| 1 | /* $NetBSD: linux_misc_notalpha.c,v 1.110 2018/11/29 17:40:12 maxv Exp $ */ |
| 2 | |
| 3 | /*- |
| 4 | * Copyright (c) 1995, 1998, 2008 The NetBSD Foundation, Inc. |
| 5 | * All rights reserved. |
| 6 | * |
| 7 | * This code is derived from software contributed to The NetBSD Foundation |
| 8 | * by Frank van der Linden and Eric Haszlakiewicz; by Jason R. Thorpe |
| 9 | * of the Numerical Aerospace Simulation Facility, NASA Ames Research Center. |
| 10 | * |
| 11 | * Redistribution and use in source and binary forms, with or without |
| 12 | * modification, are permitted provided that the following conditions |
| 13 | * are met: |
| 14 | * 1. Redistributions of source code must retain the above copyright |
| 15 | * notice, this list of conditions and the following disclaimer. |
| 16 | * 2. Redistributions in binary form must reproduce the above copyright |
| 17 | * notice, this list of conditions and the following disclaimer in the |
| 18 | * documentation and/or other materials provided with the distribution. |
| 19 | * |
| 20 | * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS |
| 21 | * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
| 22 | * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 23 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS |
| 24 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 25 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 26 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 27 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 28 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 29 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 30 | * POSSIBILITY OF SUCH DAMAGE. |
| 31 | */ |
| 32 | |
| 33 | #include <sys/cdefs.h> |
| 34 | __KERNEL_RCSID(0, "$NetBSD: linux_misc_notalpha.c,v 1.110 2018/11/29 17:40:12 maxv Exp $" ); |
| 35 | |
| 36 | /* |
| 37 | * Note that we must NOT include "opt_compat_linux32.h" here, |
| 38 | * the maze of ifdefs below relies on COMPAT_LINUX32 only being |
| 39 | * defined when this file is built for linux32. |
| 40 | */ |
| 41 | |
| 42 | #include <sys/param.h> |
| 43 | #include <sys/systm.h> |
| 44 | #include <sys/kernel.h> |
| 45 | #include <sys/mman.h> |
| 46 | #include <sys/mount.h> |
| 47 | #include <sys/mbuf.h> |
| 48 | #include <sys/namei.h> |
| 49 | #include <sys/proc.h> |
| 50 | #include <sys/prot.h> |
| 51 | #include <sys/ptrace.h> |
| 52 | #include <sys/resource.h> |
| 53 | #include <sys/resourcevar.h> |
| 54 | #include <sys/time.h> |
| 55 | #include <sys/vfs_syscalls.h> |
| 56 | #include <sys/wait.h> |
| 57 | #include <sys/kauth.h> |
| 58 | |
| 59 | #include <sys/syscallargs.h> |
| 60 | |
| 61 | #include <compat/linux/common/linux_types.h> |
| 62 | #include <compat/linux/common/linux_fcntl.h> |
| 63 | #include <compat/linux/common/linux_misc.h> |
| 64 | #include <compat/linux/common/linux_mmap.h> |
| 65 | #include <compat/linux/common/linux_signal.h> |
| 66 | #include <compat/linux/common/linux_util.h> |
| 67 | #include <compat/linux/common/linux_ipc.h> |
| 68 | #include <compat/linux/common/linux_sem.h> |
| 69 | #include <compat/linux/common/linux_statfs.h> |
| 70 | |
| 71 | #include <compat/linux/linux_syscallargs.h> |
