | { |
609 | |
610 | KASSERT(mutex_owned(proc_lock)); |
611 | |
612 | for (; p != q; p = p->p_pptr) |
613 | if (p->p_pid == 0) |
614 | return false; |
615 | return true; |
616 | } |
617 | |
618 | /* |
619 | * proc_find: locate a process by the ID. |
620 | * |
621 | * => Must be called with proc_lock held. |
622 | */ |
623 | proc_t * |
624 | proc_find_raw(pid_t pid) |
625 | { |
626 | struct pid_table *pt; |
627 | proc_t *p; |
628 | |
629 | KASSERT(mutex_owned(proc_lock)); |
630 | pt = &pid_table[pid & pid_tbl_mask]; |
631 | p = pt->pt_proc; |
632 | if (__predict_false(!P_VALID(p) || pt->pt_pid != pid)) { |
633 | return NULL; |
634 | } |
635 | return p; |
636 | } |
637 | |
638 | proc_t * |
639 | proc_find(pid_t pid) |
640 | { |
641 | proc_t *p; |
642 | |
643 | p = proc_find_raw(pid); |
644 | if (__predict_false(p == NULL)) { |
645 | return NULL; |
646 | } |
647 | |
648 | /* |
649 | * Only allow live processes to be found by PID. |
650 | * XXX: p_stat might change, since unlocked. |
651 | */ |
652 | if (__predict_true(p->p_stat == SACTIVE || p->p_stat == SSTOP)) { |
653 | return p; |
654 | } |
655 | return NULL; |
656 | } |
657 | |
658 | /* |
659 | * pgrp_find: locate a process group by the ID. |
660 | * |
661 | * => Must be called with proc_lock held. |
662 | */ |
663 | struct pgrp * |
664 | pgrp_find(pid_t pgid) |
665 | { |
666 | struct pgrp *pg; |
667 | |
668 | KASSERT(mutex_owned(proc_lock)); |
669 | |
670 | pg = pid_table[pgid & pid_tbl_mask].pt_pgrp; |
671 | |
672 | /* |
673 | * Cannot look up a process group that only exists because the |
674 | * session has not died yet (traditional). |
675 | */ |
676 | if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) { |
677 | return NULL; |
678 | } |
679 | return pg; |
680 | } |
681 | |
682 | static void |
683 | expand_pid_table(void) |
684 | { |
685 | size_t pt_size, tsz; |
686 | struct pid_table *n_pt, *new_pt; |
687 | struct proc *proc; |
688 | struct pgrp *pgrp; |
689 | pid_t pid, rpid; |
690 | u_int i; |
691 | uint new_pt_mask; |
692 | |
693 | pt_size = pid_tbl_mask + 1; |
694 | tsz = pt_size * 2 * sizeof(struct pid_table); |
695 | new_pt = kmem_alloc(tsz, KM_SLEEP); |
696 | new_pt_mask = pt_size * 2 - 1; |
697 | |
698 | mutex_enter(proc_lock); |
699 | if (pt_size != pid_tbl_mask + 1) { |
700 | /* Another process beat us to it... */ |
701 | mutex_exit(proc_lock); |
702 | kmem_free(new_pt, tsz); |
703 | return; |
704 | } |
705 | |
706 | /* |
707 | * Copy entries from old table into new one. |
708 | * If 'pid' is 'odd' we need to place in the upper half, |
709 | * even pid's to the lower half. |
710 | * Free items stay in the low half so we don't have to |
711 | * fixup the reference to them. |
712 | * We stuff free items on the front of the freelist |
713 | * because we can't write to unmodified entries. |
714 | * Processing the table backwards maintains a semblance |
715 | * of issuing pid numbers that increase with time. |
716 | */ |
717 | i = pt_size - 1; |
718 | n_pt = new_pt + i; |
719 | for (; ; i--, n_pt--) { |
720 | proc = pid_table[i].pt_proc; |
721 | pgrp = pid_table[i].pt_pgrp; |
722 | if (!P_VALID(proc)) { |
723 | /* Up 'use count' so that link is valid */ |
724 | pid = (P_NEXT(proc) + pt_size) & ~pt_size; |
725 | rpid = 0; |
726 | proc = P_FREE(pid); |
727 | if (pgrp) |
728 | pid = pgrp->pg_id; |
729 | } else { |
730 | pid = pid_table[i].pt_pid; |
731 | rpid = pid; |
732 | } |
733 | |
734 | /* Save entry in appropriate half of table */ |
735 | n_pt[pid & pt_size].pt_proc = proc; |
736 | n_pt[pid & pt_size].pt_pgrp = pgrp; |
737 | n_pt[pid & pt_size].pt_pid = rpid; |
738 | |
739 | /* Put other piece on start of free list */ |
740 | pid = (pid ^ pt_size) & ~pid_tbl_mask; |
741 | n_pt[pid & pt_size].pt_proc = |
742 | P_FREE((pid & ~pt_size) | next_free_pt); |
743 | n_pt[pid & pt_size].pt_pgrp = 0; |
744 | n_pt[pid & pt_size].pt_pid = 0; |
745 | |
746 | next_free_pt = i | (pid & pt_size); |
747 | if (i == 0) |
748 | break; |
749 | } |
750 | |
751 | /* Save old table size and switch tables */ |
752 | tsz = pt_size * sizeof(struct pid_table); |
753 | n_pt = pid_table; |
754 | pid_table = new_pt; |
755 | pid_tbl_mask = new_pt_mask; |
756 | |
757 | /* |
758 | * pid_max starts as PID_MAX (= 30000), once we have 16384 |
759 | * allocated pids we need it to be larger! |
760 | */ |
761 | if (pid_tbl_mask > PID_MAX) { |
762 | pid_max = pid_tbl_mask * 2 + 1; |
763 | pid_alloc_lim |= pid_alloc_lim << 1; |
764 | } else |
765 | pid_alloc_lim <<= 1; /* doubles number of free slots... */ |
766 | |
767 | mutex_exit(proc_lock); |
768 | kmem_free(n_pt, tsz); |
769 | } |
770 | |
771 | struct proc * |
772 | proc_alloc(void) |
773 | { |
774 | struct proc *p; |
775 | |
776 | p = pool_cache_get(proc_cache, PR_WAITOK); |
777 | p->p_stat = SIDL; /* protect against others */ |
778 | proc_initspecific(p); |
779 | kdtrace_proc_ctor(NULL, p); |
780 | p->p_pid = -1; |
781 | proc_alloc_pid(p); |
782 | return p; |
783 | } |
784 | |
785 | /* |
786 | * proc_alloc_pid: allocate PID and record the given proc 'p' so that |
787 | * proc_find_raw() can find it by the PID. |
788 | */ |
789 | |
790 | pid_t |
791 | proc_alloc_pid(struct proc *p) |
792 | { |
793 | struct pid_table *pt; |
794 | pid_t pid; |
795 | int nxt; |
796 | |
797 | for (;;expand_pid_table()) { |
798 | if (__predict_false(pid_alloc_cnt >= pid_alloc_lim)) |
799 | /* ensure pids cycle through 2000+ values */ |
800 | continue; |
801 | mutex_enter(proc_lock); |
802 | pt = &pid_table[next_free_pt]; |
803 | #ifdef DIAGNOSTIC |
804 | if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp)) |
805 | panic("proc_alloc: slot busy" ); |
806 | #endif |
807 | nxt = P_NEXT(pt->pt_proc); |
808 | if (nxt & pid_tbl_mask) |
809 | break; |
810 | /* Table full - expand (NB last entry not used....) */ |
811 | mutex_exit(proc_lock); |
812 | } |
813 | |
814 | /* pid is 'saved use count' + 'size' + entry */ |
815 | pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt; |
816 | if ((uint)pid > (uint)pid_max) |
817 | pid &= pid_tbl_mask; |
818 | next_free_pt = nxt & pid_tbl_mask; |
819 | |
820 | /* Grab table slot */ |
821 | pt->pt_proc = p; |
822 | |
823 | KASSERT(pt->pt_pid == 0); |
824 | pt->pt_pid = pid; |
825 | if (p->p_pid == -1) { |
826 | p->p_pid = pid; |
827 | } |
828 | pid_alloc_cnt++; |
829 | mutex_exit(proc_lock); |
830 | |
831 | return pid; |
832 | } |
833 | |
834 | /* |
835 | * Free a process id - called from proc_free (in kern_exit.c) |
836 | * |
837 | * Called with the proc_lock held. |
838 | */ |
839 | void |
840 | proc_free_pid(pid_t pid) |
841 | { |
842 | struct pid_table *pt; |
843 | |
844 | KASSERT(mutex_owned(proc_lock)); |
845 | |
846 | pt = &pid_table[pid & pid_tbl_mask]; |
847 | |
848 | /* save pid use count in slot */ |
849 | pt->pt_proc = P_FREE(pid & ~pid_tbl_mask); |
850 | KASSERT(pt->pt_pid == pid); |
851 | pt->pt_pid = 0; |
852 | |
853 | if (pt->pt_pgrp == NULL) { |
854 | /* link last freed entry onto ours */ |
855 | pid &= pid_tbl_mask; |
856 | pt = &pid_table[last_free_pt]; |
857 | pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid); |
858 | pt->pt_pid = 0; |
859 | last_free_pt = pid; |
860 | pid_alloc_cnt--; |
861 | } |
862 | |
863 | atomic_dec_uint(&nprocs); |
864 | } |
865 | |
866 | void |
867 | proc_free_mem(struct proc *p) |
868 | { |
869 | |
870 | kdtrace_proc_dtor(NULL, p); |
871 | pool_cache_put(proc_cache, p); |
872 | } |
873 | |
874 | /* |
875 | * proc_enterpgrp: move p to a new or existing process group (and session). |
876 | * |
877 | * If we are creating a new pgrp, the pgid should equal |
878 | * the calling process' pid. |
879 | * If is only valid to enter a process group that is in the session |
880 | * of the process. |
881 | * Also mksess should only be set if we are creating a process group |
882 | * |
883 | * Only called from sys_setsid, sys_setpgid and posix_spawn/spawn_return. |
884 | */ |
885 | int |
886 | proc_enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, bool mksess) |
887 | { |
888 | struct pgrp *new_pgrp, *pgrp; |
889 | struct session *sess; |
890 | struct proc *p; |
891 | int rval; |
892 | pid_t pg_id = NO_PGID; |
893 | |
894 | sess = mksess ? kmem_alloc(sizeof(*sess), KM_SLEEP) : NULL; |
895 | |
896 | /* Allocate data areas we might need before doing any validity checks */ |
