1 | /* $NetBSD: kern_exec.c,v 1.478 2019/07/05 17:14:48 maxv Exp $ */ |
2 | |
3 | /*- |
4 | * Copyright (c) 2008 The NetBSD Foundation, Inc. |
5 | * All rights reserved. |
6 | * |
7 | * Redistribution and use in source and binary forms, with or without |
8 | * modification, are permitted provided that the following conditions |
9 | * are met: |
10 | * 1. Redistributions of source code must retain the above copyright |
11 | * notice, this list of conditions and the following disclaimer. |
12 | * 2. Redistributions in binary form must reproduce the above copyright |
13 | * notice, this list of conditions and the following disclaimer in the |
14 | * documentation and/or other materials provided with the distribution. |
15 | * |
16 | * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS |
17 | * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
18 | * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
19 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS |
20 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
21 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
22 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
23 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
24 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
25 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
26 | * POSSIBILITY OF SUCH DAMAGE. |
27 | */ |
28 | |
29 | /*- |
30 | * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou |
31 | * Copyright (C) 1992 Wolfgang Solfrank. |
32 | * Copyright (C) 1992 TooLs GmbH. |
33 | * All rights reserved. |
34 | * |
35 | * Redistribution and use in source and binary forms, with or without |
36 | * modification, are permitted provided that the following conditions |
37 | * are met: |
38 | * 1. Redistributions of source code must retain the above copyright |
39 | * notice, this list of conditions and the following disclaimer. |
40 | * 2. Redistributions in binary form must reproduce the above copyright |
41 | * notice, this list of conditions and the following disclaimer in the |
42 | * documentation and/or other materials provided with the distribution. |
43 | * 3. All advertising materials mentioning features or use of this software |
44 | * must display the following acknowledgement: |
45 | * This product includes software developed by TooLs GmbH. |
46 | * 4. The name of TooLs GmbH may not be used to endorse or promote products |
47 | * derived from this software without specific prior written permission. |
48 | * |
49 | * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR |
50 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
51 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
52 | * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
53 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
54 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; |
55 | * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
56 | * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR |
57 | * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF |
58 | * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
59 | */ |
60 | |
61 | #include <sys/cdefs.h> |
62 | __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.478 2019/07/05 17:14:48 maxv Exp $" ); |
63 | |
64 | #include "opt_exec.h" |
65 | #include "opt_execfmt.h" |
66 | #include "opt_ktrace.h" |
67 | #include "opt_modular.h" |
68 | #include "opt_syscall_debug.h" |
69 | #include "veriexec.h" |
70 | #include "opt_pax.h" |
71 | |
72 | #include <sys/param.h> |
73 | #include <sys/systm.h> |
74 | #include <sys/filedesc.h> |
75 | #include <sys/kernel.h> |
76 | #include <sys/proc.h> |
77 | #include <sys/ptrace.h> |
78 | #include <sys/mount.h> |
79 | #include <sys/kmem.h> |
80 | #include <sys/namei.h> |
81 | #include <sys/vnode.h> |
82 | #include <sys/file.h> |
83 | #include <sys/filedesc.h> |
84 | #include <sys/acct.h> |
85 | #include <sys/atomic.h> |
86 | #include <sys/exec.h> |
87 | #include <sys/ktrace.h> |
88 | #include <sys/uidinfo.h> |
89 | #include <sys/wait.h> |
90 | #include <sys/mman.h> |
91 | #include <sys/ras.h> |
92 | #include <sys/signalvar.h> |
93 | #include <sys/stat.h> |
94 | #include <sys/syscall.h> |
95 | #include <sys/kauth.h> |
96 | #include <sys/lwpctl.h> |
97 | #include <sys/pax.h> |
98 | #include <sys/cpu.h> |
99 | #include <sys/module.h> |
100 | #include <sys/syscallvar.h> |
101 | #include <sys/syscallargs.h> |
102 | #if NVERIEXEC > 0 |
103 | #include <sys/verified_exec.h> |
104 | #endif /* NVERIEXEC > 0 */ |
105 | #include <sys/sdt.h> |
106 | #include <sys/spawn.h> |
107 | #include <sys/prot.h> |
108 | #include <sys/cprng.h> |
109 | |
110 | #include <uvm/uvm_extern.h> |
111 | |
112 | #include <machine/reg.h> |
113 | |
114 | #include <compat/common/compat_util.h> |
115 | |
116 | #ifndef MD_TOPDOWN_INIT |
117 | #ifdef __USE_TOPDOWN_VM |
118 | #define MD_TOPDOWN_INIT(epp) (epp)->ep_flags |= EXEC_TOPDOWN_VM |
119 | #else |
120 | #define MD_TOPDOWN_INIT(epp) |
121 | #endif |
122 | #endif |
123 | |
124 | struct execve_data; |
125 | |
126 | extern int user_va0_disable; |
127 | |
128 | static size_t calcargs(struct execve_data * restrict, const size_t); |
129 | static size_t calcstack(struct execve_data * restrict, const size_t); |
130 | static int copyoutargs(struct execve_data * restrict, struct lwp *, |
131 | char * const); |
132 | static int copyoutpsstrs(struct execve_data * restrict, struct proc *); |
133 | static int copyinargs(struct execve_data * restrict, char * const *, |
134 | char * const *, execve_fetch_element_t, char **); |
135 | static int copyinargstrs(struct execve_data * restrict, char * const *, |
136 | execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t)); |
137 | static int exec_sigcode_map(struct proc *, const struct emul *); |
138 | |
139 | #if defined(DEBUG) && !defined(DEBUG_EXEC) |
140 | #define DEBUG_EXEC |
141 | #endif |
142 | #ifdef DEBUG_EXEC |
143 | #define DPRINTF(a) printf a |
144 | #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \ |
145 | __LINE__, (s), (a), (b)) |
146 | static void dump_vmcmds(const struct exec_package * const, size_t, int); |
147 | #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0) |
148 | #else |
149 | #define DPRINTF(a) |
150 | #define COPYPRINTF(s, a, b) |
151 | #define DUMPVMCMDS(p, x, e) do {} while (0) |
152 | #endif /* DEBUG_EXEC */ |
153 | |
154 | /* |
155 | * DTrace SDT provider definitions |
156 | */ |
157 | SDT_PROVIDER_DECLARE(proc); |
158 | SDT_PROBE_DEFINE1(proc, kernel, , exec, "char *" ); |
159 | SDT_PROBE_DEFINE1(proc, kernel, , exec__success, "char *" ); |
160 | SDT_PROBE_DEFINE1(proc, kernel, , exec__failure, "int" ); |
161 | |
162 | /* |
163 | * Exec function switch: |
164 | * |
165 | * Note that each makecmds function is responsible for loading the |
166 | * exec package with the necessary functions for any exec-type-specific |
167 | * handling. |
168 | * |
169 | * Functions for specific exec types should be defined in their own |
170 | * header file. |
171 | */ |
172 | static const struct execsw **execsw = NULL; |
173 | static int nexecs; |
174 | |
175 | u_int exec_maxhdrsz; /* must not be static - used by netbsd32 */ |
176 | |
177 | /* list of dynamically loaded execsw entries */ |
178 | static LIST_HEAD(execlist_head, exec_entry) ex_head = |
179 | LIST_HEAD_INITIALIZER(ex_head); |
180 | struct exec_entry { |
181 | LIST_ENTRY(exec_entry) ex_list; |
182 | SLIST_ENTRY(exec_entry) ex_slist; |
183 | const struct execsw *ex_sw; |
184 | }; |
185 | |
186 | #ifndef __HAVE_SYSCALL_INTERN |
187 | void syscall(void); |
188 | #endif |
189 | |
190 | /* NetBSD autoloadable syscalls */ |
191 | #ifdef MODULAR |
192 | #include <kern/syscalls_autoload.c> |
193 | #endif |
194 | |
195 | /* NetBSD emul struct */ |
196 | struct emul emul_netbsd = { |
197 | .e_name = "netbsd" , |
198 | #ifdef EMUL_NATIVEROOT |
199 | .e_path = EMUL_NATIVEROOT, |
200 | #else |
201 | .e_path = NULL, |
202 | #endif |
203 | #ifndef __HAVE_MINIMAL_EMUL |
204 | .e_flags = EMUL_HAS_SYS___syscall, |
205 | .e_errno = NULL, |
206 | .e_nosys = SYS_syscall, |
207 | .e_nsysent = SYS_NSYSENT, |
208 | #endif |
209 | #ifdef MODULAR |
210 | .e_sc_autoload = netbsd_syscalls_autoload, |
211 | #endif |
212 | .e_sysent = sysent, |
213 | .e_nomodbits = sysent_nomodbits, |
214 | #ifdef SYSCALL_DEBUG |
215 | .e_syscallnames = syscallnames, |
216 | #else |
217 | .e_syscallnames = NULL, |
218 | #endif |
219 | .e_sendsig = sendsig, |
220 | .e_trapsignal = trapsignal, |
221 | .e_sigcode = NULL, |
222 | .e_esigcode = NULL, |
223 | .e_sigobject = NULL, |
224 | .e_setregs = setregs, |
225 | .e_proc_exec = NULL, |
226 | .e_proc_fork = NULL, |
227 | .e_proc_exit = NULL, |
228 | .e_lwp_fork = NULL, |
229 | .e_lwp_exit = NULL, |
230 | #ifdef __HAVE_SYSCALL_INTERN |
231 | .e_syscall_intern = syscall_intern, |
232 | #else |
233 | .e_syscall = syscall, |
234 | #endif |
235 | .e_sysctlovly = NULL, |
236 | .e_vm_default_addr = uvm_default_mapaddr, |
237 | .e_usertrap = NULL, |
238 | .e_ucsize = sizeof(ucontext_t), |
239 | .e_startlwp = startlwp |
240 | }; |
241 | |
242 | /* |
243 | * Exec lock. Used to control access to execsw[] structures. |
244 | * This must not be static so that netbsd32 can access it, too. |
245 | */ |
246 | krwlock_t exec_lock; |
247 | |
248 | static kmutex_t sigobject_lock; |
249 | |
250 | /* |
251 | * Data used between a loadvm and execve part of an "exec" operation |
252 | */ |
253 | struct execve_data { |
254 | struct exec_package ed_pack; |
255 | struct pathbuf *ed_pathbuf; |
256 | struct vattr ed_attr; |
257 | struct ps_strings ed_arginfo; |
258 | char *ed_argp; |
259 | const char *ed_pathstring; |
260 | char *ed_resolvedpathbuf; |
261 | size_t ed_ps_strings_sz; |
262 | int ed_szsigcode; |
263 | size_t ed_argslen; |
264 | long ed_argc; |
265 | long ed_envc; |
266 | }; |
267 | |
268 | /* |
269 | * data passed from parent lwp to child during a posix_spawn() |
270 | */ |
271 | struct spawn_exec_data { |
272 | struct execve_data sed_exec; |
273 | struct posix_spawn_file_actions |
274 | *sed_actions; |
275 | struct posix_spawnattr *sed_attrs; |
276 | struct proc *sed_parent; |
277 | kcondvar_t sed_cv_child_ready; |
278 | kmutex_t sed_mtx_child; |
279 | int sed_error; |
280 | volatile uint32_t sed_refcnt; |
281 | }; |
282 | |
283 | static struct vm_map *exec_map; |
284 | static struct pool exec_pool; |
285 | |
286 | static void * |
287 | exec_pool_alloc(struct pool *pp, int flags) |
288 | { |
289 | |
290 | return (void *)uvm_km_alloc(exec_map, NCARGS, 0, |
291 | UVM_KMF_PAGEABLE | UVM_KMF_WAITVA); |
292 | } |
293 | |
294 | static void |
295 | exec_pool_free(struct pool *pp, void *addr) |
296 | { |
297 | |
298 | uvm_km_free(exec_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE); |
299 | } |
300 | |
301 | static struct pool_allocator exec_palloc = { |
302 | .pa_alloc = exec_pool_alloc, |
303 | .pa_free = exec_pool_free, |
304 | .pa_pagesz = NCARGS |
305 | }; |
306 | |
307 | /* |
308 | * check exec: |
309 | * given an "executable" described in the exec package's namei info, |
310 | * see what we can do with it. |
311 | * |
312 | * ON ENTRY: |
313 | * exec package with appropriate namei info |
314 | * lwp pointer of exec'ing lwp |
315 | * NO SELF-LOCKED VNODES |
316 | * |
317 | * ON EXIT: |
318 | * error: nothing held, etc. exec header still allocated. |