897 | mutex_enter(proc_lock); /* Because pid_table might change */ |
898 | if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) { |
899 | mutex_exit(proc_lock); |
900 | new_pgrp = kmem_alloc(sizeof(*new_pgrp), KM_SLEEP); |
901 | mutex_enter(proc_lock); |
902 | } else |
903 | new_pgrp = NULL; |
904 | rval = EPERM; /* most common error (to save typing) */ |
905 | |
906 | /* Check pgrp exists or can be created */ |
907 | pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp; |
908 | if (pgrp != NULL && pgrp->pg_id != pgid) |
909 | goto done; |
910 | |
911 | /* Can only set another process under restricted circumstances. */ |
912 | if (pid != curp->p_pid) { |
913 | /* Must exist and be one of our children... */ |
914 | p = proc_find(pid); |
915 | if (p == NULL || !p_inferior(p, curp)) { |
916 | rval = ESRCH; |
917 | goto done; |
918 | } |
919 | /* ... in the same session... */ |
920 | if (sess != NULL || p->p_session != curp->p_session) |
921 | goto done; |
922 | /* ... existing pgid must be in same session ... */ |
923 | if (pgrp != NULL && pgrp->pg_session != p->p_session) |
924 | goto done; |
925 | /* ... and not done an exec. */ |
926 | if (p->p_flag & PK_EXEC) { |
927 | rval = EACCES; |
928 | goto done; |
929 | } |
930 | } else { |
931 | /* ... setsid() cannot re-enter a pgrp */ |
932 | if (mksess && (curp->p_pgid == curp->p_pid || |
933 | pgrp_find(curp->p_pid))) |
934 | goto done; |
935 | p = curp; |
936 | } |
937 | |
938 | /* Changing the process group/session of a session |
939 | leader is definitely off limits. */ |
940 | if (SESS_LEADER(p)) { |
941 | if (sess == NULL && p->p_pgrp == pgrp) |
942 | /* unless it's a definite noop */ |
943 | rval = 0; |
944 | goto done; |
945 | } |
946 | |
947 | /* Can only create a process group with id of process */ |
948 | if (pgrp == NULL && pgid != pid) |
949 | goto done; |
950 | |
951 | /* Can only create a session if creating pgrp */ |
952 | if (sess != NULL && pgrp != NULL) |
953 | goto done; |
954 | |
955 | /* Check we allocated memory for a pgrp... */ |
956 | if (pgrp == NULL && new_pgrp == NULL) |
957 | goto done; |
958 | |
959 | /* Don't attach to 'zombie' pgrp */ |
960 | if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members)) |
961 | goto done; |
962 | |
963 | /* Expect to succeed now */ |
964 | rval = 0; |
965 | |
966 | if (pgrp == p->p_pgrp) |
967 | /* nothing to do */ |
968 | goto done; |
969 | |
970 | /* Ok all setup, link up required structures */ |
971 | |
972 | if (pgrp == NULL) { |
973 | pgrp = new_pgrp; |
974 | new_pgrp = NULL; |
975 | if (sess != NULL) { |
976 | sess->s_sid = p->p_pid; |
977 | sess->s_leader = p; |
978 | sess->s_count = 1; |
979 | sess->s_ttyvp = NULL; |
980 | sess->s_ttyp = NULL; |
981 | sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET; |
982 | memcpy(sess->s_login, p->p_session->s_login, |
983 | sizeof(sess->s_login)); |
984 | p->p_lflag &= ~PL_CONTROLT; |
985 | } else { |
986 | sess = p->p_pgrp->pg_session; |
987 | proc_sesshold(sess); |
988 | } |
989 | pgrp->pg_session = sess; |
990 | sess = NULL; |
991 | |
992 | pgrp->pg_id = pgid; |
993 | LIST_INIT(&pgrp->pg_members); |
994 | #ifdef DIAGNOSTIC |
995 | if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp)) |
996 | panic("enterpgrp: pgrp table slot in use" ); |
997 | if (__predict_false(mksess && p != curp)) |
998 | panic("enterpgrp: mksession and p != curproc" ); |
999 | #endif |
1000 | pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp; |
1001 | pgrp->pg_jobc = 0; |
1002 | } |
1003 | |
1004 | /* |
1005 | * Adjust eligibility of affected pgrps to participate in job control. |
1006 | * Increment eligibility counts before decrementing, otherwise we |
1007 | * could reach 0 spuriously during the first call. |
1008 | */ |
1009 | fixjobc(p, pgrp, 1); |
1010 | fixjobc(p, p->p_pgrp, 0); |
1011 | |
1012 | /* Interlock with ttread(). */ |
1013 | mutex_spin_enter(&tty_lock); |
1014 | |
1015 | /* Move process to requested group. */ |
1016 | LIST_REMOVE(p, p_pglist); |
1017 | if (LIST_EMPTY(&p->p_pgrp->pg_members)) |
1018 | /* defer delete until we've dumped the lock */ |
1019 | pg_id = p->p_pgrp->pg_id; |
1020 | p->p_pgrp = pgrp; |
1021 | LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); |
1022 | |
1023 | /* Done with the swap; we can release the tty mutex. */ |
1024 | mutex_spin_exit(&tty_lock); |
1025 | |
1026 | done: |
1027 | if (pg_id != NO_PGID) { |
1028 | /* Releases proc_lock. */ |
1029 | pg_delete(pg_id); |
1030 | } else { |
1031 | mutex_exit(proc_lock); |
1032 | } |
1033 | if (sess != NULL) |
1034 | kmem_free(sess, sizeof(*sess)); |
1035 | if (new_pgrp != NULL) |
1036 | kmem_free(new_pgrp, sizeof(*new_pgrp)); |
1037 | #ifdef DEBUG_PGRP |
1038 | if (__predict_false(rval)) |
1039 | printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n" , |
1040 | pid, pgid, mksess, curp->p_pid, rval); |
1041 | #endif |
1042 | return rval; |
1043 | } |
1044 | |
1045 | /* |
1046 | * proc_leavepgrp: remove a process from its process group. |
1047 | * => must be called with the proc_lock held, which will be released; |
1048 | */ |
1049 | void |
1050 | proc_leavepgrp(struct proc *p) |
1051 | { |
1052 | struct pgrp *pgrp; |
1053 | |
1054 | KASSERT(mutex_owned(proc_lock)); |
1055 | |
1056 | /* Interlock with ttread() */ |
1057 | mutex_spin_enter(&tty_lock); |
1058 | pgrp = p->p_pgrp; |
1059 | LIST_REMOVE(p, p_pglist); |
1060 | p->p_pgrp = NULL; |
1061 | mutex_spin_exit(&tty_lock); |
1062 | |
1063 | if (LIST_EMPTY(&pgrp->pg_members)) { |
1064 | /* Releases proc_lock. */ |
1065 | pg_delete(pgrp->pg_id); |
1066 | } else { |
1067 | mutex_exit(proc_lock); |
1068 | } |
1069 | } |
1070 | |
1071 | /* |
1072 | * pg_remove: remove a process group from the table. |
1073 | * => must be called with the proc_lock held; |
1074 | * => returns process group to free; |
1075 | */ |
1076 | static struct pgrp * |
1077 | pg_remove(pid_t pg_id) |
1078 | { |
1079 | struct pgrp *pgrp; |
1080 | struct pid_table *pt; |
1081 | |
1082 | KASSERT(mutex_owned(proc_lock)); |
1083 | |
1084 | pt = &pid_table[pg_id & pid_tbl_mask]; |
1085 | pgrp = pt->pt_pgrp; |
1086 | |
1087 | KASSERT(pgrp != NULL); |
1088 | KASSERT(pgrp->pg_id == pg_id); |
1089 | KASSERT(LIST_EMPTY(&pgrp->pg_members)); |
1090 | |
1091 | pt->pt_pgrp = NULL; |
1092 | |
1093 | if (!P_VALID(pt->pt_proc)) { |
1094 | /* Orphaned pgrp, put slot onto free list. */ |
1095 | KASSERT((P_NEXT(pt->pt_proc) & pid_tbl_mask) == 0); |
1096 | pg_id &= pid_tbl_mask; |
1097 | pt = &pid_table[last_free_pt]; |
1098 | pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id); |
1099 | KASSERT(pt->pt_pid == 0); |
1100 | last_free_pt = pg_id; |
1101 | pid_alloc_cnt--; |
1102 | } |
1103 | return pgrp; |
1104 | } |
1105 | |
1106 | /* |
1107 | * pg_delete: delete and free a process group. |
1108 | * => must be called with the proc_lock held, which will be released. |
1109 | */ |
1110 | static void |
1111 | pg_delete(pid_t pg_id) |
1112 | { |
1113 | struct pgrp *pg; |
1114 | struct tty *ttyp; |
1115 | struct session *ss; |
1116 | |
1117 | KASSERT(mutex_owned(proc_lock)); |
1118 | |
1119 | pg = pid_table[pg_id & pid_tbl_mask].pt_pgrp; |
1120 | if (pg == NULL || pg->pg_id != pg_id || !LIST_EMPTY(&pg->pg_members)) { |
1121 | mutex_exit(proc_lock); |
1122 | return; |
1123 | } |
1124 | |
1125 | ss = pg->pg_session; |
1126 | |
1127 | /* Remove reference (if any) from tty to this process group */ |
1128 | mutex_spin_enter(&tty_lock); |
1129 | ttyp = ss->s_ttyp; |
1130 | if (ttyp != NULL && ttyp->t_pgrp == pg) { |
1131 | ttyp->t_pgrp = NULL; |
1132 | KASSERT(ttyp->t_session == ss); |
1133 | } |
1134 | mutex_spin_exit(&tty_lock); |
1135 | |
1136 | /* |
1137 | * The leading process group in a session is freed by proc_sessrele(), |
1138 | * if last reference. Note: proc_sessrele() releases proc_lock. |
1139 | */ |
1140 | pg = (ss->s_sid != pg->pg_id) ? pg_remove(pg_id) : NULL; |
1141 | proc_sessrele(ss); |
1142 | |
1143 | if (pg != NULL) { |
1144 | /* Free it, if was not done by proc_sessrele(). */ |
1145 | kmem_free(pg, sizeof(struct pgrp)); |
1146 | } |
1147 | } |
1148 | |
1149 | /* |
1150 | * Adjust pgrp jobc counters when specified process changes process group. |
1151 | * We count the number of processes in each process group that "qualify" |
1152 | * the group for terminal job control (those with a parent in a different |
1153 | * process group of the same session). If that count reaches zero, the |
1154 | * process group becomes orphaned. Check both the specified process' |
1155 | * process group and that of its children. |
1156 | * entering == 0 => p is leaving specified group. |
1157 | * entering == 1 => p is entering specified group. |
1158 | * |
1159 | * Call with proc_lock held. |
1160 | */ |
1161 | void |
1162 | fixjobc(struct proc *p, struct pgrp *pgrp, int entering) |
1163 | { |
1164 | struct pgrp *hispgrp; |
1165 | struct session *mysession = pgrp->pg_session; |
1166 | struct proc *child; |
1167 | |
1168 | KASSERT(mutex_owned(proc_lock)); |
1169 | |
1170 | /* |
1171 | * Check p's parent to see whether p qualifies its own process |
1172 | * group; if so, adjust count for p's process group. |
1173 | */ |
1174 | hispgrp = p->p_pptr->p_pgrp; |
1175 | if (hispgrp != pgrp && hispgrp->pg_session == mysession) { |
1176 | if (entering) { |
1177 | pgrp->pg_jobc++; |
1178 | p->p_lflag &= ~PL_ORPHANPG; |
1179 | } else if (--pgrp->pg_jobc == 0) |
1180 | orphanpg(pgrp); |
1181 | } |
1182 | |
1183 | /* |
1184 | * Check this process' children to see whether they qualify |
1185 | * their process groups; if so, adjust counts for children's |
1186 | * process groups. |
1187 | */ |
1188 | LIST_FOREACH(child, &p->p_children, p_sibling) { |
1189 | hispgrp = child->p_pgrp; |
1190 | if (hispgrp != pgrp && hispgrp->pg_session == mysession && |
1191 | !P_ZOMBIE(child)) { |
1192 | if (entering) { |
1193 | child->p_lflag &= ~PL_ORPHANPG; |
1194 | hispgrp->pg_jobc++; |
1195 | } else if (--hispgrp->pg_jobc == 0) |
1196 | orphanpg(hispgrp); |
1197 | } |
1198 | } |
1199 | } |
1200 | |
1201 | /* |
1202 | * A process group has become orphaned; |
1203 | * if there are any stopped processes in the group, |
1204 | * hang-up all process in that group. |
1205 | * |
1206 | * Call with proc_lock held. |
1207 | */ |
1208 | static void |
1209 | orphanpg(struct pgrp *pg) |
1210 | { |
1211 | struct proc *p; |
1212 | |
1213 | KASSERT(mutex_owned(proc_lock)); |
1214 | |
1215 | LIST_FOREACH(p, &pg->pg_members, p_pglist) { |
1216 | if (p->p_stat == SSTOP) { |
1217 | p->p_lflag |= PL_ORPHANPG; |
1218 | psignal(p, SIGHUP); |
1219 | psignal(p, SIGCONT); |
1220 | } |
1221 | } |
1222 | } |
1223 | |
1224 | #ifdef DDB |
1225 | #include <ddb/db_output.h> |
1226 | void pidtbl_dump(void); |
1227 | void |
1228 | pidtbl_dump(void) |
1229 | { |
1230 | struct pid_table *pt; |
1231 | struct proc *p; |
1232 | struct pgrp *pgrp; |
1233 | int id; |
1234 | |
1235 | db_printf("pid table %p size %x, next %x, last %x\n" , |
1236 | pid_table, pid_tbl_mask+1, |
1237 | next_free_pt, last_free_pt); |
1238 | for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) { |
1239 | p = pt->pt_proc; |
1240 | if (!P_VALID(p) && !pt->pt_pgrp) |
1241 | continue; |
1242 | db_printf(" id %x: " , id); |
1243 | if (P_VALID(p)) |
1244 | db_printf("slotpid %d proc %p id %d (0x%x) %s\n" , |
1245 | pt->pt_pid, p, p->p_pid, p->p_pid, p->p_comm); |
1246 | else |
1247 | db_printf("next %x use %x\n" , |
1248 | P_NEXT(p) & pid_tbl_mask, |
1249 | P_NEXT(p) & ~pid_tbl_mask); |
1250 | if ((pgrp = pt->pt_pgrp)) { |
1251 | db_printf("\tsession %p, sid %d, count %d, login %s\n" , |
1252 | pgrp->pg_session, pgrp->pg_session->s_sid, |
1253 | pgrp->pg_session->s_count, |
1254 | pgrp->pg_session->s_login); |
1255 | db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n" , |
1256 | pgrp, pgrp->pg_id, pgrp->pg_jobc, |
1257 | LIST_FIRST(&pgrp->pg_members)); |
1258 | LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { |
1259 | db_printf("\t\tpid %d addr %p pgrp %p %s\n" , |
1260 | p->p_pid, p, p->p_pgrp, p->p_comm); |
1261 | } |
1262 | } |
1263 | } |
1264 | } |
1265 | #endif /* DDB */ |
1266 | |
1267 | #ifdef KSTACK_CHECK_MAGIC |
1268 | |
1269 | #define KSTACK_MAGIC 0xdeadbeaf |
1270 | |
1271 | /* XXX should be per process basis? */ |
1272 | static int kstackleftmin = KSTACK_SIZE; |
1273 | static int kstackleftthres = KSTACK_SIZE / 8; |
1274 | |
1275 | void |
1276 | kstack_setup_magic(const struct lwp *l) |
1277 | { |
1278 | uint32_t *ip; |
1279 | uint32_t const *end; |
1280 | |
1281 | KASSERT(l != NULL); |
1282 | KASSERT(l != &lwp0); |
1283 | |
1284 | /* |
1285 | * fill all the stack with magic number |
1286 | * so that later modification on it can be detected. |
1287 | */ |
1288 | ip = (uint32_t *)KSTACK_LOWEST_ADDR(l); |
1289 | end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); |
1290 | for (; ip < end; ip++) { |
1291 | *ip = KSTACK_MAGIC; |
1292 | } |
1293 | } |
1294 | |
1295 | void |
1296 | kstack_check_magic(const struct lwp *l) |
1297 | { |
1298 | uint32_t const *ip, *end; |
1299 | int stackleft; |
1300 | |
1301 | KASSERT(l != NULL); |
1302 | |
1303 | /* don't check proc0 */ /*XXX*/ |
1304 | if (l == &lwp0) |
1305 | return; |
1306 | |
1307 | #ifdef __MACHINE_STACK_GROWS_UP |
1308 | /* stack grows upwards (eg. hppa) */ |
1309 | ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); |
1310 | end = (uint32_t *)KSTACK_LOWEST_ADDR(l); |
1311 | for (ip--; ip >= end; ip--) |
1312 | if (*ip != KSTACK_MAGIC) |
1313 | break; |
1314 | |
1315 | stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip; |
1316 | #else /* __MACHINE_STACK_GROWS_UP */ |
1317 | /* stack grows downwards (eg. i386) */ |
1318 | ip = (uint32_t *)KSTACK_LOWEST_ADDR(l); |
1319 | end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE); |
1320 | for (; ip < end; ip++) |
1321 | if (*ip != KSTACK_MAGIC) |
1322 | break; |
1323 | |
1324 | stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l); |
1325 | #endif /* __MACHINE_STACK_GROWS_UP */ |
1326 | |
1327 | if (kstackleftmin > stackleft) { |
1328 | kstackleftmin = stackleft; |
1329 | if (stackleft < kstackleftthres) |
1330 | printf("warning: kernel stack left %d bytes" |
1331 | "(pid %u:lid %u)\n" , stackleft, |
1332 | (u_int)l->l_proc->p_pid, (u_int)l->l_lid); |
1333 | } |
1334 | |
1335 | if (stackleft <= 0) { |
1336 | panic("magic on the top of kernel stack changed for " |
1337 | "pid %u, lid %u: maybe kernel stack overflow" , |
1338 | (u_int)l->l_proc->p_pid, (u_int)l->l_lid); |
1339 | } |
1340 | } |
1341 | #endif /* KSTACK_CHECK_MAGIC */ |
1342 | |
1343 | int |
1344 | proclist_foreach_call(struct proclist *list, |
1345 | int (*callback)(struct proc *, void *arg), void *arg) |
1346 | { |
1347 | struct proc marker; |
1348 | struct proc *p; |
1349 | int ret = 0; |
1350 | |
1351 | marker.p_flag = PK_MARKER; |
1352 | mutex_enter(proc_lock); |
1353 | for (p = LIST_FIRST(list); ret == 0 && p != NULL;) { |
1354 | if (p->p_flag & PK_MARKER) { |
1355 | p = LIST_NEXT(p, p_list); |
1356 | continue; |
1357 | } |
1358 | LIST_INSERT_AFTER(p, &marker, p_list); |
1359 | ret = (*callback)(p, arg); |
1360 | KASSERT(mutex_owned(proc_lock)); |
1361 | p = LIST_NEXT(&marker, p_list); |
1362 | LIST_REMOVE(&marker, p_list); |
1363 | } |
1364 | mutex_exit(proc_lock); |
1365 | |
1366 | return ret; |
1367 | } |
1368 | |
1369 | int |
1370 | proc_vmspace_getref(struct proc *p, struct vmspace **vm) |
1371 | { |
1372 | |
1373 | /* XXXCDC: how should locking work here? */ |
1374 | |
1375 | /* curproc exception is for coredump. */ |
1376 | |
1377 | if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) || |
1378 | (p->p_vmspace->vm_refcnt < 1)) { /* XXX */ |
1379 | return EFAULT; |
1380 | } |
1381 | |
1382 | uvmspace_addref(p->p_vmspace); |
1383 | *vm = p->p_vmspace; |
1384 | |
1385 | return 0; |
1386 | } |
1387 | |
1388 | /* |
1389 | * Acquire a write lock on the process credential. |
1390 | */ |
1391 | void |
1392 | proc_crmod_enter(void) |
1393 | { |
1394 | struct lwp *l = curlwp; |
1395 | struct proc *p = l->l_proc; |
1396 | kauth_cred_t oc; |
1397 | |
1398 | /* Reset what needs to be reset in plimit. */ |
1399 | if (p->p_limit->pl_corename != defcorename) { |
1400 | lim_setcorename(p, defcorename, 0); |
1401 | } |
1402 | |
1403 | mutex_enter(p->p_lock); |
1404 | |
1405 | /* Ensure the LWP cached credentials are up to date. */ |
1406 | if ((oc = l->l_cred) != p->p_cred) { |
1407 | kauth_cred_hold(p->p_cred); |
1408 | l->l_cred = p->p_cred; |
1409 | kauth_cred_free(oc); |