319 | * ok: filled exec package, executable's vnode (unlocked). |
320 | * |
321 | * EXEC SWITCH ENTRY: |
322 | * Locked vnode to check, exec package, proc. |
323 | * |
324 | * EXEC SWITCH EXIT: |
325 | * ok: return 0, filled exec package, executable's vnode (unlocked). |
326 | * error: destructive: |
327 | * everything deallocated execept exec header. |
328 | * non-destructive: |
329 | * error code, executable's vnode (unlocked), |
330 | * exec header unmodified. |
331 | */ |
332 | int |
333 | /*ARGSUSED*/ |
334 | check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb) |
335 | { |
336 | int error, i; |
337 | struct vnode *vp; |
338 | struct nameidata nd; |
339 | size_t resid; |
340 | |
341 | #if 1 |
342 | // grab the absolute pathbuf here before namei() trashes it. |
343 | pathbuf_copystring(pb, epp->ep_resolvedname, PATH_MAX); |
344 | #endif |
345 | NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb); |
346 | |
347 | /* first get the vnode */ |
348 | if ((error = namei(&nd)) != 0) |
349 | return error; |
350 | epp->ep_vp = vp = nd.ni_vp; |
351 | #if 0 |
352 | /* |
353 | * XXX: can't use nd.ni_pnbuf, because although pb contains an |
354 | * absolute path, nd.ni_pnbuf does not if the path contains symlinks. |
355 | */ |
356 | /* normally this can't fail */ |
357 | error = copystr(nd.ni_pnbuf, epp->ep_resolvedname, PATH_MAX, NULL); |
358 | KASSERT(error == 0); |
359 | #endif |
360 | |
361 | #ifdef DIAGNOSTIC |
362 | /* paranoia (take this out once namei stuff stabilizes) */ |
363 | memset(nd.ni_pnbuf, '~', PATH_MAX); |
364 | #endif |
365 | |
366 | /* check access and type */ |
367 | if (vp->v_type != VREG) { |
368 | error = EACCES; |
369 | goto bad1; |
370 | } |
371 | if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0) |
372 | goto bad1; |
373 | |
374 | /* get attributes */ |
375 | if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0) |
376 | goto bad1; |
377 | |
378 | /* Check mount point */ |
379 | if (vp->v_mount->mnt_flag & MNT_NOEXEC) { |
380 | error = EACCES; |
381 | goto bad1; |
382 | } |
383 | if (vp->v_mount->mnt_flag & MNT_NOSUID) |
384 | epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID); |
385 | |
386 | /* try to open it */ |
387 | if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0) |
388 | goto bad1; |
389 | |
390 | /* unlock vp, since we need it unlocked from here on out. */ |
391 | VOP_UNLOCK(vp); |
392 | |
393 | #if NVERIEXEC > 0 |
394 | error = veriexec_verify(l, vp, epp->ep_resolvedname, |
395 | epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT, |
396 | NULL); |
397 | if (error) |
398 | goto bad2; |
399 | #endif /* NVERIEXEC > 0 */ |
400 | |
401 | #ifdef PAX_SEGVGUARD |
402 | error = pax_segvguard(l, vp, epp->ep_resolvedname, false); |
403 | if (error) |
404 | goto bad2; |
405 | #endif /* PAX_SEGVGUARD */ |
406 | |
407 | /* now we have the file, get the exec header */ |
408 | error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0, |
409 | UIO_SYSSPACE, 0, l->l_cred, &resid, NULL); |
410 | if (error) |
411 | goto bad2; |
412 | epp->ep_hdrvalid = epp->ep_hdrlen - resid; |
413 | |
414 | /* |
415 | * Set up default address space limits. Can be overridden |
416 | * by individual exec packages. |
417 | */ |
418 | epp->ep_vm_minaddr = exec_vm_minaddr(VM_MIN_ADDRESS); |
419 | epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS; |
420 | |
421 | /* |
422 | * set up the vmcmds for creation of the process |
423 | * address space |
424 | */ |
425 | error = ENOEXEC; |
426 | for (i = 0; i < nexecs; i++) { |
427 | int newerror; |
428 | |
429 | epp->ep_esch = execsw[i]; |
430 | newerror = (*execsw[i]->es_makecmds)(l, epp); |
431 | |
432 | if (!newerror) { |
433 | /* Seems ok: check that entry point is not too high */ |
434 | if (epp->ep_entry >= epp->ep_vm_maxaddr) { |
435 | #ifdef DIAGNOSTIC |
436 | printf("%s: rejecting %p due to " |
437 | "too high entry address (>= %p)\n" , |
438 | __func__, (void *)epp->ep_entry, |
439 | (void *)epp->ep_vm_maxaddr); |
440 | #endif |
441 | error = ENOEXEC; |
442 | break; |
443 | } |
444 | /* Seems ok: check that entry point is not too low */ |
445 | if (epp->ep_entry < epp->ep_vm_minaddr) { |
446 | #ifdef DIAGNOSTIC |
447 | printf("%s: rejecting %p due to " |
448 | "too low entry address (< %p)\n" , |
449 | __func__, (void *)epp->ep_entry, |
450 | (void *)epp->ep_vm_minaddr); |
451 | #endif |
452 | error = ENOEXEC; |
453 | break; |
454 | } |
455 | |
456 | /* check limits */ |
457 | if ((epp->ep_tsize > MAXTSIZ) || |
458 | (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit |
459 | [RLIMIT_DATA].rlim_cur)) { |
460 | #ifdef DIAGNOSTIC |
461 | printf("%s: rejecting due to " |
462 | "limits (t=%llu > %llu || d=%llu > %llu)\n" , |
463 | __func__, |
464 | (unsigned long long)epp->ep_tsize, |
465 | (unsigned long long)MAXTSIZ, |
466 | (unsigned long long)epp->ep_dsize, |
467 | (unsigned long long) |
468 | l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur); |
469 | #endif |
470 | error = ENOMEM; |
471 | break; |
472 | } |
473 | return 0; |
474 | } |
475 | |
476 | /* |
477 | * Reset all the fields that may have been modified by the |
478 | * loader. |
479 | */ |
480 | KASSERT(epp->ep_emul_arg == NULL); |
481 | if (epp->ep_emul_root != NULL) { |
482 | vrele(epp->ep_emul_root); |
483 | epp->ep_emul_root = NULL; |
484 | } |
485 | if (epp->ep_interp != NULL) { |
486 | vrele(epp->ep_interp); |
487 | epp->ep_interp = NULL; |
488 | } |
489 | epp->ep_pax_flags = 0; |
490 | |
491 | /* make sure the first "interesting" error code is saved. */ |
492 | if (error == ENOEXEC) |
493 | error = newerror; |
494 | |
495 | if (epp->ep_flags & EXEC_DESTR) |
496 | /* Error from "#!" code, tidied up by recursive call */ |
497 | return error; |
498 | } |
499 | |
500 | /* not found, error */ |
501 | |
502 | /* |
503 | * free any vmspace-creation commands, |
504 | * and release their references |
505 | */ |
506 | kill_vmcmds(&epp->ep_vmcmds); |
507 | |
508 | bad2: |
509 | /* |
510 | * close and release the vnode, restore the old one, free the |
511 | * pathname buf, and punt. |
512 | */ |
513 | vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); |
514 | VOP_CLOSE(vp, FREAD, l->l_cred); |
515 | vput(vp); |
516 | return error; |
517 | |
518 | bad1: |
519 | /* |
520 | * free the namei pathname buffer, and put the vnode |
521 | * (which we don't yet have open). |
522 | */ |
523 | vput(vp); /* was still locked */ |
524 | return error; |
525 | } |
526 | |
527 | #ifdef __MACHINE_STACK_GROWS_UP |
528 | #define STACK_PTHREADSPACE NBPG |
529 | #else |
530 | #define STACK_PTHREADSPACE 0 |
531 | #endif |
532 | |
533 | static int |
534 | execve_fetch_element(char * const *array, size_t index, char **value) |
535 | { |
536 | return copyin(array + index, value, sizeof(*value)); |
537 | } |
538 | |
539 | /* |
540 | * exec system call |
541 | */ |
542 | int |
543 | sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval) |
544 | { |
545 | /* { |
546 | syscallarg(const char *) path; |
547 | syscallarg(char * const *) argp; |
548 | syscallarg(char * const *) envp; |
549 | } */ |
550 | |
551 | return execve1(l, SCARG(uap, path), SCARG(uap, argp), |
552 | SCARG(uap, envp), execve_fetch_element); |
553 | } |
554 | |
555 | int |
556 | sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap, |
557 | register_t *retval) |
558 | { |
559 | /* { |
560 | syscallarg(int) fd; |
561 | syscallarg(char * const *) argp; |
562 | syscallarg(char * const *) envp; |
563 | } */ |
564 | |
565 | return ENOSYS; |
566 | } |
567 | |
568 | /* |
569 | * Load modules to try and execute an image that we do not understand. |
570 | * If no execsw entries are present, we load those likely to be needed |
571 | * in order to run native images only. Otherwise, we autoload all |
572 | * possible modules that could let us run the binary. XXX lame |
573 | */ |
574 | static void |
575 | exec_autoload(void) |
576 | { |
577 | #ifdef MODULAR |
578 | static const char * const native[] = { |
579 | "exec_elf32" , |
580 | "exec_elf64" , |
581 | "exec_script" , |
582 | NULL |
583 | }; |
584 | static const char * const compat[] = { |
585 | "exec_elf32" , |
586 | "exec_elf64" , |
587 | "exec_script" , |
588 | "exec_aout" , |
589 | "exec_coff" , |
590 | "exec_ecoff" , |
591 | "compat_aoutm68k" , |
592 | "compat_netbsd32" , |
593 | "compat_sunos" , |
594 | "compat_sunos32" , |
595 | "compat_ultrix" , |
596 | NULL |
597 | }; |
598 | char const * const *list; |
599 | int i; |
600 | |
601 | list = (nexecs == 0 ? native : compat); |
602 | for (i = 0; list[i] != NULL; i++) { |
603 | if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) { |
604 | continue; |
605 | } |
606 | yield(); |
607 | } |
608 | #endif |
609 | } |
610 | |
611 | /* |
612 | * Copy the user or kernel supplied upath to the allocated pathbuffer pbp |
613 | * making it absolute in the process, by prepending the current working |
614 | * directory if it is not. If offs is supplied it will contain the offset |
615 | * where the original supplied copy of upath starts. |
616 | */ |
617 | int |
618 | exec_makepathbuf(struct lwp *l, const char *upath, enum uio_seg seg, |
619 | struct pathbuf **pbp, size_t *offs) |
620 | { |
621 | char *path, *bp; |
622 | size_t len, tlen; |
623 | int error; |
624 | struct cwdinfo *cwdi; |
625 | |
626 | path = PNBUF_GET(); |
627 | if (seg == UIO_SYSSPACE) { |
628 | error = copystr(upath, path, MAXPATHLEN, &len); |
629 | } else { |
630 | error = copyinstr(upath, path, MAXPATHLEN, &len); |
631 | } |
632 | if (error) |
633 | goto err; |
634 | |
635 | if (path[0] == '/') { |
636 | if (offs) |
637 | *offs = 0; |
638 | goto out; |
639 | } |
640 | |
641 | len++; |
642 | if (len + 1 >= MAXPATHLEN) { |
643 | error = ENAMETOOLONG; |
644 | goto err; |
645 | } |
646 | bp = path + MAXPATHLEN - len; |
647 | memmove(bp, path, len); |
648 | *(--bp) = '/'; |
649 | |
650 | cwdi = l->l_proc->p_cwdi; |
651 | rw_enter(&cwdi->cwdi_lock, RW_READER); |
652 | error = getcwd_common(cwdi->cwdi_cdir, NULL, &bp, path, MAXPATHLEN / 2, |
653 | GETCWD_CHECK_ACCESS, l); |
654 | rw_exit(&cwdi->cwdi_lock); |
655 | |
656 | if (error) |
657 | goto err; |
658 | tlen = path + MAXPATHLEN - bp; |
659 | |
660 | memmove(path, bp, tlen); |
661 | path[tlen - 1] = '\0'; |
662 | if (offs) |
663 | *offs = tlen - len; |
664 | out: |
665 | *pbp = pathbuf_assimilate(path); |
666 | return 0; |
667 | err: |
668 | PNBUF_PUT(path); |
669 | return error; |
670 | } |
671 | |
672 | vaddr_t |
673 | exec_vm_minaddr(vaddr_t va_min) |
674 | { |
675 | /* |
676 | * Increase va_min if we don't want NULL to be mappable by the |
677 | * process. |
678 | */ |
679 | #define VM_MIN_GUARD PAGE_SIZE |
680 | if (user_va0_disable && (va_min < VM_MIN_GUARD)) |
681 | return VM_MIN_GUARD; |
682 | return va_min; |
683 | } |
684 | |
685 | static int |
686 | execve_loadvm(struct lwp *l, const char *path, char * const *args, |
687 | char * const *envs, execve_fetch_element_t fetch_element, |
688 | struct execve_data * restrict data) |
689 | { |
690 | struct exec_package * const epp = &data->ed_pack; |
691 | int error; |
692 | struct proc *p; |
693 | char *dp; |
694 | u_int modgen; |
695 | size_t offs; |
696 | |
697 | KASSERT(data != NULL); |
698 | |
699 | p = l->l_proc; |
700 | modgen = 0; |
701 | |
702 | SDT_PROBE(proc, kernel, , exec, path, 0, 0, 0, 0); |
703 | |
704 | /* |