1410 | } |
1411 | } |
1412 | |
1413 | /* |
1414 | * Set in a new process credential, and drop the write lock. The credential |
1415 | * must have a reference already. Optionally, free a no-longer required |
1416 | * credential. The scheduler also needs to inspect p_cred, so we also |
1417 | * briefly acquire the sched state mutex. |
1418 | */ |
1419 | void |
1420 | proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid) |
1421 | { |
1422 | struct lwp *l = curlwp, *l2; |
1423 | struct proc *p = l->l_proc; |
1424 | kauth_cred_t oc; |
1425 | |
1426 | KASSERT(mutex_owned(p->p_lock)); |
1427 | |
1428 | /* Is there a new credential to set in? */ |
1429 | if (scred != NULL) { |
1430 | p->p_cred = scred; |
1431 | LIST_FOREACH(l2, &p->p_lwps, l_sibling) { |
1432 | if (l2 != l) |
1433 | l2->l_prflag |= LPR_CRMOD; |
1434 | } |
1435 | |
1436 | /* Ensure the LWP cached credentials are up to date. */ |
1437 | if ((oc = l->l_cred) != scred) { |
1438 | kauth_cred_hold(scred); |
1439 | l->l_cred = scred; |
1440 | } |
1441 | } else |
1442 | oc = NULL; /* XXXgcc */ |
1443 | |
1444 | if (sugid) { |
1445 | /* |
1446 | * Mark process as having changed credentials, stops |
1447 | * tracing etc. |
1448 | */ |
1449 | p->p_flag |= PK_SUGID; |
1450 | } |
1451 | |
1452 | mutex_exit(p->p_lock); |
1453 | |
1454 | /* If there is a credential to be released, free it now. */ |
1455 | if (fcred != NULL) { |
1456 | KASSERT(scred != NULL); |
1457 | kauth_cred_free(fcred); |
1458 | if (oc != scred) |
1459 | kauth_cred_free(oc); |
1460 | } |
1461 | } |
1462 | |
1463 | /* |
1464 | * proc_specific_key_create -- |
1465 | * Create a key for subsystem proc-specific data. |
1466 | */ |
1467 | int |
1468 | proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor) |
1469 | { |
1470 | |
1471 | return (specificdata_key_create(proc_specificdata_domain, keyp, dtor)); |
1472 | } |
1473 | |
1474 | /* |
1475 | * proc_specific_key_delete -- |
1476 | * Delete a key for subsystem proc-specific data. |
1477 | */ |
1478 | void |
1479 | proc_specific_key_delete(specificdata_key_t key) |
1480 | { |
1481 | |
1482 | specificdata_key_delete(proc_specificdata_domain, key); |
1483 | } |
1484 | |
1485 | /* |
1486 | * proc_initspecific -- |
1487 | * Initialize a proc's specificdata container. |
1488 | */ |
1489 | void |
1490 | proc_initspecific(struct proc *p) |
1491 | { |
1492 | int error __diagused; |
1493 | |
1494 | error = specificdata_init(proc_specificdata_domain, &p->p_specdataref); |
1495 | KASSERT(error == 0); |
1496 | } |
1497 | |
1498 | /* |
1499 | * proc_finispecific -- |
1500 | * Finalize a proc's specificdata container. |
1501 | */ |
1502 | void |
1503 | proc_finispecific(struct proc *p) |
1504 | { |
1505 | |
1506 | specificdata_fini(proc_specificdata_domain, &p->p_specdataref); |
1507 | } |
1508 | |
1509 | /* |
1510 | * proc_getspecific -- |
1511 | * Return proc-specific data corresponding to the specified key. |
1512 | */ |
1513 | void * |
1514 | proc_getspecific(struct proc *p, specificdata_key_t key) |
1515 | { |
1516 | |
1517 | return (specificdata_getspecific(proc_specificdata_domain, |
1518 | &p->p_specdataref, key)); |
1519 | } |
1520 | |
1521 | /* |
1522 | * proc_setspecific -- |
1523 | * Set proc-specific data corresponding to the specified key. |
1524 | */ |
1525 | void |
1526 | proc_setspecific(struct proc *p, specificdata_key_t key, void *data) |
1527 | { |
1528 | |
1529 | specificdata_setspecific(proc_specificdata_domain, |
1530 | &p->p_specdataref, key, data); |
1531 | } |
1532 | |
1533 | int |
1534 | proc_uidmatch(kauth_cred_t cred, kauth_cred_t target) |
1535 | { |
1536 | int r = 0; |
1537 | |
1538 | if (kauth_cred_getuid(cred) != kauth_cred_getuid(target) || |
1539 | kauth_cred_getuid(cred) != kauth_cred_getsvuid(target)) { |
1540 | /* |
1541 | * suid proc of ours or proc not ours |
1542 | */ |
1543 | r = EPERM; |
1544 | } else if (kauth_cred_getgid(target) != kauth_cred_getsvgid(target)) { |
1545 | /* |
1546 | * sgid proc has sgid back to us temporarily |
1547 | */ |
1548 | r = EPERM; |
1549 | } else { |
1550 | /* |
1551 | * our rgid must be in target's group list (ie, |
1552 | * sub-processes started by a sgid process) |
1553 | */ |
1554 | int ismember = 0; |
1555 | |
1556 | if (kauth_cred_ismember_gid(cred, |
1557 | kauth_cred_getgid(target), &ismember) != 0 || |
1558 | !ismember) |
1559 | r = EPERM; |
1560 | } |
1561 | |
1562 | return (r); |
1563 | } |
1564 | |
1565 | /* |
1566 | * sysctl stuff |
1567 | */ |
1568 | |
1569 | #define KERN_PROCSLOP (5 * sizeof(struct kinfo_proc)) |
1570 | |
1571 | static const u_int sysctl_flagmap[] = { |
1572 | PK_ADVLOCK, P_ADVLOCK, |
1573 | PK_EXEC, P_EXEC, |
1574 | PK_NOCLDWAIT, P_NOCLDWAIT, |
1575 | PK_32, P_32, |
1576 | PK_CLDSIGIGN, P_CLDSIGIGN, |
1577 | PK_SUGID, P_SUGID, |
1578 | 0 |
1579 | }; |
1580 | |
1581 | static const u_int sysctl_sflagmap[] = { |
1582 | PS_NOCLDSTOP, P_NOCLDSTOP, |
1583 | PS_WEXIT, P_WEXIT, |
1584 | PS_STOPFORK, P_STOPFORK, |
1585 | PS_STOPEXEC, P_STOPEXEC, |
1586 | PS_STOPEXIT, P_STOPEXIT, |
1587 | 0 |
1588 | }; |
1589 | |
1590 | static const u_int sysctl_slflagmap[] = { |
1591 | PSL_TRACED, P_TRACED, |
1592 | PSL_CHTRACED, P_CHTRACED, |
1593 | PSL_SYSCALL, P_SYSCALL, |
1594 | 0 |
1595 | }; |
1596 | |
1597 | static const u_int sysctl_lflagmap[] = { |
1598 | PL_CONTROLT, P_CONTROLT, |
1599 | PL_PPWAIT, P_PPWAIT, |
1600 | 0 |
1601 | }; |
1602 | |
1603 | static const u_int sysctl_stflagmap[] = { |
1604 | PST_PROFIL, P_PROFIL, |
1605 | 0 |
1606 | |
1607 | }; |
1608 | |
1609 | /* used by kern_lwp also */ |
1610 | const u_int sysctl_lwpflagmap[] = { |
1611 | LW_SINTR, L_SINTR, |
1612 | LW_SYSTEM, L_SYSTEM, |
1613 | 0 |
1614 | }; |
1615 | |
1616 | /* |
1617 | * Find the most ``active'' lwp of a process and return it for ps display |
1618 | * purposes |
1619 | */ |
1620 | static struct lwp * |
1621 | proc_active_lwp(struct proc *p) |
1622 | { |
1623 | static const int ostat[] = { |
1624 | 0, |
1625 | 2, /* LSIDL */ |
1626 | 6, /* LSRUN */ |
1627 | 5, /* LSSLEEP */ |
1628 | 4, /* LSSTOP */ |
1629 | 0, /* LSZOMB */ |
1630 | 1, /* LSDEAD */ |
1631 | 7, /* LSONPROC */ |
1632 | 3 /* LSSUSPENDED */ |
1633 | }; |
1634 | |
1635 | struct lwp *l, *lp = NULL; |
1636 | LIST_FOREACH(l, &p->p_lwps, l_sibling) { |
1637 | KASSERT(l->l_stat >= 0 && l->l_stat < __arraycount(ostat)); |
1638 | if (lp == NULL || |
1639 | ostat[l->l_stat] > ostat[lp->l_stat] || |
1640 | (ostat[l->l_stat] == ostat[lp->l_stat] && |
1641 | l->l_cpticks > lp->l_cpticks)) { |
1642 | lp = l; |
1643 | continue; |
1644 | } |
1645 | } |
1646 | return lp; |
1647 | } |
1648 | |
1649 | static int |
1650 | sysctl_doeproc(SYSCTLFN_ARGS) |
1651 | { |
1652 | union { |
1653 | struct kinfo_proc kproc; |
1654 | struct kinfo_proc2 kproc2; |
1655 | } *kbuf; |
1656 | struct proc *p, *next, *marker; |
1657 | char *where, *dp; |
1658 | int type, op, arg, error; |
1659 | u_int elem_size, kelem_size, elem_count; |
1660 | size_t buflen, needed; |
1661 | bool match, zombie, mmmbrains; |
1662 | const bool allowaddr = get_expose_address(curproc); |
1663 | |
1664 | if (namelen == 1 && name[0] == CTL_QUERY) |
1665 | return (sysctl_query(SYSCTLFN_CALL(rnode))); |
1666 | |
1667 | dp = where = oldp; |
1668 | buflen = where != NULL ? *oldlenp : 0; |
1669 | error = 0; |
1670 | needed = 0; |
1671 | type = rnode->sysctl_num; |
1672 | |
1673 | if (type == KERN_PROC) { |
1674 | if (namelen == 0) |
1675 | return EINVAL; |
1676 | switch (op = name[0]) { |
1677 | case KERN_PROC_ALL: |
1678 | if (namelen != 1) |
1679 | return EINVAL; |
1680 | arg = 0; |
1681 | break; |
1682 | default: |
1683 | if (namelen != 2) |
1684 | return EINVAL; |
1685 | arg = name[1]; |
1686 | break; |
1687 | } |
1688 | elem_count = 0; /* Hush little compiler, don't you cry */ |
1689 | kelem_size = elem_size = sizeof(kbuf->kproc); |
1690 | } else { |
1691 | if (namelen != 4) |
1692 | return EINVAL; |
1693 | op = name[0]; |
1694 | arg = name[1]; |
1695 | elem_size = name[2]; |
1696 | elem_count = name[3]; |
1697 | kelem_size = sizeof(kbuf->kproc2); |
1698 | } |
1699 | |
1700 | sysctl_unlock(); |
1701 | |
1702 | kbuf = kmem_zalloc(sizeof(*kbuf), KM_SLEEP); |
1703 | marker = kmem_alloc(sizeof(*marker), KM_SLEEP); |
1704 | marker->p_flag = PK_MARKER; |
1705 | |
1706 | mutex_enter(proc_lock); |
1707 | /* |
1708 | * Start with zombies to prevent reporting processes twice, in case they |
1709 | * are dying and being moved from the list of alive processes to zombies. |
1710 | */ |
1711 | mmmbrains = true; |
1712 | for (p = LIST_FIRST(&zombproc);; p = next) { |
1713 | if (p == NULL) { |
1714 | if (mmmbrains) { |
1715 | p = LIST_FIRST(&allproc); |
1716 | mmmbrains = false; |
1717 | } |
1718 | if (p == NULL) |
1719 | break; |
1720 | } |
1721 | next = LIST_NEXT(p, p_list); |
1722 | if ((p->p_flag & PK_MARKER) != 0) |
1723 | continue; |
1724 | |
1725 | /* |
1726 | * Skip embryonic processes. |
1727 | */ |
1728 | if (p->p_stat == SIDL) |
1729 | continue; |
1730 | |
1731 | mutex_enter(p->p_lock); |
1732 | error = kauth_authorize_process(l->l_cred, |
1733 | KAUTH_PROCESS_CANSEE, p, |
1734 | KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_EPROC), NULL, NULL); |
1735 | if (error != 0) { |
1736 | mutex_exit(p->p_lock); |
1737 | continue; |
1738 | } |
1739 | |
1740 | /* |
1741 | * Hande all the operations in one switch on the cost of |
1742 | * algorithm complexity is on purpose. The win splitting this |
1743 | * function into several similar copies makes maintenance burden |
1744 | * burden, code grow and boost is neglible in practical systems. |
1745 | */ |
1746 | switch (op) { |
1747 | case KERN_PROC_PID: |
1748 | match = (p->p_pid == (pid_t)arg); |
1749 | break; |
1750 | |
1751 | case KERN_PROC_PGRP: |
1752 | match = (p->p_pgrp->pg_id == (pid_t)arg); |
1753 | break; |
1754 | |
1755 | case KERN_PROC_SESSION: |
1756 | match = (p->p_session->s_sid == (pid_t)arg); |
1757 | break; |
1758 | |
1759 | case KERN_PROC_TTY: |
1760 | match = true; |
1761 | if (arg == (int) KERN_PROC_TTY_REVOKE) { |
1762 | if ((p->p_lflag & PL_CONTROLT) == 0 || |
1763 | p->p_session->s_ttyp == NULL || |
1764 | p->p_session->s_ttyvp != NULL) { |
1765 | match = false; |
1766 | } |
1767 | } else if ((p->p_lflag & PL_CONTROLT) == 0 || |
1768 | p->p_session->s_ttyp == NULL) { |
1769 | if ((dev_t)arg != KERN_PROC_TTY_NODEV) { |
1770 | match = false; |
1771 | } |
1772 | } else if (p->p_session->s_ttyp->t_dev != (dev_t)arg) { |
1773 | match = false; |
1774 | } |
1775 | break; |
1776 | |
1777 | case KERN_PROC_UID: |
1778 | match = (kauth_cred_geteuid(p->p_cred) == (uid_t)arg); |
1779 | break; |
1780 | |
1781 | case KERN_PROC_RUID: |
1782 | match = (kauth_cred_getuid(p->p_cred) == (uid_t)arg); |
1783 | break; |
1784 | |
1785 | case KERN_PROC_GID: |
1786 | match = (kauth_cred_getegid(p->p_cred) == (uid_t)arg); |
1787 | break; |
1788 | |
1789 | case KERN_PROC_RGID: |
1790 | match = (kauth_cred_getgid(p->p_cred) == (uid_t)arg); |
1791 | break; |
1792 | |
1793 | case KERN_PROC_ALL: |
1794 | match = true; |
1795 | /* allow everything */ |
1796 | break; |
1797 | |
1798 | default: |
1799 | error = EINVAL; |
1800 | mutex_exit(p->p_lock); |
1801 | goto cleanup; |
1802 | } |
1803 | if (!match) { |
1804 | mutex_exit(p->p_lock); |
1805 | continue; |
1806 | } |
1807 | |
1808 | /* |
1809 | * Grab a hold on the process. |
1810 | */ |
1811 | if (mmmbrains) { |
1812 | zombie = true; |
1813 | } else { |
1814 | zombie = !rw_tryenter(&p->p_reflock, RW_READER); |
1815 | } |
1816 | if (zombie) { |
1817 | LIST_INSERT_AFTER(p, marker, p_list); |
1818 | } |
1819 | |
1820 | if (buflen >= elem_size && |
1821 | (type == KERN_PROC || elem_count > 0)) { |
1822 | if (type == KERN_PROC) { |
1823 | fill_proc(p, &kbuf->kproc.kp_proc, allowaddr); |
1824 | fill_eproc(p, &kbuf->kproc.kp_eproc, zombie, |
1825 | allowaddr); |
1826 | } else { |
1827 | fill_kproc2(p, &kbuf->kproc2, zombie, |
1828 | allowaddr); |
1829 | elem_count--; |
1830 | } |
1831 | mutex_exit(p->p_lock); |
1832 | mutex_exit(proc_lock); |
1833 | /* |
1834 | * Copy out elem_size, but not larger than kelem_size |
1835 | */ |
1836 | error = sysctl_copyout(l, kbuf, dp, |
1837 | uimin(kelem_size, elem_size)); |
1838 | mutex_enter(proc_lock); |
1839 | if (error) { |
1840 | goto bah; |
1841 | } |
1842 | dp += elem_size; |
1843 | buflen -= elem_size; |
1844 | } else { |
1845 | mutex_exit(p->p_lock); |
1846 | } |
1847 | needed += elem_size; |
1848 | |
1849 | /* |
1850 | * Release reference to process. |
1851 | */ |
1852 | if (zombie) { |
1853 | next = LIST_NEXT(marker, p_list); |
1854 | LIST_REMOVE(marker, p_list); |
1855 | } else { |
1856 | rw_exit(&p->p_reflock); |
1857 | next = LIST_NEXT(p, p_list); |
1858 | } |
1859 | |
1860 | /* |
1861 | * Short-circuit break quickly! |
1862 | */ |
1863 | if (op == KERN_PROC_PID) |
1864 | break; |
1865 | } |
1866 | mutex_exit(proc_lock); |
1867 | |
1868 | if (where != NULL) { |
1869 | *oldlenp = dp - where; |
1870 | if (needed > *oldlenp) { |
1871 | error = ENOMEM; |
1872 | goto out; |
1873 | } |
1874 | } else { |
1875 | needed += KERN_PROCSLOP; |
1876 | *oldlenp = needed; |
1877 | } |
1878 | kmem_free(kbuf, sizeof(*kbuf)); |
1879 | kmem_free(marker, sizeof(*marker)); |
1880 | sysctl_relock(); |
1881 | return 0; |
1882 | bah: |
1883 | if (zombie) |
1884 | LIST_REMOVE(marker, p_list); |
1885 | else |
1886 | rw_exit(&p->p_reflock); |
1887 | cleanup: |
1888 | mutex_exit(proc_lock); |
1889 | out: |
1890 | kmem_free(kbuf, sizeof(*kbuf)); |
1891 | kmem_free(marker, sizeof(*marker)); |
1892 | sysctl_relock(); |
1893 | return error; |
1894 | } |
1895 | |
1896 | int |
1897 | copyin_psstrings(struct proc *p, struct ps_strings *arginfo) |
1898 | { |
1899 | #if !defined(_RUMPKERNEL) |
1900 | int retval; |
1901 | |
1902 | if (p->p_flag & PK_32) { |
1903 | MODULE_HOOK_CALL(kern_proc32_copyin_hook, (p, arginfo), |
1904 | enosys(), retval); |
1905 | return retval; |
1906 | } |
1907 | #endif /* !defined(_RUMPKERNEL) */ |
1908 | |
1909 | return copyin_proc(p, (void *)p->p_psstrp, arginfo, sizeof(*arginfo)); |
1910 | } |
1911 | |
1912 | static int |
1913 | copy_procargs_sysctl_cb(void *cookie_, const void *src, size_t off, size_t len) |
1914 | { |
1915 | void **cookie = cookie_; |
1916 | struct lwp *l = cookie[0]; |
1917 | char *dst = cookie[1]; |
1918 | |
1919 | return sysctl_copyout(l, src, dst + off, len); |
1920 | } |
1921 | |
1922 | /* |
1923 | * sysctl helper routine for kern.proc_args pseudo-subtree. |
1924 | */ |
1925 | static int |
1926 | sysctl_kern_proc_args(SYSCTLFN_ARGS) |
1927 | { |
1928 | struct ps_strings pss; |
1929 | struct proc *p; |
1930 | pid_t pid; |
1931 | int type, error; |
1932 | void *cookie[2]; |
1933 | |
1934 | if (namelen == 1 && name[0] == CTL_QUERY) |
1935 | return (sysctl_query(SYSCTLFN_CALL(rnode))); |
1936 | |
1937 | if (newp != NULL || namelen != 2) |
1938 | return (EINVAL); |
1939 | pid = name[0]; |
1940 | type = name[1]; |
1941 | |
1942 | switch (type) { |
1943 | case KERN_PROC_PATHNAME: |
1944 | sysctl_unlock(); |
1945 | error = fill_pathname(l, pid, oldp, oldlenp); |
1946 | sysctl_relock(); |
1947 | return error; |
1948 | |
1949 | case KERN_PROC_CWD: |
1950 | sysctl_unlock(); |
1951 | error = fill_cwd(l, pid, oldp, oldlenp); |
1952 | sysctl_relock(); |
1953 | return error; |
1954 | |
1955 | case KERN_PROC_ARGV: |
1956 | case KERN_PROC_NARGV: |
1957 | case KERN_PROC_ENV: |
1958 | case KERN_PROC_NENV: |
1959 | /* ok */ |
1960 | break; |
1961 | default: |
1962 | return (EINVAL); |
1963 | } |
1964 | |
1965 | sysctl_unlock(); |
1966 | |
1967 | /* check pid */ |
1968 | mutex_enter(proc_lock); |
1969 | if ((p = proc_find(pid)) == NULL) { |
1970 | error = EINVAL; |
1971 | goto out_locked; |
1972 | } |
1973 | mutex_enter(p->p_lock); |
1974 | |
1975 | /* Check permission. */ |
1976 | if (type == KERN_PROC_ARGV || type == KERN_PROC_NARGV) |
1977 | error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, |
1978 | p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ARGS), NULL, NULL); |
1979 | else if (type == KERN_PROC_ENV || type == KERN_PROC_NENV) |
1980 | error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE, |
1981 | p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENV), NULL, NULL); |
1982 | else |
1983 | error = EINVAL; /* XXXGCC */ |
1984 | if (error) { |
1985 | mutex_exit(p->p_lock); |
1986 | goto out_locked; |
1987 | } |
1988 | |
1989 | if (oldp == NULL) { |
1990 | if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) |
1991 | *oldlenp = sizeof (int); |
1992 | else |