705 | * Check if we have exceeded our number of processes limit. |
706 | * This is so that we handle the case where a root daemon |
707 | * forked, ran setuid to become the desired user and is trying |
708 | * to exec. The obvious place to do the reference counting check |
709 | * is setuid(), but we don't do the reference counting check there |
710 | * like other OS's do because then all the programs that use setuid() |
711 | * must be modified to check the return code of setuid() and exit(). |
712 | * It is dangerous to make setuid() fail, because it fails open and |
713 | * the program will continue to run as root. If we make it succeed |
714 | * and return an error code, again we are not enforcing the limit. |
715 | * The best place to enforce the limit is here, when the process tries |
716 | * to execute a new image, because eventually the process will need |
717 | * to call exec in order to do something useful. |
718 | */ |
719 | retry: |
720 | if (p->p_flag & PK_SUGID) { |
721 | if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT, |
722 | p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS), |
723 | &p->p_rlimit[RLIMIT_NPROC], |
724 | KAUTH_ARG(RLIMIT_NPROC)) != 0 && |
725 | chgproccnt(kauth_cred_getuid(l->l_cred), 0) > |
726 | p->p_rlimit[RLIMIT_NPROC].rlim_cur) |
727 | return EAGAIN; |
728 | } |
729 | |
730 | /* |
731 | * Drain existing references and forbid new ones. The process |
732 | * should be left alone until we're done here. This is necessary |
733 | * to avoid race conditions - e.g. in ptrace() - that might allow |
734 | * a local user to illicitly obtain elevated privileges. |
735 | */ |
736 | rw_enter(&p->p_reflock, RW_WRITER); |
737 | |
738 | /* |
739 | * Init the namei data to point the file user's program name. |
740 | * This is done here rather than in check_exec(), so that it's |
741 | * possible to override this settings if any of makecmd/probe |
742 | * functions call check_exec() recursively - for example, |
743 | * see exec_script_makecmds(). |
744 | */ |
745 | if ((error = exec_makepathbuf(l, path, UIO_USERSPACE, |
746 | &data->ed_pathbuf, &offs)) != 0) |
747 | goto clrflg; |
748 | data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf); |
749 | data->ed_resolvedpathbuf = PNBUF_GET(); |
750 | |
751 | /* |
752 | * initialize the fields of the exec package. |
753 | */ |
754 | epp->ep_kname = data->ed_pathstring + offs; |
755 | epp->ep_resolvedname = data->ed_resolvedpathbuf; |
756 | epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP); |
757 | epp->ep_hdrlen = exec_maxhdrsz; |
758 | epp->ep_hdrvalid = 0; |
759 | epp->ep_emul_arg = NULL; |
760 | epp->ep_emul_arg_free = NULL; |
761 | memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds)); |
762 | epp->ep_vap = &data->ed_attr; |
763 | epp->ep_flags = (p->p_flag & PK_32) ? EXEC_FROM32 : 0; |
764 | MD_TOPDOWN_INIT(epp); |
765 | epp->ep_emul_root = NULL; |
766 | epp->ep_interp = NULL; |
767 | epp->ep_esch = NULL; |
768 | epp->ep_pax_flags = 0; |
769 | memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch)); |
770 | |
771 | rw_enter(&exec_lock, RW_READER); |
772 | |
773 | /* see if we can run it. */ |
774 | if ((error = check_exec(l, epp, data->ed_pathbuf)) != 0) { |
775 | if (error != ENOENT && error != EACCES && error != ENOEXEC) { |
776 | DPRINTF(("%s: check exec failed for %s, error %d\n" , |
777 | __func__, epp->ep_kname, error)); |
778 | } |
779 | goto freehdr; |
780 | } |
781 | |
782 | /* allocate an argument buffer */ |
783 | data->ed_argp = pool_get(&exec_pool, PR_WAITOK); |
784 | KASSERT(data->ed_argp != NULL); |
785 | dp = data->ed_argp; |
786 | |
787 | if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) { |
788 | goto bad; |
789 | } |
790 | |
791 | /* |
792 | * Calculate the new stack size. |
793 | */ |
794 | |
795 | #ifdef __MACHINE_STACK_GROWS_UP |
796 | /* |
797 | * copyargs() fills argc/argv/envp from the lower address even on |
798 | * __MACHINE_STACK_GROWS_UP machines. Reserve a few words just below the SP |
799 | * so that _rtld() use it. |
800 | */ |
801 | #define RTLD_GAP 32 |
802 | #else |
803 | #define RTLD_GAP 0 |
804 | #endif |
805 | |
806 | const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp; |
807 | |
808 | data->ed_argslen = calcargs(data, argenvstrlen); |
809 | |
810 | const size_t len = calcstack(data, pax_aslr_stack_gap(epp) + RTLD_GAP); |
811 | |
812 | if (len > epp->ep_ssize) { |
813 | /* in effect, compare to initial limit */ |
814 | DPRINTF(("%s: stack limit exceeded %zu\n" , __func__, len)); |
815 | error = ENOMEM; |
816 | goto bad; |
817 | } |
818 | /* adjust "active stack depth" for process VSZ */ |
819 | epp->ep_ssize = len; |
820 | |
821 | return 0; |
822 | |
823 | bad: |
824 | /* free the vmspace-creation commands, and release their references */ |
825 | kill_vmcmds(&epp->ep_vmcmds); |
826 | /* kill any opened file descriptor, if necessary */ |
827 | if (epp->ep_flags & EXEC_HASFD) { |
828 | epp->ep_flags &= ~EXEC_HASFD; |
829 | fd_close(epp->ep_fd); |
830 | } |
831 | /* close and put the exec'd file */ |
832 | vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY); |
833 | VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred); |
834 | vput(epp->ep_vp); |
835 | pool_put(&exec_pool, data->ed_argp); |
836 | |
837 | freehdr: |
838 | kmem_free(epp->ep_hdr, epp->ep_hdrlen); |
839 | if (epp->ep_emul_root != NULL) |
840 | vrele(epp->ep_emul_root); |
841 | if (epp->ep_interp != NULL) |
842 | vrele(epp->ep_interp); |
843 | |
844 | rw_exit(&exec_lock); |
845 | |
846 | pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); |
847 | pathbuf_destroy(data->ed_pathbuf); |
848 | PNBUF_PUT(data->ed_resolvedpathbuf); |
849 | |
850 | clrflg: |
851 | rw_exit(&p->p_reflock); |
852 | |
853 | if (modgen != module_gen && error == ENOEXEC) { |
854 | modgen = module_gen; |
855 | exec_autoload(); |
856 | goto retry; |
857 | } |
858 | |
859 | SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0); |
860 | return error; |
861 | } |
862 | |
863 | static int |
864 | execve_dovmcmds(struct lwp *l, struct execve_data * restrict data) |
865 | { |
866 | struct exec_package * const epp = &data->ed_pack; |
867 | struct proc *p = l->l_proc; |
868 | struct exec_vmcmd *base_vcp; |
869 | int error = 0; |
870 | size_t i; |
871 | |
872 | /* record proc's vnode, for use by procfs and others */ |
873 | if (p->p_textvp) |
874 | vrele(p->p_textvp); |
875 | vref(epp->ep_vp); |
876 | p->p_textvp = epp->ep_vp; |
877 | |
878 | /* create the new process's VM space by running the vmcmds */ |
879 | KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds" , __func__); |
880 | |
881 | #ifdef TRACE_EXEC |
882 | DUMPVMCMDS(epp, 0, 0); |
883 | #endif |
884 | |
885 | base_vcp = NULL; |
886 | |
887 | for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) { |
888 | struct exec_vmcmd *vcp; |
889 | |
890 | vcp = &epp->ep_vmcmds.evs_cmds[i]; |
891 | if (vcp->ev_flags & VMCMD_RELATIVE) { |
892 | KASSERTMSG(base_vcp != NULL, |
893 | "%s: relative vmcmd with no base" , __func__); |
894 | KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0, |
895 | "%s: illegal base & relative vmcmd" , __func__); |
896 | vcp->ev_addr += base_vcp->ev_addr; |
897 | } |
898 | error = (*vcp->ev_proc)(l, vcp); |
899 | if (error) |
900 | DUMPVMCMDS(epp, i, error); |
901 | if (vcp->ev_flags & VMCMD_BASE) |
902 | base_vcp = vcp; |
903 | } |
904 | |
905 | /* free the vmspace-creation commands, and release their references */ |
906 | kill_vmcmds(&epp->ep_vmcmds); |
907 | |
908 | vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY); |
909 | VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred); |
910 | vput(epp->ep_vp); |
911 | |
912 | /* if an error happened, deallocate and punt */ |
913 | if (error != 0) { |
914 | DPRINTF(("%s: vmcmd %zu failed: %d\n" , __func__, i - 1, error)); |
915 | } |
916 | return error; |
917 | } |
918 | |
919 | static void |
920 | execve_free_data(struct execve_data *data) |
921 | { |
922 | struct exec_package * const epp = &data->ed_pack; |
923 | |
924 | /* free the vmspace-creation commands, and release their references */ |
925 | kill_vmcmds(&epp->ep_vmcmds); |
926 | /* kill any opened file descriptor, if necessary */ |
927 | if (epp->ep_flags & EXEC_HASFD) { |
928 | epp->ep_flags &= ~EXEC_HASFD; |
929 | fd_close(epp->ep_fd); |
930 | } |
931 | |
932 | /* close and put the exec'd file */ |
933 | vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY); |
934 | VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred); |
935 | vput(epp->ep_vp); |
936 | pool_put(&exec_pool, data->ed_argp); |
937 | |
938 | kmem_free(epp->ep_hdr, epp->ep_hdrlen); |
939 | if (epp->ep_emul_root != NULL) |
940 | vrele(epp->ep_emul_root); |
941 | if (epp->ep_interp != NULL) |
942 | vrele(epp->ep_interp); |
943 | |
944 | pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); |
945 | pathbuf_destroy(data->ed_pathbuf); |
946 | PNBUF_PUT(data->ed_resolvedpathbuf); |
947 | } |
948 | |
949 | static void |
950 | pathexec(struct proc *p, const char *resolvedname) |
951 | { |
952 | KASSERT(resolvedname[0] == '/'); |
953 | |
954 | /* set command name & other accounting info */ |
955 | strlcpy(p->p_comm, strrchr(resolvedname, '/') + 1, sizeof(p->p_comm)); |
956 | |
957 | kmem_strfree(p->p_path); |
958 | p->p_path = kmem_strdupsize(resolvedname, NULL, KM_SLEEP); |
959 | } |
960 | |
961 | /* XXX elsewhere */ |
962 | static int |
963 | credexec(struct lwp *l, struct vattr *attr) |
964 | { |
965 | struct proc *p = l->l_proc; |
966 | int error; |
967 | |
968 | /* |
969 | * Deal with set[ug]id. MNT_NOSUID has already been used to disable |
970 | * s[ug]id. It's OK to check for PSL_TRACED here as we have blocked |
971 | * out additional references on the process for the moment. |
972 | */ |
973 | if ((p->p_slflag & PSL_TRACED) == 0 && |
974 | |
975 | (((attr->va_mode & S_ISUID) != 0 && |
976 | kauth_cred_geteuid(l->l_cred) != attr->va_uid) || |
977 | |
978 | ((attr->va_mode & S_ISGID) != 0 && |
979 | kauth_cred_getegid(l->l_cred) != attr->va_gid))) { |
980 | /* |
981 | * Mark the process as SUGID before we do |
982 | * anything that might block. |
983 | */ |
984 | proc_crmod_enter(); |
985 | proc_crmod_leave(NULL, NULL, true); |
986 | |
987 | /* Make sure file descriptors 0..2 are in use. */ |
988 | if ((error = fd_checkstd()) != 0) { |
989 | DPRINTF(("%s: fdcheckstd failed %d\n" , |
990 | __func__, error)); |
991 | return error; |
992 | } |
993 | |
994 | /* |
995 | * Copy the credential so other references don't see our |
996 | * changes. |
997 | */ |
998 | l->l_cred = kauth_cred_copy(l->l_cred); |
999 | #ifdef KTRACE |
1000 | /* |
1001 | * If the persistent trace flag isn't set, turn off. |
1002 | */ |
1003 | if (p->p_tracep) { |
1004 | mutex_enter(&ktrace_lock); |
1005 | if (!(p->p_traceflag & KTRFAC_PERSISTENT)) |
1006 | ktrderef(p); |
1007 | mutex_exit(&ktrace_lock); |
1008 | } |
1009 | #endif |
1010 | if (attr->va_mode & S_ISUID) |
1011 | kauth_cred_seteuid(l->l_cred, attr->va_uid); |
1012 | if (attr->va_mode & S_ISGID) |
1013 | kauth_cred_setegid(l->l_cred, attr->va_gid); |
1014 | } else { |
1015 | if (kauth_cred_geteuid(l->l_cred) == |
1016 | kauth_cred_getuid(l->l_cred) && |
1017 | kauth_cred_getegid(l->l_cred) == |
1018 | kauth_cred_getgid(l->l_cred)) |
1019 | p->p_flag &= ~PK_SUGID; |
1020 | } |
1021 | |
1022 | /* |
1023 | * Copy the credential so other references don't see our changes. |
1024 | * Test to see if this is necessary first, since in the common case |
1025 | * we won't need a private reference. |
1026 | */ |
1027 | if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) || |
1028 | kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) { |
1029 | l->l_cred = kauth_cred_copy(l->l_cred); |
1030 | kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred)); |
1031 | kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred)); |
1032 | } |
1033 | |
1034 | /* Update the master credentials. */ |
1035 | if (l->l_cred != p->p_cred) { |
1036 | kauth_cred_t ocred; |
1037 | |
1038 | kauth_cred_hold(l->l_cred); |
1039 | mutex_enter(p->p_lock); |
1040 | ocred = p->p_cred; |
1041 | p->p_cred = l->l_cred; |
1042 | mutex_exit(p->p_lock); |
1043 | kauth_cred_free(ocred); |
1044 | } |
1045 | |
1046 | return 0; |
1047 | } |
1048 | |
1049 | static void |
1050 | emulexec(struct lwp *l, struct exec_package *epp) |
1051 | { |
1052 | struct proc *p = l->l_proc; |
1053 | |
1054 | /* The emulation root will usually have been found when we looked |
1055 | * for the elf interpreter (or similar), if not look now. */ |
1056 | if (epp->ep_esch->es_emul->e_path != NULL && |
1057 | epp->ep_emul_root == NULL) |
1058 | emul_find_root(l, epp); |
1059 | |
1060 | /* Any old emulation root got removed by fdcloseexec */ |
1061 | rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER); |
1062 | p->p_cwdi->cwdi_edir = epp->ep_emul_root; |
1063 | rw_exit(&p->p_cwdi->cwdi_lock); |
1064 | epp->ep_emul_root = NULL; |
1065 | if (epp->ep_interp != NULL) |
1066 | vrele(epp->ep_interp); |
1067 | |
1068 | /* |
1069 | * Call emulation specific exec hook. This can setup per-process |
1070 | * p->p_emuldata or do any other per-process stuff an emulation needs. |
1071 | * |
1072 | * If we are executing process of different emulation than the |
1073 | * original forked process, call e_proc_exit() of the old emulation |
1074 | * first, then e_proc_exec() of new emulation. If the emulation is |
1075 | * same, the exec hook code should deallocate any old emulation |
1076 | * resources held previously by this process. |
1077 | */ |
1078 | if (p->p_emul && p->p_emul->e_proc_exit |
1079 | && p->p_emul != epp->ep_esch->es_emul) |
1080 | (*p->p_emul->e_proc_exit)(p); |
1081 | |
1082 | /* |
1083 | * This is now LWP 1. |
1084 | */ |
1085 | /* XXX elsewhere */ |
1086 | mutex_enter(p->p_lock); |
1087 | p->p_nlwpid = 1; |
1088 | l->l_lid = 1; |
1089 | mutex_exit(p->p_lock); |
1090 | |
1091 | /* |
1092 | * Call exec hook. Emulation code may NOT store reference to anything |
1093 | * from &pack. |
1094 | */ |
1095 | if (epp->ep_esch->es_emul->e_proc_exec) |
1096 | (*epp->ep_esch->es_emul->e_proc_exec)(p, epp); |
1097 | |
1098 | /* update p_emul, the old value is no longer needed */ |
1099 | p->p_emul = epp->ep_esch->es_emul; |
1100 | |
1101 | /* ...and the same for p_execsw */ |
1102 | p->p_execsw = epp->ep_esch; |
1103 | |
1104 | #ifdef __HAVE_SYSCALL_INTERN |
1105 | (*p->p_emul->e_syscall_intern)(p); |
1106 | #endif |
1107 | ktremul(); |
1108 | } |
1109 | |
1110 | static int |
1111 | execve_runproc(struct lwp *l, struct execve_data * restrict data, |
1112 | bool no_local_exec_lock, bool is_spawn) |
1113 | { |
1114 | struct exec_package * const epp = &data->ed_pack; |
1115 | int error = 0; |
1116 | struct proc *p; |
1117 | |
1118 | /* |
1119 | * In case of a posix_spawn operation, the child doing the exec |
1120 | * might not hold the reader lock on exec_lock, but the parent |
1121 | * will do this instead. |
1122 | */ |
1123 | KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock)); |
1124 | KASSERT(!no_local_exec_lock || is_spawn); |
1125 | KASSERT(data != NULL); |
1126 | |
1127 | p = l->l_proc; |
1128 | |
1129 | /* Get rid of other LWPs. */ |
1130 | if (p->p_nlwps > 1) { |
1131 | mutex_enter(p->p_lock); |
1132 | exit_lwps(l); |
1133 | mutex_exit(p->p_lock); |
1134 | } |
1135 | KDASSERT(p->p_nlwps == 1); |
1136 | |
1137 | /* Destroy any lwpctl info. */ |
1138 | if (p->p_lwpctl != NULL) |
1139 | lwp_ctl_exit(); |
1140 | |
1141 | /* Remove POSIX timers */ |
1142 | timers_free(p, TIMERS_POSIX); |
1143 | |
1144 | /* Set the PaX flags. */ |
1145 | pax_set_flags(epp, p); |
1146 | |
1147 | /* |
1148 | * Do whatever is necessary to prepare the address space |
1149 | * for remapping. Note that this might replace the current |
1150 | * vmspace with another! |
1151 | */ |
1152 | if (is_spawn) |
1153 | uvmspace_spawn(l, epp->ep_vm_minaddr, |
1154 | epp->ep_vm_maxaddr, |
1155 | epp->ep_flags & EXEC_TOPDOWN_VM); |
1156 | else |
1157 | uvmspace_exec(l, epp->ep_vm_minaddr, |
1158 | epp->ep_vm_maxaddr, |
1159 | epp->ep_flags & EXEC_TOPDOWN_VM); |
1160 | |
1161 | struct vmspace *vm; |
1162 | vm = p->p_vmspace; |
1163 | vm->vm_taddr = (void *)epp->ep_taddr; |
1164 | vm->vm_tsize = btoc(epp->ep_tsize); |
1165 | vm->vm_daddr = (void*)epp->ep_daddr; |
1166 | vm->vm_dsize = btoc(epp->ep_dsize); |
1167 | vm->vm_ssize = btoc(epp->ep_ssize); |
1168 | vm->vm_issize = 0; |
1169 | vm->vm_maxsaddr = (void *)epp->ep_maxsaddr; |
1170 | vm->vm_minsaddr = (void *)epp->ep_minsaddr; |
1171 | |
1172 | pax_aslr_init_vm(l, vm, epp); |
1173 | |
1174 | /* Now map address space. */ |
1175 | error = execve_dovmcmds(l, data); |
1176 | if (error != 0) |
1177 | goto exec_abort; |
1178 | |
1179 | pathexec(p, epp->ep_resolvedname); |
1180 | |
1181 | char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize); |
1182 | |
1183 | error = copyoutargs(data, l, newstack); |
1184 | if (error != 0) |
1185 | goto exec_abort; |
1186 | |
1187 | cwdexec(p); |
1188 | fd_closeexec(); /* handle close on exec */ |
1189 | |
1190 | if (__predict_false(ktrace_on)) |
1191 | fd_ktrexecfd(); |
1192 | |
1193 | execsigs(p); /* reset caught signals */ |
1194 | |
1195 | mutex_enter(p->p_lock); |
1196 | l->l_ctxlink = NULL; /* reset ucontext link */ |
1197 | p->p_acflag &= ~AFORK; |
1198 | p->p_flag |= PK_EXEC; |
1199 | mutex_exit(p->p_lock); |
1200 | |
1201 | /* |
1202 | * Stop profiling. |
1203 | */ |
1204 | if ((p->p_stflag & PST_PROFIL) != 0) { |
1205 | mutex_spin_enter(&p->p_stmutex); |
1206 | stopprofclock(p); |
1207 | mutex_spin_exit(&p->p_stmutex); |
1208 | } |
1209 | |
1210 | /* |
1211 | * It's OK to test PL_PPWAIT unlocked here, as other LWPs have |
1212 | * exited and exec()/exit() are the only places it will be cleared. |
1213 | */ |
1214 | if ((p->p_lflag & PL_PPWAIT) != 0) { |
1215 | lwp_t *lp; |
1216 | |
1217 | mutex_enter(proc_lock); |
1218 | lp = p->p_vforklwp; |
1219 | p->p_vforklwp = NULL; |
1220 | |
1221 | l->l_lwpctl = NULL; /* was on loan from blocked parent */ |
1222 | p->p_lflag &= ~PL_PPWAIT; |
1223 | lp->l_vforkwaiting = false; |
1224 | |
1225 | cv_broadcast(&lp->l_waitcv); |
1226 | mutex_exit(proc_lock); |
1227 | } |
1228 | |
1229 | error = credexec(l, &data->ed_attr); |
1230 | if (error) |
1231 | goto exec_abort; |
1232 | |
1233 | #if defined(__HAVE_RAS) |
1234 | /* |
1235 | * Remove all RASs from the address space. |
1236 | */ |
1237 | ras_purgeall(); |
1238 | #endif |
1239 | |
1240 | doexechooks(p); |
1241 | |
1242 | /* |
1243 | * Set initial SP at the top of the stack. |
1244 | * |
1245 | * Note that on machines where stack grows up (e.g. hppa), SP points to |
1246 | * the end of arg/env strings. Userland guesses the address of argc |
1247 | * via ps_strings::ps_argvstr. |
1248 | */ |
1249 | |
1250 | /* Setup new registers and do misc. setup. */ |
1251 | (*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack); |
1252 | if (epp->ep_esch->es_setregs) |
1253 | (*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack); |
1254 | |
1255 | /* Provide a consistent LWP private setting */ |
1256 | (void)lwp_setprivate(l, NULL); |
1257 | |
1258 | /* Discard all PCU state; need to start fresh */ |
1259 | pcu_discard_all(l); |
1260 | |
1261 | /* map the process's signal trampoline code */ |
1262 | if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) { |
1263 | DPRINTF(("%s: map sigcode failed %d\n" , __func__, error)); |
1264 | goto exec_abort; |
1265 | } |
1266 | |
1267 | pool_put(&exec_pool, data->ed_argp); |
1268 | |
1269 | /* notify others that we exec'd */ |
1270 | KNOTE(&p->p_klist, NOTE_EXEC); |
1271 | |
1272 | kmem_free(epp->ep_hdr, epp->ep_hdrlen); |
1273 | |
1274 | SDT_PROBE(proc, kernel, , exec__success, epp->ep_kname, 0, 0, 0, 0); |
1275 | |
1276 | emulexec(l, epp); |
1277 | |
1278 | /* Allow new references from the debugger/procfs. */ |
1279 | rw_exit(&p->p_reflock); |
1280 | if (!no_local_exec_lock) |
1281 | rw_exit(&exec_lock); |
1282 | |
1283 | mutex_enter(proc_lock); |
1284 | |
1285 | /* posix_spawn(3) reports a single event with implied exec(3) */ |
1286 | if ((p->p_slflag & PSL_TRACED) && !is_spawn) { |
1287 | mutex_enter(p->p_lock); |
1288 | eventswitch(TRAP_EXEC); |
1289 | mutex_enter(proc_lock); |
1290 | } |
1291 | |
1292 | if (p->p_sflag & PS_STOPEXEC) { |
1293 | ksiginfoq_t kq; |
1294 | |
1295 | KERNEL_UNLOCK_ALL(l, &l->l_biglocks); |
1296 | p->p_pptr->p_nstopchild++; |
1297 | p->p_waited = 0; |
1298 | mutex_enter(p->p_lock); |
1299 | ksiginfo_queue_init(&kq); |
1300 | sigclearall(p, &contsigmask, &kq); |
1301 | lwp_lock(l); |
1302 | l->l_stat = LSSTOP; |
1303 | p->p_stat = SSTOP; |
1304 | p->p_nrlwps--; |
1305 | lwp_unlock(l); |
1306 | mutex_exit(p->p_lock); |
1307 | mutex_exit(proc_lock); |
1308 | lwp_lock(l); |
1309 | mi_switch(l); |
1310 | ksiginfo_queue_drain(&kq); |
1311 | KERNEL_LOCK(l->l_biglocks, l); |
1312 | } else { |
1313 | mutex_exit(proc_lock); |
1314 | } |
1315 | |
1316 | pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); |
1317 | pathbuf_destroy(data->ed_pathbuf); |
1318 | PNBUF_PUT(data->ed_resolvedpathbuf); |
1319 | #ifdef TRACE_EXEC |
1320 | DPRINTF(("%s finished\n" , __func__)); |
1321 | #endif |
1322 | return EJUSTRETURN; |
1323 | |
1324 | exec_abort: |
1325 | SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0); |
1326 | rw_exit(&p->p_reflock); |
1327 | if (!no_local_exec_lock) |
1328 | rw_exit(&exec_lock); |
1329 | |
1330 | pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); |
1331 | pathbuf_destroy(data->ed_pathbuf); |
1332 | PNBUF_PUT(data->ed_resolvedpathbuf); |
1333 | |
1334 | /* |
1335 | * the old process doesn't exist anymore. exit gracefully. |
1336 | * get rid of the (new) address space we have created, if any, get rid |
1337 | * of our namei data and vnode, and exit noting failure |
1338 | */ |
1339 | uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS, |
1340 | VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS); |
1341 | |
1342 | exec_free_emul_arg(epp); |
1343 | pool_put(&exec_pool, data->ed_argp); |
1344 | kmem_free(epp->ep_hdr, epp->ep_hdrlen); |
1345 | if (epp->ep_emul_root != NULL) |
1346 | vrele(epp->ep_emul_root); |
1347 | if (epp->ep_interp != NULL) |
1348 | vrele(epp->ep_interp); |
1349 | |
1350 | /* Acquire the sched-state mutex (exit1() will release it). */ |
1351 | if (!is_spawn) { |
1352 | mutex_enter(p->p_lock); |
1353 | exit1(l, error, SIGABRT); |
1354 | } |
1355 | |
1356 | return error; |
1357 | } |
1358 | |
1359 | int |
1360 | execve1(struct lwp *l, const char *path, char * const *args, |
1361 | char * const *envs, execve_fetch_element_t fetch_element) |
1362 | { |
1363 | struct execve_data data; |