1993 | *oldlenp = ARG_MAX; /* XXX XXX XXX */ |
1994 | error = 0; |
1995 | mutex_exit(p->p_lock); |
1996 | goto out_locked; |
1997 | } |
1998 | |
1999 | /* |
2000 | * Zombies don't have a stack, so we can't read their psstrings. |
2001 | * System processes also don't have a user stack. |
2002 | */ |
2003 | if (P_ZOMBIE(p) || (p->p_flag & PK_SYSTEM) != 0) { |
2004 | error = EINVAL; |
2005 | mutex_exit(p->p_lock); |
2006 | goto out_locked; |
2007 | } |
2008 | |
2009 | error = rw_tryenter(&p->p_reflock, RW_READER) ? 0 : EBUSY; |
2010 | mutex_exit(p->p_lock); |
2011 | if (error) { |
2012 | goto out_locked; |
2013 | } |
2014 | mutex_exit(proc_lock); |
2015 | |
2016 | if (type == KERN_PROC_NARGV || type == KERN_PROC_NENV) { |
2017 | int value; |
2018 | if ((error = copyin_psstrings(p, &pss)) == 0) { |
2019 | if (type == KERN_PROC_NARGV) |
2020 | value = pss.ps_nargvstr; |
2021 | else |
2022 | value = pss.ps_nenvstr; |
2023 | error = sysctl_copyout(l, &value, oldp, sizeof(value)); |
2024 | *oldlenp = sizeof(value); |
2025 | } |
2026 | } else { |
2027 | cookie[0] = l; |
2028 | cookie[1] = oldp; |
2029 | error = copy_procargs(p, type, oldlenp, |
2030 | copy_procargs_sysctl_cb, cookie); |
2031 | } |
2032 | rw_exit(&p->p_reflock); |
2033 | sysctl_relock(); |
2034 | return error; |
2035 | |
2036 | out_locked: |
2037 | mutex_exit(proc_lock); |
2038 | sysctl_relock(); |
2039 | return error; |
2040 | } |
2041 | |
2042 | int |
2043 | copy_procargs(struct proc *p, int oid, size_t *limit, |
2044 | int (*cb)(void *, const void *, size_t, size_t), void *cookie) |
2045 | { |
2046 | struct ps_strings pss; |
2047 | size_t len, i, loaded, entry_len; |
2048 | struct uio auio; |
2049 | struct iovec aiov; |
2050 | int error, argvlen; |
2051 | char *arg; |
2052 | char **argv; |
2053 | vaddr_t user_argv; |
2054 | struct vmspace *vmspace; |
2055 | |
2056 | /* |
2057 | * Allocate a temporary buffer to hold the argument vector and |
2058 | * the arguments themselve. |
2059 | */ |
2060 | arg = kmem_alloc(PAGE_SIZE, KM_SLEEP); |
2061 | argv = kmem_alloc(PAGE_SIZE, KM_SLEEP); |
2062 | |
2063 | /* |
2064 | * Lock the process down in memory. |
2065 | */ |
2066 | vmspace = p->p_vmspace; |
2067 | uvmspace_addref(vmspace); |
2068 | |
2069 | /* |
2070 | * Read in the ps_strings structure. |
2071 | */ |
2072 | if ((error = copyin_psstrings(p, &pss)) != 0) |
2073 | goto done; |
2074 | |
2075 | /* |
2076 | * Now read the address of the argument vector. |
2077 | */ |
2078 | switch (oid) { |
2079 | case KERN_PROC_ARGV: |
2080 | user_argv = (uintptr_t)pss.ps_argvstr; |
2081 | argvlen = pss.ps_nargvstr; |
2082 | break; |
2083 | case KERN_PROC_ENV: |
2084 | user_argv = (uintptr_t)pss.ps_envstr; |
2085 | argvlen = pss.ps_nenvstr; |
2086 | break; |
2087 | default: |
2088 | error = EINVAL; |
2089 | goto done; |
2090 | } |
2091 | |
2092 | if (argvlen < 0) { |
2093 | error = EIO; |
2094 | goto done; |
2095 | } |
2096 | |
2097 | |
2098 | /* |
2099 | * Now copy each string. |
2100 | */ |
2101 | len = 0; /* bytes written to user buffer */ |
2102 | loaded = 0; /* bytes from argv already processed */ |
2103 | i = 0; /* To make compiler happy */ |
2104 | entry_len = PROC_PTRSZ(p); |
2105 | |
2106 | for (; argvlen; --argvlen) { |
2107 | int finished = 0; |
2108 | vaddr_t base; |
2109 | size_t xlen; |
2110 | int j; |
2111 | |
2112 | if (loaded == 0) { |
2113 | size_t rem = entry_len * argvlen; |
2114 | loaded = MIN(rem, PAGE_SIZE); |
2115 | error = copyin_vmspace(vmspace, |
2116 | (const void *)user_argv, argv, loaded); |
2117 | if (error) |
2118 | break; |
2119 | user_argv += loaded; |
2120 | i = 0; |
2121 | } |
2122 | |
2123 | #if !defined(_RUMPKERNEL) |
2124 | if (p->p_flag & PK_32) |
2125 | MODULE_HOOK_CALL(kern_proc32_base_hook, |
2126 | (argv, i++), 0, base); |
2127 | else |
2128 | #endif /* !defined(_RUMPKERNEL) */ |
2129 | base = (vaddr_t)argv[i++]; |
2130 | loaded -= entry_len; |
2131 | |
2132 | /* |
2133 | * The program has messed around with its arguments, |
2134 | * possibly deleting some, and replacing them with |
2135 | * NULL's. Treat this as the last argument and not |
2136 | * a failure. |
2137 | */ |
2138 | if (base == 0) |
2139 | break; |
2140 | |
2141 | while (!finished) { |
2142 | xlen = PAGE_SIZE - (base & PAGE_MASK); |
2143 | |
2144 | aiov.iov_base = arg; |
2145 | aiov.iov_len = PAGE_SIZE; |
2146 | auio.uio_iov = &aiov; |
2147 | auio.uio_iovcnt = 1; |
2148 | auio.uio_offset = base; |
2149 | auio.uio_resid = xlen; |
2150 | auio.uio_rw = UIO_READ; |
2151 | UIO_SETUP_SYSSPACE(&auio); |
2152 | error = uvm_io(&vmspace->vm_map, &auio, 0); |
2153 | if (error) |
2154 | goto done; |
2155 | |
2156 | /* Look for the end of the string */ |
2157 | for (j = 0; j < xlen; j++) { |
2158 | if (arg[j] == '\0') { |
2159 | xlen = j + 1; |
2160 | finished = 1; |
2161 | break; |
2162 | } |
2163 | } |
2164 | |
2165 | /* Check for user buffer overflow */ |
2166 | if (len + xlen > *limit) { |
2167 | finished = 1; |
2168 | if (len > *limit) |
2169 | xlen = 0; |
2170 | else |
2171 | xlen = *limit - len; |
2172 | } |
2173 | |
2174 | /* Copyout the page */ |
2175 | error = (*cb)(cookie, arg, len, xlen); |
2176 | if (error) |
2177 | goto done; |
2178 | |
2179 | len += xlen; |
2180 | base += xlen; |
2181 | } |
2182 | } |
2183 | *limit = len; |
2184 | |
2185 | done: |
2186 | kmem_free(argv, PAGE_SIZE); |
2187 | kmem_free(arg, PAGE_SIZE); |
2188 | uvmspace_free(vmspace); |
2189 | return error; |
2190 | } |
2191 | |
2192 | /* |
2193 | * Fill in a proc structure for the specified process. |
2194 | */ |
2195 | static void |
2196 | fill_proc(const struct proc *psrc, struct proc *p, bool allowaddr) |
2197 | { |
2198 | COND_SET_VALUE(p->p_list, psrc->p_list, allowaddr); |
2199 | COND_SET_VALUE(p->p_auxlock, psrc->p_auxlock, allowaddr); |
2200 | COND_SET_VALUE(p->p_lock, psrc->p_lock, allowaddr); |
2201 | COND_SET_VALUE(p->p_stmutex, psrc->p_stmutex, allowaddr); |
2202 | COND_SET_VALUE(p->p_reflock, psrc->p_reflock, allowaddr); |
2203 | COND_SET_VALUE(p->p_waitcv, psrc->p_waitcv, allowaddr); |
2204 | COND_SET_VALUE(p->p_lwpcv, psrc->p_lwpcv, allowaddr); |
2205 | COND_SET_VALUE(p->p_cred, psrc->p_cred, allowaddr); |
2206 | COND_SET_VALUE(p->p_fd, psrc->p_fd, allowaddr); |
2207 | COND_SET_VALUE(p->p_cwdi, psrc->p_cwdi, allowaddr); |
2208 | COND_SET_VALUE(p->p_stats, psrc->p_stats, allowaddr); |
2209 | COND_SET_VALUE(p->p_limit, psrc->p_limit, allowaddr); |
2210 | COND_SET_VALUE(p->p_vmspace, psrc->p_vmspace, allowaddr); |
2211 | COND_SET_VALUE(p->p_sigacts, psrc->p_sigacts, allowaddr); |
2212 | COND_SET_VALUE(p->p_aio, psrc->p_aio, allowaddr); |
2213 | p->p_mqueue_cnt = psrc->p_mqueue_cnt; |
2214 | COND_SET_VALUE(p->p_specdataref, psrc->p_specdataref, allowaddr); |
2215 | p->p_exitsig = psrc->p_exitsig; |
2216 | p->p_flag = psrc->p_flag; |
2217 | p->p_sflag = psrc->p_sflag; |
2218 | p->p_slflag = psrc->p_slflag; |
2219 | p->p_lflag = psrc->p_lflag; |
2220 | p->p_stflag = psrc->p_stflag; |
2221 | p->p_stat = psrc->p_stat; |
2222 | p->p_trace_enabled = psrc->p_trace_enabled; |
2223 | p->p_pid = psrc->p_pid; |
2224 | COND_SET_VALUE(p->p_pglist, psrc->p_pglist, allowaddr); |
2225 | COND_SET_VALUE(p->p_pptr, psrc->p_pptr, allowaddr); |
2226 | COND_SET_VALUE(p->p_sibling, psrc->p_sibling, allowaddr); |
2227 | COND_SET_VALUE(p->p_children, psrc->p_children, allowaddr); |
2228 | COND_SET_VALUE(p->p_lwps, psrc->p_lwps, allowaddr); |
2229 | COND_SET_VALUE(p->p_raslist, psrc->p_raslist, allowaddr); |
2230 | p->p_nlwps = psrc->p_nlwps; |
2231 | p->p_nzlwps = psrc->p_nzlwps; |
2232 | p->p_nrlwps = psrc->p_nrlwps; |
2233 | p->p_nlwpwait = psrc->p_nlwpwait; |
2234 | p->p_ndlwps = psrc->p_ndlwps; |
2235 | p->p_nlwpid = psrc->p_nlwpid; |
2236 | p->p_nstopchild = psrc->p_nstopchild; |
2237 | p->p_waited = psrc->p_waited; |
2238 | COND_SET_VALUE(p->p_zomblwp, psrc->p_zomblwp, allowaddr); |
2239 | COND_SET_VALUE(p->p_vforklwp, psrc->p_vforklwp, allowaddr); |
2240 | COND_SET_VALUE(p->p_sched_info, psrc->p_sched_info, allowaddr); |
2241 | p->p_estcpu = psrc->p_estcpu; |
2242 | p->p_estcpu_inherited = psrc->p_estcpu_inherited; |
2243 | p->p_forktime = psrc->p_forktime; |
2244 | p->p_pctcpu = psrc->p_pctcpu; |
2245 | COND_SET_VALUE(p->p_opptr, psrc->p_opptr, allowaddr); |