1364 | int error; |
1365 | |
1366 | error = execve_loadvm(l, path, args, envs, fetch_element, &data); |
1367 | if (error) |
1368 | return error; |
1369 | error = execve_runproc(l, &data, false, false); |
1370 | return error; |
1371 | } |
1372 | |
1373 | static size_t |
1374 | fromptrsz(const struct exec_package *epp) |
1375 | { |
1376 | return (epp->ep_flags & EXEC_FROM32) ? sizeof(int) : sizeof(char *); |
1377 | } |
1378 | |
1379 | static size_t |
1380 | ptrsz(const struct exec_package *epp) |
1381 | { |
1382 | return (epp->ep_flags & EXEC_32) ? sizeof(int) : sizeof(char *); |
1383 | } |
1384 | |
1385 | static size_t |
1386 | calcargs(struct execve_data * restrict data, const size_t argenvstrlen) |
1387 | { |
1388 | struct exec_package * const epp = &data->ed_pack; |
1389 | |
1390 | const size_t nargenvptrs = |
1391 | 1 + /* long argc */ |
1392 | data->ed_argc + /* char *argv[] */ |
1393 | 1 + /* \0 */ |
1394 | data->ed_envc + /* char *env[] */ |
1395 | 1; /* \0 */ |
1396 | |
1397 | return (nargenvptrs * ptrsz(epp)) /* pointers */ |
1398 | + argenvstrlen /* strings */ |
1399 | + epp->ep_esch->es_arglen; /* auxinfo */ |
1400 | } |
1401 | |
1402 | static size_t |
1403 | calcstack(struct execve_data * restrict data, const size_t gaplen) |
1404 | { |
1405 | struct exec_package * const epp = &data->ed_pack; |
1406 | |
1407 | data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode - |
1408 | epp->ep_esch->es_emul->e_sigcode; |
1409 | |
1410 | data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ? |
1411 | sizeof(struct ps_strings32) : sizeof(struct ps_strings); |
1412 | |
1413 | const size_t sigcode_psstr_sz = |
1414 | data->ed_szsigcode + /* sigcode */ |
1415 | data->ed_ps_strings_sz + /* ps_strings */ |
1416 | STACK_PTHREADSPACE; /* pthread space */ |
1417 | |
1418 | const size_t stacklen = |
1419 | data->ed_argslen + |
1420 | gaplen + |
1421 | sigcode_psstr_sz; |
1422 | |
1423 | /* make the stack "safely" aligned */ |
1424 | return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES); |
1425 | } |
1426 | |
1427 | static int |
1428 | copyoutargs(struct execve_data * restrict data, struct lwp *l, |
1429 | char * const newstack) |
1430 | { |
1431 | struct exec_package * const epp = &data->ed_pack; |
1432 | struct proc *p = l->l_proc; |
1433 | int error; |
1434 | |
1435 | memset(&data->ed_arginfo, 0, sizeof(data->ed_arginfo)); |
1436 | |
1437 | /* remember information about the process */ |
1438 | data->ed_arginfo.ps_nargvstr = data->ed_argc; |
1439 | data->ed_arginfo.ps_nenvstr = data->ed_envc; |
1440 | |
1441 | /* |
1442 | * Allocate the stack address passed to the newly execve()'ed process. |
1443 | * |
1444 | * The new stack address will be set to the SP (stack pointer) register |
1445 | * in setregs(). |
1446 | */ |
1447 | |
1448 | char *newargs = STACK_ALLOC( |
1449 | STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen); |
1450 | |
1451 | error = (*epp->ep_esch->es_copyargs)(l, epp, |
1452 | &data->ed_arginfo, &newargs, data->ed_argp); |
1453 | |
1454 | if (error) { |
1455 | DPRINTF(("%s: copyargs failed %d\n" , __func__, error)); |
1456 | return error; |
1457 | } |
1458 | |
1459 | error = copyoutpsstrs(data, p); |
1460 | if (error != 0) |
1461 | return error; |
1462 | |
1463 | return 0; |
1464 | } |
1465 | |
1466 | static int |
1467 | copyoutpsstrs(struct execve_data * restrict data, struct proc *p) |
1468 | { |
1469 | struct exec_package * const epp = &data->ed_pack; |
1470 | struct ps_strings32 arginfo32; |
1471 | void *aip; |
1472 | int error; |
1473 | |
1474 | /* fill process ps_strings info */ |
1475 | p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr, |
1476 | STACK_PTHREADSPACE), data->ed_ps_strings_sz); |
1477 | |
1478 | if (epp->ep_flags & EXEC_32) { |
1479 | aip = &arginfo32; |
1480 | arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr; |
1481 | arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr; |
1482 | arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr; |
1483 | arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr; |
1484 | } else |
1485 | aip = &data->ed_arginfo; |
1486 | |
1487 | /* copy out the process's ps_strings structure */ |
1488 | if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz)) |
1489 | != 0) { |
1490 | DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n" , |
1491 | __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz)); |
1492 | return error; |
1493 | } |
1494 | |
1495 | return 0; |
1496 | } |
1497 | |
1498 | static int |
1499 | copyinargs(struct execve_data * restrict data, char * const *args, |
1500 | char * const *envs, execve_fetch_element_t fetch_element, char **dpp) |
1501 | { |
1502 | struct exec_package * const epp = &data->ed_pack; |
1503 | char *dp; |
1504 | size_t i; |
1505 | int error; |
1506 | |
1507 | dp = *dpp; |
1508 | |
1509 | data->ed_argc = 0; |
1510 | |
1511 | /* copy the fake args list, if there's one, freeing it as we go */ |
1512 | if (epp->ep_flags & EXEC_HASARGL) { |
1513 | struct exec_fakearg *fa = epp->ep_fa; |
1514 | |
1515 | while (fa->fa_arg != NULL) { |
1516 | const size_t maxlen = ARG_MAX - (dp - data->ed_argp); |
1517 | size_t len; |
1518 | |
1519 | len = strlcpy(dp, fa->fa_arg, maxlen); |
1520 | /* Count NUL into len. */ |
1521 | if (len < maxlen) |
1522 | len++; |
1523 | else { |
1524 | while (fa->fa_arg != NULL) { |
1525 | kmem_free(fa->fa_arg, fa->fa_len); |
1526 | fa++; |
1527 | } |
1528 | kmem_free(epp->ep_fa, epp->ep_fa_len); |
1529 | epp->ep_flags &= ~EXEC_HASARGL; |
1530 | return E2BIG; |
1531 | } |
1532 | ktrexecarg(fa->fa_arg, len - 1); |
1533 | dp += len; |
1534 | |
1535 | kmem_free(fa->fa_arg, fa->fa_len); |
1536 | fa++; |
1537 | data->ed_argc++; |
1538 | } |
1539 | kmem_free(epp->ep_fa, epp->ep_fa_len); |
1540 | epp->ep_flags &= ~EXEC_HASARGL; |
1541 | } |
1542 | |
1543 | /* |
1544 | * Read and count argument strings from user. |
1545 | */ |
1546 | |
1547 | if (args == NULL) { |
1548 | DPRINTF(("%s: null args\n" , __func__)); |
1549 | return EINVAL; |
1550 | } |
1551 | if (epp->ep_flags & EXEC_SKIPARG) |
1552 | args = (const void *)((const char *)args + fromptrsz(epp)); |
1553 | i = 0; |
1554 | error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg); |
1555 | if (error != 0) { |
1556 | DPRINTF(("%s: copyin arg %d\n" , __func__, error)); |
1557 | return error; |
1558 | } |
1559 | data->ed_argc += i; |
1560 | |
1561 | /* |
1562 | * Read and count environment strings from user. |
1563 | */ |
1564 | |
1565 | data->ed_envc = 0; |
1566 | /* environment need not be there */ |
1567 | if (envs == NULL) |
1568 | goto done; |
1569 | i = 0; |
1570 | error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv); |
1571 | if (error != 0) { |
1572 | DPRINTF(("%s: copyin env %d\n" , __func__, error)); |
1573 | return error; |
1574 | } |
1575 | data->ed_envc += i; |
1576 | |
1577 | done: |
1578 | *dpp = dp; |
1579 | |
1580 | return 0; |
1581 | } |
1582 | |
1583 | static int |
1584 | copyinargstrs(struct execve_data * restrict data, char * const *strs, |
1585 | execve_fetch_element_t fetch_element, char **dpp, size_t *ip, |
1586 | void (*ktr)(const void *, size_t)) |
1587 | { |
1588 | char *dp, *sp; |
1589 | size_t i; |
1590 | int error; |
1591 | |
1592 | dp = *dpp; |
1593 | |
1594 | i = 0; |
1595 | while (1) { |
1596 | const size_t maxlen = ARG_MAX - (dp - data->ed_argp); |
1597 | size_t len; |
1598 | |
1599 | if ((error = (*fetch_element)(strs, i, &sp)) != 0) { |
1600 | return error; |
1601 | } |
1602 | if (!sp) |
1603 | break; |
1604 | if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) { |
1605 | if (error == ENAMETOOLONG) |
1606 | error = E2BIG; |
1607 | return error; |
1608 | } |
1609 | if (__predict_false(ktrace_on)) |
1610 | (*ktr)(dp, len - 1); |
1611 | dp += len; |
1612 | i++; |
1613 | } |
1614 | |
1615 | *dpp = dp; |
1616 | *ip = i; |
1617 | |
1618 | return 0; |
1619 | } |
1620 | |
1621 | /* |
1622 | * Copy argv and env strings from kernel buffer (argp) to the new stack. |
1623 | * Those strings are located just after auxinfo. |
1624 | */ |
1625 | int |
1626 | copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo, |
1627 | char **stackp, void *argp) |
1628 | { |
1629 | char **cpp, *dp, *sp; |
1630 | size_t len; |
1631 | void *nullp; |
1632 | long argc, envc; |
1633 | int error; |
1634 | |
1635 | cpp = (char **)*stackp; |
1636 | nullp = NULL; |
1637 | argc = arginfo->ps_nargvstr; |
1638 | envc = arginfo->ps_nenvstr; |
1639 | |
1640 | /* argc on stack is long */ |
1641 | CTASSERT(sizeof(*cpp) == sizeof(argc)); |
1642 | |
1643 | dp = (char *)(cpp + |
1644 | 1 + /* long argc */ |
1645 | argc + /* char *argv[] */ |
1646 | 1 + /* \0 */ |
1647 | envc + /* char *env[] */ |
1648 | 1) + /* \0 */ |
1649 | pack->ep_esch->es_arglen; /* auxinfo */ |
1650 | sp = argp; |
1651 | |
1652 | if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) { |
1653 | COPYPRINTF("" , cpp - 1, sizeof(argc)); |
1654 | return error; |
1655 | } |
1656 | |
1657 | /* XXX don't copy them out, remap them! */ |
1658 | arginfo->ps_argvstr = cpp; /* remember location of argv for later */ |
1659 | |
1660 | for (; --argc >= 0; sp += len, dp += len) { |
1661 | if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) { |
1662 | COPYPRINTF("" , cpp - 1, sizeof(dp)); |
1663 | return error; |
1664 | } |
1665 | if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) { |
1666 | COPYPRINTF("str" , dp, (size_t)ARG_MAX); |
1667 | return error; |
1668 | } |
1669 | } |
1670 | |
1671 | if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) { |
1672 | COPYPRINTF("" , cpp - 1, sizeof(nullp)); |
1673 | return error; |
1674 | } |
1675 | |
1676 | arginfo->ps_envstr = cpp; /* remember location of envp for later */ |
1677 | |
1678 | for (; --envc >= 0; sp += len, dp += len) { |
1679 | if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) { |
1680 | COPYPRINTF("" , cpp - 1, sizeof(dp)); |
1681 | return error; |
1682 | } |
1683 | if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) { |
1684 | COPYPRINTF("str" , dp, (size_t)ARG_MAX); |
1685 | return error; |
1686 | } |
1687 | |
1688 | } |
1689 | |
1690 | if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) { |
1691 | COPYPRINTF("" , cpp - 1, sizeof(nullp)); |
1692 | return error; |
1693 | } |
1694 | |
1695 | *stackp = (char *)cpp; |
1696 | return 0; |
1697 | } |
1698 | |
1699 | |
1700 | /* |
1701 | * Add execsw[] entries. |
1702 | */ |
1703 | int |
1704 | exec_add(struct execsw *esp, int count) |
1705 | { |
1706 | struct exec_entry *it; |
1707 | int i; |
1708 | |
1709 | if (count == 0) { |
1710 | return 0; |
1711 | } |
1712 | |
1713 | /* Check for duplicates. */ |
1714 | rw_enter(&exec_lock, RW_WRITER); |
1715 | for (i = 0; i < count; i++) { |
1716 | LIST_FOREACH(it, &ex_head, ex_list) { |
1717 | /* assume unique (makecmds, probe_func, emulation) */ |
1718 | if (it->ex_sw->es_makecmds == esp[i].es_makecmds && |
1719 | it->ex_sw->u.elf_probe_func == |
1720 | esp[i].u.elf_probe_func && |
1721 | it->ex_sw->es_emul == esp[i].es_emul) { |
1722 | rw_exit(&exec_lock); |
1723 | return EEXIST; |
1724 | } |
1725 | } |
1726 | } |
1727 | |
1728 | /* Allocate new entries. */ |
1729 | for (i = 0; i < count; i++) { |
1730 | it = kmem_alloc(sizeof(*it), KM_SLEEP); |
1731 | it->ex_sw = &esp[i]; |
1732 | LIST_INSERT_HEAD(&ex_head, it, ex_list); |
1733 | } |
1734 | |
1735 | /* update execsw[] */ |
1736 | exec_init(0); |
1737 | rw_exit(&exec_lock); |
1738 | return 0; |
1739 | } |
1740 | |
1741 | /* |
1742 | * Remove execsw[] entry. |
1743 | */ |
1744 | int |
1745 | exec_remove(struct execsw *esp, int count) |
1746 | { |
1747 | struct exec_entry *it, *next; |
1748 | int i; |
1749 | const struct proclist_desc *pd; |
1750 | proc_t *p; |
1751 | |
1752 | if (count == 0) { |
1753 | return 0; |
1754 | } |
1755 | |
1756 | /* Abort if any are busy. */ |
1757 | rw_enter(&exec_lock, RW_WRITER); |
1758 | for (i = 0; i < count; i++) { |
1759 | mutex_enter(proc_lock); |
1760 | for (pd = proclists; pd->pd_list != NULL; pd++) { |
1761 | PROCLIST_FOREACH(p, pd->pd_list) { |
1762 | if (p->p_execsw == &esp[i]) { |
1763 | mutex_exit(proc_lock); |
1764 | rw_exit(&exec_lock); |
1765 | return EBUSY; |
1766 | } |
1767 | } |
1768 | } |
1769 | mutex_exit(proc_lock); |
1770 | } |
1771 | |
1772 | /* None are busy, so remove them all. */ |
1773 | for (i = 0; i < count; i++) { |
1774 | for (it = LIST_FIRST(&ex_head); it != NULL; it = next) { |
1775 | next = LIST_NEXT(it, ex_list); |
1776 | if (it->ex_sw == &esp[i]) { |
1777 | LIST_REMOVE(it, ex_list); |
1778 | kmem_free(it, sizeof(*it)); |
1779 | break; |
1780 | } |
1781 | } |
1782 | } |
1783 | |
1784 | /* update execsw[] */ |
1785 | exec_init(0); |
1786 | rw_exit(&exec_lock); |
1787 | return 0; |
1788 | } |
1789 | |
1790 | /* |
1791 | * Initialize exec structures. If init_boot is true, also does necessary |
1792 | * one-time initialization (it's called from main() that way). |
1793 | * Once system is multiuser, this should be called with exec_lock held, |
1794 | * i.e. via exec_{add|remove}(). |
1795 | */ |
1796 | int |
1797 | exec_init(int init_boot) |
1798 | { |
1799 | const struct execsw **sw; |
1800 | struct exec_entry *ex; |
1801 | SLIST_HEAD(,exec_entry) first; |
1802 | SLIST_HEAD(,exec_entry) any; |
1803 | SLIST_HEAD(,exec_entry) last; |
1804 | int i, sz; |
1805 | |
1806 | if (init_boot) { |
1807 | /* do one-time initializations */ |
1808 | vaddr_t vmin = 0, vmax; |
1809 | |
1810 | rw_init(&exec_lock); |
1811 | mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE); |
1812 | exec_map = uvm_km_suballoc(kernel_map, &vmin, &vmax, |
1813 | maxexec*NCARGS, VM_MAP_PAGEABLE, false, NULL); |
1814 | pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH, |
1815 | "execargs" , &exec_palloc, IPL_NONE); |
1816 | pool_sethardlimit(&exec_pool, maxexec, "should not happen" , 0); |
1817 | } else { |
1818 | KASSERT(rw_write_held(&exec_lock)); |
1819 | } |
1820 | |
1821 | /* Sort each entry onto the appropriate queue. */ |
1822 | SLIST_INIT(&first); |
1823 | SLIST_INIT(&any); |
1824 | SLIST_INIT(&last); |
1825 | sz = 0; |
1826 | LIST_FOREACH(ex, &ex_head, ex_list) { |
1827 | switch(ex->ex_sw->es_prio) { |
1828 | case EXECSW_PRIO_FIRST: |
1829 | SLIST_INSERT_HEAD(&first, ex, ex_slist); |
1830 | break; |
1831 | case EXECSW_PRIO_ANY: |
1832 | SLIST_INSERT_HEAD(&any, ex, ex_slist); |
1833 | break; |
1834 | case EXECSW_PRIO_LAST: |
1835 | SLIST_INSERT_HEAD(&last, ex, ex_slist); |
1836 | break; |
1837 | default: |
1838 | panic("%s" , __func__); |
1839 | break; |
1840 | } |
1841 | sz++; |
1842 | } |
1843 | |
1844 | /* |
1845 | * Create new execsw[]. Ensure we do not try a zero-sized |
1846 | * allocation. |
1847 | */ |
1848 | sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP); |
1849 | i = 0; |
1850 | SLIST_FOREACH(ex, &first, ex_slist) { |
1851 | sw[i++] = ex->ex_sw; |
1852 | } |
1853 | SLIST_FOREACH(ex, &any, ex_slist) { |
1854 | sw[i++] = ex->ex_sw; |
1855 | } |
1856 | SLIST_FOREACH(ex, &last, ex_slist) { |
1857 | sw[i++] = ex->ex_sw; |
1858 | } |
1859 | |
1860 | /* Replace old execsw[] and free used memory. */ |
1861 | if (execsw != NULL) { |
1862 | kmem_free(__UNCONST(execsw), |
1863 | nexecs * sizeof(struct execsw *) + 1); |
1864 | } |
1865 | execsw = sw; |
1866 | nexecs = sz; |
1867 | |
1868 | /* Figure out the maximum size of an exec header. */ |
1869 | exec_maxhdrsz = sizeof(int); |
1870 | for (i = 0; i < nexecs; i++) { |
1871 | if (execsw[i]->es_hdrsz > exec_maxhdrsz) |
1872 | exec_maxhdrsz = execsw[i]->es_hdrsz; |
1873 | } |
1874 | |
1875 | return 0; |
1876 | } |
1877 | |
1878 | static int |
1879 | exec_sigcode_map(struct proc *p, const struct emul *e) |
1880 | { |
1881 | vaddr_t va; |
1882 | vsize_t sz; |
1883 | int error; |
1884 | struct uvm_object *uobj; |
1885 | |
1886 | sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode; |
1887 | |
1888 | if (e->e_sigobject == NULL || sz == 0) { |
1889 | return 0; |
1890 | } |
1891 | |
1892 | /* |
1893 | * If we don't have a sigobject for this emulation, create one. |
1894 | * |
1895 | * sigobject is an anonymous memory object (just like SYSV shared |
1896 | * memory) that we keep a permanent reference to and that we map |
1897 | * in all processes that need this sigcode. The creation is simple, |
1898 | * we create an object, add a permanent reference to it, map it in |
1899 | * kernel space, copy out the sigcode to it and unmap it. |
1900 | * We map it with PROT_READ|PROT_EXEC into the process just |
1901 | * the way sys_mmap() would map it. |
1902 | */ |
1903 | |
1904 | uobj = *e->e_sigobject; |
1905 | if (uobj == NULL) { |
1906 | mutex_enter(&sigobject_lock); |
1907 | if ((uobj = *e->e_sigobject) == NULL) { |
1908 | uobj = uao_create(sz, 0); |
1909 | (*uobj->pgops->pgo_reference)(uobj); |
1910 | va = vm_map_min(kernel_map); |
1911 | if ((error = uvm_map(kernel_map, &va, round_page(sz), |
1912 | uobj, 0, 0, |
1913 | UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, |
1914 | UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) { |
1915 | printf("kernel mapping failed %d\n" , error); |
1916 | (*uobj->pgops->pgo_detach)(uobj); |
1917 | mutex_exit(&sigobject_lock); |
1918 | return error; |
1919 | } |
1920 | memcpy((void *)va, e->e_sigcode, sz); |
1921 | #ifdef PMAP_NEED_PROCWR |
1922 | pmap_procwr(&proc0, va, sz); |
1923 | #endif |
1924 | uvm_unmap(kernel_map, va, va + round_page(sz)); |
1925 | *e->e_sigobject = uobj; |
1926 | } |
1927 | mutex_exit(&sigobject_lock); |
1928 | } |
1929 | |
1930 | /* Just a hint to uvm_map where to put it. */ |
1931 | va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr, |
1932 | round_page(sz), p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN); |
1933 | |
1934 | #ifdef __alpha__ |
1935 | /* |
1936 | * Tru64 puts /sbin/loader at the end of user virtual memory, |
1937 | * which causes the above calculation to put the sigcode at |
1938 | * an invalid address. Put it just below the text instead. |
1939 | */ |
1940 | if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) { |
1941 | va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz); |
1942 | } |
1943 | #endif |
1944 | |
1945 | (*uobj->pgops->pgo_reference)(uobj); |
1946 | error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz), |
1947 | uobj, 0, 0, |
1948 | UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE, |
1949 | UVM_ADV_RANDOM, 0)); |
1950 | if (error) { |
1951 | DPRINTF(("%s, %d: map %p " |
1952 | "uvm_map %#" PRIxVSIZE"@%#" PRIxVADDR" failed %d\n" , |
1953 | __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz), |
1954 | va, error)); |
1955 | (*uobj->pgops->pgo_detach)(uobj); |
1956 | return error; |
1957 | } |
1958 | p->p_sigctx.ps_sigcode = (void *)va; |
1959 | return 0; |
1960 | } |
1961 | |
1962 | /* |
1963 | * Release a refcount on spawn_exec_data and destroy memory, if this |
1964 | * was the last one. |
1965 | */ |
1966 | static void |
1967 | spawn_exec_data_release(struct spawn_exec_data *data) |
1968 | { |
1969 | if (atomic_dec_32_nv(&data->sed_refcnt) != 0) |
1970 | return; |
1971 | |
1972 | cv_destroy(&data->sed_cv_child_ready); |
1973 | mutex_destroy(&data->sed_mtx_child); |
1974 | |
1975 | if (data->sed_actions) |
1976 | posix_spawn_fa_free(data->sed_actions, |
1977 | data->sed_actions->len); |
1978 | if (data->sed_attrs) |
1979 | kmem_free(data->sed_attrs, |
1980 | sizeof(*data->sed_attrs)); |
1981 | kmem_free(data, sizeof(*data)); |
1982 | } |
1983 | |
1984 | /* |
1985 | * A child lwp of a posix_spawn operation starts here and ends up in |
1986 | * cpu_spawn_return, dealing with all filedescriptor and scheduler |
1987 | * manipulations in between. |
1988 | * The parent waits for the child, as it is not clear whether the child |
1989 | * will be able to acquire its own exec_lock. If it can, the parent can |
1990 | * be released early and continue running in parallel. If not (or if the |
1991 | * magic debug flag is passed in the scheduler attribute struct), the |
1992 | * child rides on the parent's exec lock until it is ready to return to |
1993 | * to userland - and only then releases the parent. This method loses |
1994 | * concurrency, but improves error reporting. |
1995 | */ |
1996 | static void |
1997 | spawn_return(void *arg) |
1998 | { |
1999 | struct spawn_exec_data *spawn_data = arg; |
2000 | struct lwp *l = curlwp; |
2001 | struct proc *p = l->l_proc; |
2002 | int error, newfd; |
2003 | int ostat; |
2004 | size_t i; |
2005 | const struct posix_spawn_file_actions_entry *fae; |
2006 | pid_t ppid; |
2007 | register_t retval; |
2008 | bool have_reflock; |
2009 | bool parent_is_waiting = true; |
2010 | |
2011 | /* |
2012 | * Check if we can release parent early. |
2013 | * We either need to have no sed_attrs, or sed_attrs does not |
2014 | * have POSIX_SPAWN_RETURNERROR or one of the flags, that require |
2015 | * safe access to the parent proc (passed in sed_parent). |
2016 | * We then try to get the exec_lock, and only if that works, we can |
2017 | * release the parent here already. |
2018 | */ |
2019 | ppid = spawn_data->sed_parent->p_pid; |
2020 | if ((!spawn_data->sed_attrs |
2021 | || (spawn_data->sed_attrs->sa_flags |
2022 | & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0) |
2023 | && rw_tryenter(&exec_lock, RW_READER)) { |
2024 | parent_is_waiting = false; |
2025 | mutex_enter(&spawn_data->sed_mtx_child); |
2026 | cv_signal(&spawn_data->sed_cv_child_ready); |
2027 | mutex_exit(&spawn_data->sed_mtx_child); |
2028 | } |
2029 | |
2030 | /* don't allow debugger access yet */ |
2031 | rw_enter(&p->p_reflock, RW_WRITER); |
2032 | have_reflock = true; |
2033 | |
2034 | error = 0; |
2035 | /* handle posix_spawn_file_actions */ |
2036 | if (spawn_data->sed_actions != NULL) { |
2037 | for (i = 0; i < spawn_data->sed_actions->len; i++) { |
2038 | fae = &spawn_data->sed_actions->fae[i]; |
2039 | switch (fae->fae_action) { |
2040 | case FAE_OPEN: |
2041 | if (fd_getfile(fae->fae_fildes) != NULL) { |
2042 | error = fd_close(fae->fae_fildes); |
2043 | if (error) |
2044 | break; |
2045 | } |
2046 | error = fd_open(fae->fae_path, fae->fae_oflag, |
2047 | fae->fae_mode, &newfd); |
2048 | if (error) |
2049 | break; |
2050 | if (newfd != fae->fae_fildes) { |
2051 | error = dodup(l, newfd, |
2052 | fae->fae_fildes, 0, &retval); |
2053 | if (fd_getfile(newfd) != NULL) |
2054 | fd_close(newfd); |
2055 | } |
2056 | break; |
2057 | case FAE_DUP2: |
2058 | error = dodup(l, fae->fae_fildes, |
2059 | fae->fae_newfildes, 0, &retval); |
2060 | break; |
2061 | case FAE_CLOSE: |
2062 | if (fd_getfile(fae->fae_fildes) == NULL) { |
2063 | error = EBADF; |
2064 | break; |
2065 | } |
2066 | error = fd_close(fae->fae_fildes); |
2067 | break; |
2068 | } |
2069 | if (error) |