2246 | COND_SET_VALUE(p->p_timers, psrc->p_timers, allowaddr); |
2247 | p->p_rtime = psrc->p_rtime; |
2248 | p->p_uticks = psrc->p_uticks; |
2249 | p->p_sticks = psrc->p_sticks; |
2250 | p->p_iticks = psrc->p_iticks; |
2251 | p->p_xutime = psrc->p_xutime; |
2252 | p->p_xstime = psrc->p_xstime; |
2253 | p->p_traceflag = psrc->p_traceflag; |
2254 | COND_SET_VALUE(p->p_tracep, psrc->p_tracep, allowaddr); |
2255 | COND_SET_VALUE(p->p_textvp, psrc->p_textvp, allowaddr); |
2256 | COND_SET_VALUE(p->p_emul, psrc->p_emul, allowaddr); |
2257 | COND_SET_VALUE(p->p_emuldata, psrc->p_emuldata, allowaddr); |
2258 | COND_SET_VALUE(p->p_execsw, psrc->p_execsw, allowaddr); |
2259 | COND_SET_VALUE(p->p_klist, psrc->p_klist, allowaddr); |
2260 | COND_SET_VALUE(p->p_sigwaiters, psrc->p_sigwaiters, allowaddr); |
2261 | COND_SET_VALUE(p->p_sigpend, psrc->p_sigpend, allowaddr); |
2262 | COND_SET_VALUE(p->p_lwpctl, psrc->p_lwpctl, allowaddr); |
2263 | p->p_ppid = psrc->p_ppid; |
2264 | p->p_fpid = psrc->p_fpid; |
2265 | p->p_vfpid = psrc->p_vfpid; |
2266 | p->p_vfpid_done = psrc->p_vfpid_done; |
2267 | p->p_lwp_created = psrc->p_lwp_created; |
2268 | p->p_lwp_exited = psrc->p_lwp_exited; |
2269 | p->p_pspid = psrc->p_pspid; |
2270 | COND_SET_VALUE(p->p_path, psrc->p_path, allowaddr); |
2271 | COND_SET_VALUE(p->p_sigctx, psrc->p_sigctx, allowaddr); |
2272 | p->p_nice = psrc->p_nice; |
2273 | memcpy(p->p_comm, psrc->p_comm, sizeof(p->p_comm)); |
2274 | COND_SET_VALUE(p->p_pgrp, psrc->p_pgrp, allowaddr); |
2275 | COND_SET_VALUE(p->p_psstrp, psrc->p_psstrp, allowaddr); |
2276 | p->p_pax = psrc->p_pax; |
2277 | p->p_xexit = psrc->p_xexit; |
2278 | p->p_xsig = psrc->p_xsig; |
2279 | p->p_acflag = psrc->p_acflag; |
2280 | COND_SET_VALUE(p->p_md, psrc->p_md, allowaddr); |
2281 | p->p_stackbase = psrc->p_stackbase; |
2282 | COND_SET_VALUE(p->p_dtrace, psrc->p_dtrace, allowaddr); |
2283 | } |
2284 | |
2285 | /* |
2286 | * Fill in an eproc structure for the specified process. |
2287 | */ |
2288 | void |
2289 | fill_eproc(struct proc *p, struct eproc *ep, bool zombie, bool allowaddr) |
2290 | { |
2291 | struct tty *tp; |
2292 | struct lwp *l; |
2293 | |
2294 | KASSERT(mutex_owned(proc_lock)); |
2295 | KASSERT(mutex_owned(p->p_lock)); |
2296 | |
2297 | COND_SET_VALUE(ep->e_paddr, p, allowaddr); |
2298 | COND_SET_VALUE(ep->e_sess, p->p_session, allowaddr); |
2299 | if (p->p_cred) { |
2300 | kauth_cred_topcred(p->p_cred, &ep->e_pcred); |
2301 | kauth_cred_toucred(p->p_cred, &ep->e_ucred); |
2302 | } |
2303 | if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) { |
2304 | struct vmspace *vm = p->p_vmspace; |
2305 | |
2306 | ep->e_vm.vm_rssize = vm_resident_count(vm); |
2307 | ep->e_vm.vm_tsize = vm->vm_tsize; |
2308 | ep->e_vm.vm_dsize = vm->vm_dsize; |
2309 | ep->e_vm.vm_ssize = vm->vm_ssize; |
2310 | ep->e_vm.vm_map.size = vm->vm_map.size; |
2311 | |
2312 | /* Pick the primary (first) LWP */ |
2313 | l = proc_active_lwp(p); |
2314 | KASSERT(l != NULL); |
2315 | lwp_lock(l); |
2316 | if (l->l_wchan) |
2317 | strncpy(ep->e_wmesg, l->l_wmesg, WMESGLEN); |
2318 | lwp_unlock(l); |
2319 | } |
2320 | ep->e_ppid = p->p_ppid; |
2321 | if (p->p_pgrp && p->p_session) { |
2322 | ep->e_pgid = p->p_pgrp->pg_id; |
2323 | ep->e_jobc = p->p_pgrp->pg_jobc; |
2324 | ep->e_sid = p->p_session->s_sid; |
2325 | if ((p->p_lflag & PL_CONTROLT) && |
2326 | (tp = p->p_session->s_ttyp)) { |
2327 | ep->e_tdev = tp->t_dev; |
2328 | ep->e_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID; |
2329 | COND_SET_VALUE(ep->e_tsess, tp->t_session, allowaddr); |
2330 | } else |
2331 | ep->e_tdev = (uint32_t)NODEV; |
2332 | ep->e_flag = p->p_session->s_ttyvp ? EPROC_CTTY : 0; |
2333 | if (SESS_LEADER(p)) |
2334 | ep->e_flag |= EPROC_SLEADER; |
2335 | strncpy(ep->e_login, p->p_session->s_login, MAXLOGNAME); |
2336 | } |
2337 | ep->e_xsize = ep->e_xrssize = 0; |
2338 | ep->e_xccount = ep->e_xswrss = 0; |
2339 | } |
2340 | |
2341 | /* |
2342 | * Fill in a kinfo_proc2 structure for the specified process. |
2343 | */ |
2344 | void |
2345 | fill_kproc2(struct proc *p, struct kinfo_proc2 *ki, bool zombie, bool allowaddr) |
2346 | { |
2347 | struct tty *tp; |
2348 | struct lwp *l, *l2; |
2349 | struct timeval ut, st, rt; |
2350 | sigset_t ss1, ss2; |
2351 | struct rusage ru; |
2352 | struct vmspace *vm; |
2353 | |
2354 | KASSERT(mutex_owned(proc_lock)); |
2355 | KASSERT(mutex_owned(p->p_lock)); |
2356 | |
2357 | sigemptyset(&ss1); |
2358 | sigemptyset(&ss2); |
2359 | |
2360 | COND_SET_VALUE(ki->p_paddr, PTRTOUINT64(p), allowaddr); |
2361 | COND_SET_VALUE(ki->p_fd, PTRTOUINT64(p->p_fd), allowaddr); |
2362 | COND_SET_VALUE(ki->p_cwdi, PTRTOUINT64(p->p_cwdi), allowaddr); |
2363 | COND_SET_VALUE(ki->p_stats, PTRTOUINT64(p->p_stats), allowaddr); |
2364 | COND_SET_VALUE(ki->p_limit, PTRTOUINT64(p->p_limit), allowaddr); |
2365 | COND_SET_VALUE(ki->p_vmspace, PTRTOUINT64(p->p_vmspace), allowaddr); |
2366 | COND_SET_VALUE(ki->p_sigacts, PTRTOUINT64(p->p_sigacts), allowaddr); |
2367 | COND_SET_VALUE(ki->p_sess, PTRTOUINT64(p->p_session), allowaddr); |
2368 | ki->p_tsess = 0; /* may be changed if controlling tty below */ |
2369 | COND_SET_VALUE(ki->p_ru, PTRTOUINT64(&p->p_stats->p_ru), allowaddr); |
2370 | ki->p_eflag = 0; |
2371 | ki->p_exitsig = p->p_exitsig; |
2372 | ki->p_flag = L_INMEM; /* Process never swapped out */ |
2373 | ki->p_flag |= sysctl_map_flags(sysctl_flagmap, p->p_flag); |
2374 | ki->p_flag |= sysctl_map_flags(sysctl_sflagmap, p->p_sflag); |
2375 | ki->p_flag |= sysctl_map_flags(sysctl_slflagmap, p->p_slflag); |
2376 | ki->p_flag |= sysctl_map_flags(sysctl_lflagmap, p->p_lflag); |
2377 | ki->p_flag |= sysctl_map_flags(sysctl_stflagmap, p->p_stflag); |
2378 | ki->p_pid = p->p_pid; |
2379 | ki->p_ppid = p->p_ppid; |
2380 | ki->p_uid = kauth_cred_geteuid(p->p_cred); |
2381 | ki->p_ruid = kauth_cred_getuid(p->p_cred); |
2382 | ki->p_gid = kauth_cred_getegid(p->p_cred); |
2383 | ki->p_rgid = kauth_cred_getgid(p->p_cred); |
2384 | ki->p_svuid = kauth_cred_getsvuid(p->p_cred); |
2385 | ki->p_svgid = kauth_cred_getsvgid(p->p_cred); |
2386 | ki->p_ngroups = kauth_cred_ngroups(p->p_cred); |
2387 | kauth_cred_getgroups(p->p_cred, ki->p_groups, |
2388 | uimin(ki->p_ngroups, sizeof(ki->p_groups) / sizeof(ki->p_groups[0])), |
2389 | UIO_SYSSPACE); |
2390 | |
2391 | ki->p_uticks = p->p_uticks; |
2392 | ki->p_sticks = p->p_sticks; |
2393 | ki->p_iticks = p->p_iticks; |
2394 | ki->p_tpgid = NO_PGID; /* may be changed if controlling tty below */ |
2395 | COND_SET_VALUE(ki->p_tracep, PTRTOUINT64(p->p_tracep), allowaddr); |
2396 | ki->p_traceflag = p->p_traceflag; |
2397 | |
2398 | memcpy(&ki->p_sigignore, &p->p_sigctx.ps_sigignore,sizeof(ki_sigset_t)); |
2399 | memcpy(&ki->p_sigcatch, &p->p_sigctx.ps_sigcatch, sizeof(ki_sigset_t)); |
2400 | |
2401 | ki->p_cpticks = 0; |
2402 | ki->p_pctcpu = p->p_pctcpu; |
2403 | ki->p_estcpu = 0; |
2404 | ki->p_stat = p->p_stat; /* Will likely be overridden by LWP status */ |
2405 | ki->p_realstat = p->p_stat; |
2406 | ki->p_nice = p->p_nice; |
2407 | ki->p_xstat = P_WAITSTATUS(p); |
2408 | ki->p_acflag = p->p_acflag; |
2409 | |
2410 | strncpy(ki->p_comm, p->p_comm, |
2411 | uimin(sizeof(ki->p_comm), sizeof(p->p_comm))); |
2412 | strncpy(ki->p_ename, p->p_emul->e_name, sizeof(ki->p_ename)); |
2413 | |
2414 | ki->p_nlwps = p->p_nlwps; |
2415 | ki->p_realflag = ki->p_flag; |
2416 | |
2417 | if (p->p_stat != SIDL && !P_ZOMBIE(p) && !zombie) { |
2418 | vm = p->p_vmspace; |
2419 | ki->p_vm_rssize = vm_resident_count(vm); |
2420 | ki->p_vm_tsize = vm->vm_tsize; |
2421 | ki->p_vm_dsize = vm->vm_dsize; |
2422 | ki->p_vm_ssize = vm->vm_ssize; |
2423 | ki->p_vm_vsize = atop(vm->vm_map.size); |
2424 | /* |
2425 | * Since the stack is initially mapped mostly with |
2426 | * PROT_NONE and grown as needed, adjust the "mapped size" |
2427 | * to skip the unused stack portion. |
2428 | */ |
2429 | ki->p_vm_msize = |
2430 | atop(vm->vm_map.size) - vm->vm_issize + vm->vm_ssize; |
2431 | |
2432 | /* Pick the primary (first) LWP */ |
2433 | l = proc_active_lwp(p); |
2434 | KASSERT(l != NULL); |
2435 | lwp_lock(l); |
2436 | ki->p_nrlwps = p->p_nrlwps; |
2437 | ki->p_forw = 0; |
2438 | ki->p_back = 0; |
2439 | COND_SET_VALUE(ki->p_addr, PTRTOUINT64(l->l_addr), allowaddr); |