2070 | goto report_error; |
2071 | } |
2072 | } |
2073 | |
2074 | /* handle posix_spawnattr */ |
2075 | if (spawn_data->sed_attrs != NULL) { |
2076 | struct sigaction sigact; |
2077 | memset(&sigact, 0, sizeof(sigact)); |
2078 | sigact._sa_u._sa_handler = SIG_DFL; |
2079 | sigact.sa_flags = 0; |
2080 | |
2081 | /* |
2082 | * set state to SSTOP so that this proc can be found by pid. |
2083 | * see proc_enterprp, do_sched_setparam below |
2084 | */ |
2085 | mutex_enter(proc_lock); |
2086 | /* |
2087 | * p_stat should be SACTIVE, so we need to adjust the |
2088 | * parent's p_nstopchild here. For safety, just make |
2089 | * we're on the good side of SDEAD before we adjust. |
2090 | */ |
2091 | ostat = p->p_stat; |
2092 | KASSERT(ostat < SSTOP); |
2093 | p->p_stat = SSTOP; |
2094 | p->p_waited = 0; |
2095 | p->p_pptr->p_nstopchild++; |
2096 | mutex_exit(proc_lock); |
2097 | |
2098 | /* Set process group */ |
2099 | if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) { |
2100 | pid_t mypid = p->p_pid, |
2101 | pgrp = spawn_data->sed_attrs->sa_pgroup; |
2102 | |
2103 | if (pgrp == 0) |
2104 | pgrp = mypid; |
2105 | |
2106 | error = proc_enterpgrp(spawn_data->sed_parent, |
2107 | mypid, pgrp, false); |
2108 | if (error) |
2109 | goto report_error_stopped; |
2110 | } |
2111 | |
2112 | /* Set scheduler policy */ |
2113 | if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER) |
2114 | error = do_sched_setparam(p->p_pid, 0, |
2115 | spawn_data->sed_attrs->sa_schedpolicy, |
2116 | &spawn_data->sed_attrs->sa_schedparam); |
2117 | else if (spawn_data->sed_attrs->sa_flags |
2118 | & POSIX_SPAWN_SETSCHEDPARAM) { |
2119 | error = do_sched_setparam(ppid, 0, |
2120 | SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam); |
2121 | } |
2122 | if (error) |
2123 | goto report_error_stopped; |
2124 | |
2125 | /* Reset user ID's */ |
2126 | if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) { |
2127 | error = do_setresuid(l, -1, |
2128 | kauth_cred_getgid(l->l_cred), -1, |
2129 | ID_E_EQ_R | ID_E_EQ_S); |
2130 | if (error) |
2131 | goto report_error_stopped; |
2132 | error = do_setresuid(l, -1, |
2133 | kauth_cred_getuid(l->l_cred), -1, |
2134 | ID_E_EQ_R | ID_E_EQ_S); |
2135 | if (error) |
2136 | goto report_error_stopped; |
2137 | } |
2138 | |
2139 | /* Set signal masks/defaults */ |
2140 | if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) { |
2141 | mutex_enter(p->p_lock); |
2142 | error = sigprocmask1(l, SIG_SETMASK, |
2143 | &spawn_data->sed_attrs->sa_sigmask, NULL); |
2144 | mutex_exit(p->p_lock); |
2145 | if (error) |
2146 | goto report_error_stopped; |
2147 | } |
2148 | |
2149 | if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) { |
2150 | /* |
2151 | * The following sigaction call is using a sigaction |
2152 | * version 0 trampoline which is in the compatibility |
2153 | * code only. This is not a problem because for SIG_DFL |
2154 | * and SIG_IGN, the trampolines are now ignored. If they |
2155 | * were not, this would be a problem because we are |
2156 | * holding the exec_lock, and the compat code needs |
2157 | * to do the same in order to replace the trampoline |
2158 | * code of the process. |
2159 | */ |
2160 | for (i = 1; i <= NSIG; i++) { |
2161 | if (sigismember( |
2162 | &spawn_data->sed_attrs->sa_sigdefault, i)) |
2163 | sigaction1(l, i, &sigact, NULL, NULL, |
2164 | 0); |
2165 | } |
2166 | } |
2167 | mutex_enter(proc_lock); |
2168 | p->p_stat = ostat; |
2169 | p->p_pptr->p_nstopchild--; |
2170 | mutex_exit(proc_lock); |
2171 | } |
2172 | |
2173 | /* now do the real exec */ |
2174 | error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting, |
2175 | true); |
2176 | have_reflock = false; |
2177 | if (error == EJUSTRETURN) |
2178 | error = 0; |
2179 | else if (error) |
2180 | goto report_error; |
2181 | |
2182 | if (parent_is_waiting) { |
2183 | mutex_enter(&spawn_data->sed_mtx_child); |
2184 | cv_signal(&spawn_data->sed_cv_child_ready); |
2185 | mutex_exit(&spawn_data->sed_mtx_child); |
2186 | } |
2187 | |
2188 | /* release our refcount on the data */ |
2189 | spawn_exec_data_release(spawn_data); |
2190 | |
2191 | if (p->p_slflag & PSL_TRACED) { |
2192 | /* Paranoid check */ |
2193 | mutex_enter(proc_lock); |
2194 | if (!(p->p_slflag & PSL_TRACED)) { |
2195 | mutex_exit(proc_lock); |
2196 | goto cpu_return; |
2197 | } |
2198 | |
2199 | mutex_enter(p->p_lock); |
2200 | eventswitch(TRAP_CHLD); |
2201 | } |
2202 | |
2203 | cpu_return: |
2204 | /* and finally: leave to userland for the first time */ |
2205 | cpu_spawn_return(l); |
2206 | |
2207 | /* NOTREACHED */ |
2208 | return; |
2209 | |
2210 | report_error_stopped: |
2211 | mutex_enter(proc_lock); |
2212 | p->p_stat = ostat; |
2213 | p->p_pptr->p_nstopchild--; |
2214 | mutex_exit(proc_lock); |
2215 | report_error: |
2216 | if (have_reflock) { |
2217 | /* |
2218 | * We have not passed through execve_runproc(), |
2219 | * which would have released the p_reflock and also |
2220 | * taken ownership of the sed_exec part of spawn_data, |
2221 | * so release/free both here. |
2222 | */ |
2223 | rw_exit(&p->p_reflock); |
2224 | execve_free_data(&spawn_data->sed_exec); |
2225 | } |
2226 | |
2227 | if (parent_is_waiting) { |
2228 | /* pass error to parent */ |
2229 | mutex_enter(&spawn_data->sed_mtx_child); |
2230 | spawn_data->sed_error = error; |
2231 | cv_signal(&spawn_data->sed_cv_child_ready); |
2232 | mutex_exit(&spawn_data->sed_mtx_child); |
2233 | } else { |
2234 | rw_exit(&exec_lock); |
2235 | } |
2236 | |
2237 | /* release our refcount on the data */ |
2238 | spawn_exec_data_release(spawn_data); |
2239 | |
2240 | /* done, exit */ |
2241 | mutex_enter(p->p_lock); |
2242 | /* |
2243 | * Posix explicitly asks for an exit code of 127 if we report |
2244 | * errors from the child process - so, unfortunately, there |
2245 | * is no way to report a more exact error code. |
2246 | * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as |
2247 | * flag bit in the attrp argument to posix_spawn(2), see above. |
2248 | */ |
2249 | exit1(l, 127, 0); |
2250 | } |
2251 | |
2252 | void |
2253 | posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len) |
2254 | { |
2255 | |
2256 | for (size_t i = 0; i < len; i++) { |
2257 | struct posix_spawn_file_actions_entry *fae = &fa->fae[i]; |
2258 | if (fae->fae_action != FAE_OPEN) |
2259 | continue; |
2260 | kmem_strfree(fae->fae_path); |
2261 | } |
2262 | if (fa->len > 0) |
2263 | kmem_free(fa->fae, sizeof(*fa->fae) * fa->len); |
2264 | kmem_free(fa, sizeof(*fa)); |
2265 | } |
2266 | |
2267 | static int |
2268 | posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap, |
2269 | const struct posix_spawn_file_actions *ufa, rlim_t lim) |
2270 | { |
2271 | struct posix_spawn_file_actions *fa; |
2272 | struct posix_spawn_file_actions_entry *fae; |
2273 | char *pbuf = NULL; |
2274 | int error; |
2275 | size_t i = 0; |
2276 | |
2277 | fa = kmem_alloc(sizeof(*fa), KM_SLEEP); |
2278 | error = copyin(ufa, fa, sizeof(*fa)); |
2279 | if (error || fa->len == 0) { |
2280 | kmem_free(fa, sizeof(*fa)); |
2281 | return error; /* 0 if not an error, and len == 0 */ |
2282 | } |
2283 | |
2284 | if (fa->len > lim) { |
2285 | kmem_free(fa, sizeof(*fa)); |
2286 | return EINVAL; |
2287 | } |
2288 | |
2289 | fa->size = fa->len; |
2290 | size_t fal = fa->len * sizeof(*fae); |
2291 | fae = fa->fae; |
2292 | fa->fae = kmem_alloc(fal, KM_SLEEP); |
2293 | error = copyin(fae, fa->fae, fal); |
2294 | if (error) |
2295 | goto out; |
2296 | |
2297 | pbuf = PNBUF_GET(); |
2298 | for (; i < fa->len; i++) { |
2299 | fae = &fa->fae[i]; |
2300 | if (fae->fae_action != FAE_OPEN) |
2301 | continue; |
2302 | error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal); |
2303 | if (error) |
2304 | goto out; |
2305 | fae->fae_path = kmem_alloc(fal, KM_SLEEP); |
2306 | memcpy(fae->fae_path, pbuf, fal); |
2307 | } |
2308 | PNBUF_PUT(pbuf); |
2309 | |
2310 | *fap = fa; |
2311 | return 0; |
2312 | out: |
2313 | if (pbuf) |
2314 | PNBUF_PUT(pbuf); |
2315 | posix_spawn_fa_free(fa, i); |
2316 | return error; |
2317 | } |
2318 | |
2319 | int |
2320 | check_posix_spawn(struct lwp *l1) |
2321 | { |
2322 | int error, tnprocs, count; |
2323 | uid_t uid; |
2324 | struct proc *p1; |
2325 | |
2326 | p1 = l1->l_proc; |
2327 | uid = kauth_cred_getuid(l1->l_cred); |
2328 | tnprocs = atomic_inc_uint_nv(&nprocs); |
2329 | |
2330 | /* |
2331 | * Although process entries are dynamically created, we still keep |
2332 | * a global limit on the maximum number we will create. |
2333 | */ |
2334 | if (__predict_false(tnprocs >= maxproc)) |
2335 | error = -1; |
2336 | else |
2337 | error = kauth_authorize_process(l1->l_cred, |
2338 | KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL); |
2339 | |
2340 | if (error) { |
2341 | atomic_dec_uint(&nprocs); |
2342 | return EAGAIN; |
2343 | } |
2344 | |
2345 | /* |
2346 | * Enforce limits. |
2347 | */ |
2348 | count = chgproccnt(uid, 1); |
2349 | if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT, |
2350 | p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS), |
2351 | &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 && |
2352 | __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) { |
2353 | (void)chgproccnt(uid, -1); |
2354 | atomic_dec_uint(&nprocs); |
2355 | return EAGAIN; |
2356 | } |
2357 | |
2358 | return 0; |
2359 | } |
2360 | |
2361 | int |
2362 | do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path, |
2363 | struct posix_spawn_file_actions *fa, |
2364 | struct posix_spawnattr *sa, |
2365 | char *const *argv, char *const *envp, |
2366 | execve_fetch_element_t fetch) |
2367 | { |
2368 | |
2369 | struct proc *p1, *p2; |
2370 | struct lwp *l2; |
2371 | int error; |
2372 | struct spawn_exec_data *spawn_data; |
2373 | vaddr_t uaddr; |
2374 | pid_t pid; |
2375 | bool have_exec_lock = false; |
2376 | |
2377 | p1 = l1->l_proc; |
2378 | |
2379 | /* Allocate and init spawn_data */ |
2380 | spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP); |
2381 | spawn_data->sed_refcnt = 1; /* only parent so far */ |
2382 | cv_init(&spawn_data->sed_cv_child_ready, "pspawn" ); |
2383 | mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE); |
2384 | mutex_enter(&spawn_data->sed_mtx_child); |
2385 | |
2386 | /* |
2387 | * Do the first part of the exec now, collect state |
2388 | * in spawn_data. |
2389 | */ |
2390 | error = execve_loadvm(l1, path, argv, |
2391 | envp, fetch, &spawn_data->sed_exec); |
2392 | if (error == EJUSTRETURN) |
2393 | error = 0; |
2394 | else if (error) |
2395 | goto error_exit; |
2396 | |
2397 | have_exec_lock = true; |
2398 | |
2399 | /* |
2400 | * Allocate virtual address space for the U-area now, while it |
2401 | * is still easy to abort the fork operation if we're out of |
2402 | * kernel virtual address space. |
2403 | */ |
2404 | uaddr = uvm_uarea_alloc(); |
2405 | if (__predict_false(uaddr == 0)) { |
2406 | error = ENOMEM; |
2407 | goto error_exit; |
2408 | } |
2409 | |
2410 | /* |
2411 | * Allocate new proc. Borrow proc0 vmspace for it, we will |
2412 | * replace it with its own before returning to userland |
2413 | * in the child. |
2414 | * This is a point of no return, we will have to go through |
2415 | * the child proc to properly clean it up past this point. |
2416 | */ |
2417 | p2 = proc_alloc(); |
2418 | pid = p2->p_pid; |
2419 | |