2440 | ki->p_stat = l->l_stat; |
2441 | ki->p_flag |= sysctl_map_flags(sysctl_lwpflagmap, l->l_flag); |
2442 | ki->p_swtime = l->l_swtime; |
2443 | ki->p_slptime = l->l_slptime; |
2444 | if (l->l_stat == LSONPROC) |
2445 | ki->p_schedflags = l->l_cpu->ci_schedstate.spc_flags; |
2446 | else |
2447 | ki->p_schedflags = 0; |
2448 | ki->p_priority = lwp_eprio(l); |
2449 | ki->p_usrpri = l->l_priority; |
2450 | if (l->l_wchan) |
2451 | strncpy(ki->p_wmesg, l->l_wmesg, sizeof(ki->p_wmesg)); |
2452 | COND_SET_VALUE(ki->p_wchan, PTRTOUINT64(l->l_wchan), allowaddr); |
2453 | ki->p_cpuid = cpu_index(l->l_cpu); |
2454 | lwp_unlock(l); |
2455 | LIST_FOREACH(l, &p->p_lwps, l_sibling) { |
2456 | /* This is hardly correct, but... */ |
2457 | sigplusset(&l->l_sigpend.sp_set, &ss1); |
2458 | sigplusset(&l->l_sigmask, &ss2); |
2459 | ki->p_cpticks += l->l_cpticks; |
2460 | ki->p_pctcpu += l->l_pctcpu; |
2461 | ki->p_estcpu += l->l_estcpu; |
2462 | } |
2463 | } |
2464 | sigplusset(&p->p_sigpend.sp_set, &ss2); |
2465 | memcpy(&ki->p_siglist, &ss1, sizeof(ki_sigset_t)); |
2466 | memcpy(&ki->p_sigmask, &ss2, sizeof(ki_sigset_t)); |
2467 | |
2468 | if (p->p_session != NULL) { |
2469 | ki->p_sid = p->p_session->s_sid; |
2470 | ki->p__pgid = p->p_pgrp->pg_id; |
2471 | if (p->p_session->s_ttyvp) |
2472 | ki->p_eflag |= EPROC_CTTY; |
2473 | if (SESS_LEADER(p)) |
2474 | ki->p_eflag |= EPROC_SLEADER; |
2475 | strncpy(ki->p_login, p->p_session->s_login, |
2476 | uimin(sizeof ki->p_login - 1, sizeof p->p_session->s_login)); |
2477 | ki->p_jobc = p->p_pgrp->pg_jobc; |
2478 | if ((p->p_lflag & PL_CONTROLT) && (tp = p->p_session->s_ttyp)) { |
2479 | ki->p_tdev = tp->t_dev; |
2480 | ki->p_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PGID; |
2481 | COND_SET_VALUE(ki->p_tsess, PTRTOUINT64(tp->t_session), |
2482 | allowaddr); |
2483 | } else { |
2484 | ki->p_tdev = (int32_t)NODEV; |
2485 | } |
2486 | } |
2487 | |
2488 | if (!P_ZOMBIE(p) && !zombie) { |
2489 | ki->p_uvalid = 1; |
2490 | ki->p_ustart_sec = p->p_stats->p_start.tv_sec; |
2491 | ki->p_ustart_usec = p->p_stats->p_start.tv_usec; |
2492 | |
2493 | calcru(p, &ut, &st, NULL, &rt); |
2494 | ki->p_rtime_sec = rt.tv_sec; |
2495 | ki->p_rtime_usec = rt.tv_usec; |
2496 | ki->p_uutime_sec = ut.tv_sec; |
2497 | ki->p_uutime_usec = ut.tv_usec; |
2498 | ki->p_ustime_sec = st.tv_sec; |
2499 | ki->p_ustime_usec = st.tv_usec; |
2500 | |
2501 | memcpy(&ru, &p->p_stats->p_ru, sizeof(ru)); |
2502 | ki->p_uru_nvcsw = 0; |
2503 | ki->p_uru_nivcsw = 0; |
2504 | LIST_FOREACH(l2, &p->p_lwps, l_sibling) { |
2505 | ki->p_uru_nvcsw += (l2->l_ncsw - l2->l_nivcsw); |
2506 | ki->p_uru_nivcsw += l2->l_nivcsw; |
2507 | ruadd(&ru, &l2->l_ru); |
2508 | } |
2509 | ki->p_uru_maxrss = ru.ru_maxrss; |
2510 | ki->p_uru_ixrss = ru.ru_ixrss; |
2511 | ki->p_uru_idrss = ru.ru_idrss; |
2512 | ki->p_uru_isrss = ru.ru_isrss; |
2513 | ki->p_uru_minflt = ru.ru_minflt; |
2514 | ki->p_uru_majflt = ru.ru_majflt; |
2515 | ki->p_uru_nswap = ru.ru_nswap; |
2516 | ki->p_uru_inblock = ru.ru_inblock; |
2517 | ki->p_uru_oublock = ru.ru_oublock; |
2518 | ki->p_uru_msgsnd = ru.ru_msgsnd; |
2519 | ki->p_uru_msgrcv = ru.ru_msgrcv; |
2520 | ki->p_uru_nsignals = ru.ru_nsignals; |
2521 | |
2522 | timeradd(&p->p_stats->p_cru.ru_utime, |
2523 | &p->p_stats->p_cru.ru_stime, &ut); |
2524 | ki->p_uctime_sec = ut.tv_sec; |
2525 | ki->p_uctime_usec = ut.tv_usec; |
2526 | } |
2527 | } |
2528 | |
2529 | |
2530 | int |
2531 | proc_find_locked(struct lwp *l, struct proc **p, pid_t pid) |
2532 | { |
2533 | int error; |
2534 | |
2535 | mutex_enter(proc_lock); |
2536 | if (pid == -1) |
2537 | *p = l->l_proc; |
2538 | else |
2539 | *p = proc_find(pid); |
2540 | |
2541 | if (*p == NULL) { |
2542 | if (pid != -1) |
2543 | mutex_exit(proc_lock); |
2544 | return ESRCH; |
2545 | } |
2546 | if (pid != -1) |
2547 | mutex_enter((*p)->p_lock); |
2548 | mutex_exit(proc_lock); |
2549 | |
2550 | error = kauth_authorize_process(l->l_cred, |
2551 | KAUTH_PROCESS_CANSEE, *p, |
2552 | KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL); |
2553 | if (error) { |
2554 | if (pid != -1) |
2555 | mutex_exit((*p)->p_lock); |
2556 | } |
2557 | return error; |
2558 | } |
2559 | |
2560 | static int |
2561 | fill_pathname(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp) |
2562 | { |
2563 | int error; |
2564 | struct proc *p; |
2565 | |
2566 | if ((error = proc_find_locked(l, &p, pid)) != 0) |
2567 | return error; |
2568 | |
2569 | if (p->p_path == NULL) { |
2570 | if (pid != -1) |
2571 | mutex_exit(p->p_lock); |
2572 | return ENOENT; |
2573 | } |
2574 | |
2575 | size_t len = strlen(p->p_path) + 1; |
2576 | if (oldp != NULL) { |
2577 | size_t copylen = uimin(len, *oldlenp); |
2578 | error = sysctl_copyout(l, p->p_path, oldp, copylen); |
2579 | if (error == 0 && *oldlenp < len) |
2580 | error = ENOSPC; |
2581 | } |
2582 | *oldlenp = len; |
2583 | if (pid != -1) |
2584 | mutex_exit(p->p_lock); |
2585 | return error; |
2586 | } |
2587 | |
2588 | static int |
2589 | fill_cwd(struct lwp *l, pid_t pid, void *oldp, size_t *oldlenp) |
2590 | { |
2591 | int error; |
2592 | struct proc *p; |
2593 | char *path; |
2594 | char *bp, *bend; |
2595 | struct cwdinfo *cwdi; |
2596 | struct vnode *vp; |
2597 | size_t len, lenused; |
2598 | |
2599 | if ((error = proc_find_locked(l, &p, pid)) != 0) |
2600 | return error; |
2601 | |
2602 | len = MAXPATHLEN * 4; |
2603 | |
2604 | path = kmem_alloc(len, KM_SLEEP); |
2605 | |
2606 | bp = &path[len]; |
2607 | bend = bp; |
2608 | *(--bp) = '\0'; |
2609 | |
2610 | cwdi = p->p_cwdi; |
2611 | rw_enter(&cwdi->cwdi_lock, RW_READER); |
2612 | vp = cwdi->cwdi_cdir; |
2613 | error = getcwd_common(vp, NULL, &bp, path, len/2, 0, l); |
2614 | rw_exit(&cwdi->cwdi_lock); |
2615 | |
2616 | if (error) |
2617 | goto out; |
2618 | |
2619 | lenused = bend - bp; |
2620 | |
2621 | if (oldp != NULL) { |
2622 | size_t copylen = uimin(lenused, *oldlenp); |
2623 | error = sysctl_copyout(l, bp, oldp, copylen); |
2624 | if (error == 0 && *oldlenp < lenused) |
2625 | error = ENOSPC; |
2626 | } |
2627 | *oldlenp = lenused; |
2628 | out: |
2629 | if (pid != -1) |
2630 | mutex_exit(p->p_lock); |
2631 | kmem_free(path, len); |
2632 | return error; |
2633 | } |
2634 | |
2635 | int |
2636 | proc_getauxv(struct proc *p, void **buf, size_t *len) |
2637 | { |
2638 | struct ps_strings pss; |
2639 | int error; |
2640 | void *uauxv, *kauxv; |
2641 | size_t size; |
2642 | |
2643 | if ((error = copyin_psstrings(p, &pss)) != 0) |
2644 | return error; |
2645 | if (pss.ps_envstr == NULL) |
2646 | return EIO; |
2647 | |
2648 | size = p->p_execsw->es_arglen; |
2649 | if (size == 0) |
2650 | return EIO; |
2651 | |
2652 | size_t ptrsz = PROC_PTRSZ(p); |
2653 | uauxv = (void *)((char *)pss.ps_envstr + (pss.ps_nenvstr + 1) * ptrsz); |
2654 | |
2655 | kauxv = kmem_alloc(size, KM_SLEEP); |
2656 | |
2657 | error = copyin_proc(p, uauxv, kauxv, size); |
2658 | if (error) { |
2659 | kmem_free(kauxv, size); |
2660 | return error; |
2661 | } |
2662 | |
2663 | *buf = kauxv; |
2664 | *len = size; |
2665 | |
2666 | return 0; |
2667 | } |
2668 | |
2669 | |
2670 | static int |
2671 | sysctl_security_expose_address(SYSCTLFN_ARGS) |
2672 | { |
2673 | int expose_address, error; |
2674 | struct sysctlnode node; |
2675 | |
2676 | node = *rnode; |
2677 | node.sysctl_data = &expose_address; |
2678 | expose_address = *(int *)rnode->sysctl_data; |
2679 | error = sysctl_lookup(SYSCTLFN_CALL(&node)); |
2680 | if (error || newp == NULL) |
2681 | return error; |
2682 | |
2683 | if (kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_KERNADDR, |
2684 | 0, NULL, NULL, NULL)) |
2685 | return EPERM; |
2686 | |
2687 | switch (expose_address) { |
2688 | case 0: |
2689 | case 1: |
2690 | case 2: |
2691 | break; |
2692 | default: |
2693 | return EINVAL; |
2694 | } |
2695 | |
2696 | *(int *)rnode->sysctl_data = expose_address; |
2697 | |
2698 | return 0; |
2699 | } |
2700 | |
2701 | bool |
2702 | get_expose_address(struct proc *p) |
2703 | { |
2704 | /* allow only if sysctl variable is set or privileged */ |
2705 | return kauth_authorize_process(kauth_cred_get(), KAUTH_PROCESS_CANSEE, |
2706 | p, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_KPTR), NULL, NULL) == 0; |
2707 | } |
2708 | |