2420 | /* |
2421 | * Make a proc table entry for the new process. |
2422 | * Start by zeroing the section of proc that is zero-initialized, |
2423 | * then copy the section that is copied directly from the parent. |
2424 | */ |
2425 | memset(&p2->p_startzero, 0, |
2426 | (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero)); |
2427 | memcpy(&p2->p_startcopy, &p1->p_startcopy, |
2428 | (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy)); |
2429 | p2->p_vmspace = proc0.p_vmspace; |
2430 | |
2431 | TAILQ_INIT(&p2->p_sigpend.sp_info); |
2432 | |
2433 | LIST_INIT(&p2->p_lwps); |
2434 | LIST_INIT(&p2->p_sigwaiters); |
2435 | |
2436 | /* |
2437 | * Duplicate sub-structures as needed. |
2438 | * Increase reference counts on shared objects. |
2439 | * Inherit flags we want to keep. The flags related to SIGCHLD |
2440 | * handling are important in order to keep a consistent behaviour |
2441 | * for the child after the fork. If we are a 32-bit process, the |
2442 | * child will be too. |
2443 | */ |
2444 | p2->p_flag = |
2445 | p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32); |
2446 | p2->p_emul = p1->p_emul; |
2447 | p2->p_execsw = p1->p_execsw; |
2448 | |
2449 | mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH); |
2450 | mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE); |
2451 | rw_init(&p2->p_reflock); |
2452 | cv_init(&p2->p_waitcv, "wait" ); |
2453 | cv_init(&p2->p_lwpcv, "lwpwait" ); |
2454 | |
2455 | p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); |
2456 | |
2457 | kauth_proc_fork(p1, p2); |
2458 | |
2459 | p2->p_raslist = NULL; |
2460 | p2->p_fd = fd_copy(); |
2461 | |
2462 | /* XXX racy */ |
2463 | p2->p_mqueue_cnt = p1->p_mqueue_cnt; |
2464 | |
2465 | p2->p_cwdi = cwdinit(); |
2466 | |
2467 | /* |
2468 | * Note: p_limit (rlimit stuff) is copy-on-write, so normally |
2469 | * we just need increase pl_refcnt. |
2470 | */ |
2471 | if (!p1->p_limit->pl_writeable) { |
2472 | lim_addref(p1->p_limit); |
2473 | p2->p_limit = p1->p_limit; |
2474 | } else { |
2475 | p2->p_limit = lim_copy(p1->p_limit); |
2476 | } |
2477 | |
2478 | p2->p_lflag = 0; |
2479 | l1->l_vforkwaiting = false; |
2480 | p2->p_sflag = 0; |
2481 | p2->p_slflag = 0; |
2482 | p2->p_pptr = p1; |
2483 | p2->p_ppid = p1->p_pid; |
2484 | LIST_INIT(&p2->p_children); |
2485 | |
2486 | p2->p_aio = NULL; |
2487 | |
2488 | #ifdef KTRACE |
2489 | /* |
2490 | * Copy traceflag and tracefile if enabled. |
2491 | * If not inherited, these were zeroed above. |
2492 | */ |
2493 | if (p1->p_traceflag & KTRFAC_INHERIT) { |
2494 | mutex_enter(&ktrace_lock); |
2495 | p2->p_traceflag = p1->p_traceflag; |
2496 | if ((p2->p_tracep = p1->p_tracep) != NULL) |
2497 | ktradref(p2); |
2498 | mutex_exit(&ktrace_lock); |
2499 | } |
2500 | #endif |
2501 | |
2502 | /* |
2503 | * Create signal actions for the child process. |
2504 | */ |
2505 | p2->p_sigacts = sigactsinit(p1, 0); |
2506 | mutex_enter(p1->p_lock); |
2507 | p2->p_sflag |= |
2508 | (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP)); |
2509 | sched_proc_fork(p1, p2); |
2510 | mutex_exit(p1->p_lock); |
2511 | |
2512 | p2->p_stflag = p1->p_stflag; |
2513 | |
2514 | /* |
2515 | * p_stats. |
2516 | * Copy parts of p_stats, and zero out the rest. |
2517 | */ |
2518 | p2->p_stats = pstatscopy(p1->p_stats); |
2519 | |
2520 | /* copy over machdep flags to the new proc */ |
2521 | cpu_proc_fork(p1, p2); |
2522 | |
2523 | /* |
2524 | * Prepare remaining parts of spawn data |
2525 | */ |
2526 | spawn_data->sed_actions = fa; |
2527 | spawn_data->sed_attrs = sa; |
2528 | |
2529 | spawn_data->sed_parent = p1; |
2530 | |
2531 | /* create LWP */ |
2532 | lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data, |
2533 | &l2, l1->l_class, &l1->l_sigmask, &l1->l_sigstk); |
2534 | l2->l_ctxlink = NULL; /* reset ucontext link */ |
2535 | |
2536 | /* |
2537 | * Copy the credential so other references don't see our changes. |
2538 | * Test to see if this is necessary first, since in the common case |
2539 | * we won't need a private reference. |
2540 | */ |
2541 | if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) || |
2542 | kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) { |
2543 | l2->l_cred = kauth_cred_copy(l2->l_cred); |
2544 | kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred)); |
2545 | kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred)); |
2546 | } |
2547 | |
2548 | /* Update the master credentials. */ |
2549 | if (l2->l_cred != p2->p_cred) { |
2550 | kauth_cred_t ocred; |
2551 | |
2552 | kauth_cred_hold(l2->l_cred); |
2553 | mutex_enter(p2->p_lock); |
2554 | ocred = p2->p_cred; |
2555 | p2->p_cred = l2->l_cred; |
2556 | mutex_exit(p2->p_lock); |
2557 | kauth_cred_free(ocred); |
2558 | } |
2559 | |
2560 | *child_ok = true; |
2561 | spawn_data->sed_refcnt = 2; /* child gets it as well */ |
2562 | #if 0 |
2563 | l2->l_nopreempt = 1; /* start it non-preemptable */ |
2564 | #endif |
2565 | |
2566 | /* |
2567 | * It's now safe for the scheduler and other processes to see the |
2568 | * child process. |
2569 | */ |
2570 | mutex_enter(proc_lock); |
2571 | |
2572 | if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT) |
2573 | p2->p_lflag |= PL_CONTROLT; |
2574 | |
2575 | LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling); |
2576 | p2->p_exitsig = SIGCHLD; /* signal for parent on exit */ |
2577 | |
2578 | if ((p1->p_slflag & (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) == |
2579 | (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) { |
2580 | proc_changeparent(p2, p1->p_pptr); |
2581 | p1->p_pspid = p2->p_pid; |
2582 | p2->p_pspid = p1->p_pid; |
2583 | } |
2584 | |
2585 | LIST_INSERT_AFTER(p1, p2, p_pglist); |
2586 | LIST_INSERT_HEAD(&allproc, p2, p_list); |
2587 | |
2588 | p2->p_trace_enabled = trace_is_enabled(p2); |
2589 | #ifdef __HAVE_SYSCALL_INTERN |
2590 | (*p2->p_emul->e_syscall_intern)(p2); |
2591 | #endif |
2592 | |
2593 | /* |
2594 | * Make child runnable, set start time, and add to run queue except |
2595 | * if the parent requested the child to start in SSTOP state. |
2596 | */ |
2597 | mutex_enter(p2->p_lock); |
2598 | |
2599 | getmicrotime(&p2->p_stats->p_start); |
2600 | |
2601 | lwp_lock(l2); |
2602 | KASSERT(p2->p_nrlwps == 1); |
2603 | p2->p_nrlwps = 1; |
2604 | p2->p_stat = SACTIVE; |
2605 | l2->l_stat = LSRUN; |
2606 | sched_enqueue(l2, false); |
2607 | lwp_unlock(l2); |
2608 | |
2609 | mutex_exit(p2->p_lock); |
2610 | mutex_exit(proc_lock); |
2611 | |
2612 | cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child); |
2613 | error = spawn_data->sed_error; |
2614 | mutex_exit(&spawn_data->sed_mtx_child); |
2615 | spawn_exec_data_release(spawn_data); |
2616 | |
2617 | rw_exit(&p1->p_reflock); |
2618 | rw_exit(&exec_lock); |
2619 | have_exec_lock = false; |
2620 | |
2621 | *pid_res = pid; |
2622 | |
2623 | if (error) |
2624 | return error; |
2625 | |
2626 | if (p1->p_slflag & PSL_TRACED) { |
2627 | /* Paranoid check */ |
2628 | mutex_enter(proc_lock); |
2629 | if ((p1->p_slflag & (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) != |
2630 | (PSL_TRACEPOSIX_SPAWN|PSL_TRACED)) { |
2631 | mutex_exit(proc_lock); |
2632 | return 0; |
2633 | } |
2634 | |
2635 | mutex_enter(p1->p_lock); |
2636 | eventswitch(TRAP_CHLD); |
2637 | } |
2638 | return 0; |
2639 | |
2640 | error_exit: |
2641 | if (have_exec_lock) { |
2642 | execve_free_data(&spawn_data->sed_exec); |
2643 | rw_exit(&p1->p_reflock); |
2644 | rw_exit(&exec_lock); |
2645 | } |
2646 | mutex_exit(&spawn_data->sed_mtx_child); |
2647 | spawn_exec_data_release(spawn_data); |
2648 | |
2649 | return error; |
2650 | } |
2651 | |
2652 | int |
2653 | sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap, |
2654 | register_t *retval) |
2655 | { |
2656 | /* { |
2657 | syscallarg(pid_t *) pid; |
2658 | syscallarg(const char *) path; |
2659 | syscallarg(const struct posix_spawn_file_actions *) file_actions; |
2660 | syscallarg(const struct posix_spawnattr *) attrp; |
2661 | syscallarg(char *const *) argv; |
2662 | syscallarg(char *const *) envp; |
2663 | } */ |
2664 | |
2665 | int error; |
2666 | struct posix_spawn_file_actions *fa = NULL; |
2667 | struct posix_spawnattr *sa = NULL; |
2668 | pid_t pid; |
2669 | bool child_ok = false; |
2670 | rlim_t max_fileactions; |
2671 | proc_t *p = l1->l_proc; |
2672 | |
2673 | error = check_posix_spawn(l1); |
2674 | if (error) { |
2675 | *retval = error; |
2676 | return 0; |
2677 | } |
2678 | |
2679 | /* copy in file_actions struct */ |
2680 | if (SCARG(uap, file_actions) != NULL) { |
2681 | max_fileactions = 2 * uimin(p->p_rlimit[RLIMIT_NOFILE].rlim_cur, |
2682 | maxfiles); |
2683 | error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions), |
2684 | max_fileactions); |
2685 | if (error) |
2686 | goto error_exit; |
2687 | } |
2688 | |
2689 | /* copyin posix_spawnattr struct */ |
2690 | if (SCARG(uap, attrp) != NULL) { |
2691 | sa = kmem_alloc(sizeof(*sa), KM_SLEEP); |
2692 | error = copyin(SCARG(uap, attrp), sa, sizeof(*sa)); |
2693 | if (error) |
2694 | goto error_exit; |
2695 | } |
2696 | |
2697 | /* |
2698 | * Do the spawn |
2699 | */ |
2700 | error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa, |
2701 | SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element); |
2702 | if (error) |
2703 | goto error_exit; |
2704 | |
2705 | if (error == 0 && SCARG(uap, pid) != NULL) |
2706 | error = copyout(&pid, SCARG(uap, pid), sizeof(pid)); |
2707 | |
2708 | *retval = error; |
2709 | return 0; |
2710 | |
2711 | error_exit: |
2712 | if (!child_ok) { |
2713 | (void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1); |
2714 | atomic_dec_uint(&nprocs); |
2715 | |
2716 | if (sa) |
2717 | kmem_free(sa, sizeof(*sa)); |
2718 | if (fa) |
2719 | posix_spawn_fa_free(fa, fa->len); |
2720 | } |
2721 | |
2722 | *retval = error; |
2723 | return 0; |
2724 | } |
2725 | |
2726 | void |
2727 | exec_free_emul_arg(struct exec_package *epp) |
2728 | { |
2729 | if (epp->ep_emul_arg_free != NULL) { |
2730 | KASSERT(epp->ep_emul_arg != NULL); |
2731 | (*epp->ep_emul_arg_free)(epp->ep_emul_arg); |
2732 | epp->ep_emul_arg_free = NULL; |
2733 | epp->ep_emul_arg = NULL; |
2734 | } else { |
2735 | KASSERT(epp->ep_emul_arg == NULL); |
2736 | } |
2737 | } |
2738 | |
2739 | #ifdef DEBUG_EXEC |
2740 | static void |
2741 | dump_vmcmds(const struct exec_package * const epp, size_t x, int error) |
2742 | { |
2743 | struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0]; |
2744 | size_t j; |
2745 | |
2746 | if (error == 0) |
2747 | DPRINTF(("vmcmds %u\n" , epp->ep_vmcmds.evs_used)); |
2748 | else |
2749 | DPRINTF(("vmcmds %zu/%u, error %d\n" , x, |
2750 | epp->ep_vmcmds.evs_used, error)); |
2751 | |
2752 | for (j = 0; j < epp->ep_vmcmds.evs_used; j++) { |
2753 | DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#" |
2754 | PRIxVADDR"/%#" PRIxVSIZE" fd@%#" |
2755 | PRIxVSIZE" prot=0%o flags=%d\n" , j, |
2756 | vp[j].ev_proc == vmcmd_map_pagedvn ? |
2757 | "pagedvn" : |
2758 | vp[j].ev_proc == vmcmd_map_readvn ? |
2759 | "readvn" : |
2760 | vp[j].ev_proc == vmcmd_map_zero ? |
2761 | "zero" : "*unknown*" , |
2762 | vp[j].ev_addr, vp[j].ev_len, |
2763 | vp[j].ev_offset, vp[j].ev_prot, |
2764 | vp[j].ev_flags)); |
2765 | if (error != 0 && j == x) |
2766 | DPRINTF((" ^--- failed\n" )); |
2767 | } |
2768 | } |
2769 | #endif |
2770 | |