| 72 | |
| 73 | /* |
| 74 | * This file contains routines which are used |
| 75 | * on every linux architechture except the Alpha. |
| 76 | */ |
| 77 | |
| 78 | /* Used on: arm, i386, m68k, mips, ppc, sparc, sparc64 */ |
| 79 | /* Not used on: alpha */ |
| 80 | |
| 81 | #ifdef DEBUG_LINUX |
| 82 | #define DPRINTF(a) uprintf a |
| 83 | #else |
| 84 | #define DPRINTF(a) |
| 85 | #endif |
| 86 | |
| 87 | #ifndef COMPAT_LINUX32 |
| 88 | |
| 89 | /* |
| 90 | * Alarm. This is a libc call which uses setitimer(2) in NetBSD. |
| 91 | * Fiddle with the timers to make it work. |
| 92 | * |
| 93 | * XXX This shouldn't be dicking about with the ptimer stuff directly. |
| 94 | */ |
| 95 | int |
| 96 | linux_sys_alarm(struct lwp *l, const struct linux_sys_alarm_args *uap, register_t *retval) |
| 97 | { |
| 98 | /* { |
| 99 | syscallarg(unsigned int) secs; |
| 100 | } */ |
| 101 | struct proc *p = l->l_proc; |
| 102 | struct timespec now; |
| 103 | struct itimerspec *itp, it; |
| 104 | struct ptimer *ptp, *spare; |
| 105 | extern kmutex_t timer_lock; |
| 106 | struct ptimers *pts; |
| 107 | |
| 108 | if ((pts = p->p_timers) == NULL) |
| 109 | pts = timers_alloc(p); |
| 110 | spare = NULL; |
| 111 | |
| 112 | retry: |
| 113 | mutex_spin_enter(&timer_lock); |
| 114 | if (pts && pts->pts_timers[ITIMER_REAL]) |
| 115 | itp = &pts->pts_timers[ITIMER_REAL]->pt_time; |
| 116 | else |
| 117 | itp = NULL; |
| 118 | /* |
| 119 | * Clear any pending timer alarms. |
| 120 | */ |
| 121 | if (itp) { |
| 122 | callout_stop(&pts->pts_timers[ITIMER_REAL]->pt_ch); |
| 123 | timespecclear(&itp->it_interval); |
| 124 | getnanotime(&now); |
| 125 | if (timespecisset(&itp->it_value) && |
| 126 | timespeccmp(&itp->it_value, &now, >)) |
| 127 | timespecsub(&itp->it_value, &now, &itp->it_value); |
| 128 | /* |
| 129 | * Return how many seconds were left (rounded up) |
| 130 | */ |
| 131 | retval[0] = itp->it_value.tv_sec; |
| 132 | if (itp->it_value.tv_nsec) |
| 133 | retval[0]++; |
| 134 | } else { |
| 135 | retval[0] = 0; |
| 136 | } |
| 137 | |
| 138 | /* |
| 139 | * alarm(0) just resets the timer. |
| 140 | */ |
| 141 | if (SCARG(uap, secs) == 0) { |
| 142 | if (itp) |
| 143 | timespecclear(&itp->it_value); |
| 144 | mutex_spin_exit(&timer_lock); |
| 145 | return 0; |
| 146 | } |
| 147 | |
| 148 | /* |
| 149 | * Check the new alarm time for sanity, and set it. |
| 150 | */ |
| 151 | timespecclear(&it.it_interval); |
| 152 | it.it_value.tv_sec = SCARG(uap, secs); |
| 153 | it.it_value.tv_nsec = 0; |
| 154 | if (itimespecfix(&it.it_value) || itimespecfix(&it.it_interval)) { |
| 155 | mutex_spin_exit(&timer_lock); |
| 156 | return (EINVAL); |
| 157 | } |
| 158 | |
| 159 | ptp = pts->pts_timers[ITIMER_REAL]; |
| 160 | if (ptp == NULL) { |
| 161 | if (spare == NULL) { |
| 162 | mutex_spin_exit(&timer_lock); |
| 163 | spare = pool_get(&ptimer_pool, PR_WAITOK); |
| 164 | memset(spare, 0, sizeof(*spare)); |
| 165 | goto retry; |
| 166 | } |
| 167 | ptp = spare; |
| 168 | spare = NULL; |
| 169 | ptp->pt_ev.sigev_notify = SIGEV_SIGNAL; |
| 170 | ptp->pt_ev.sigev_signo = SIGALRM; |
| 171 | ptp->pt_overruns = 0; |
| 172 | ptp->pt_proc = p; |
| 173 | ptp->pt_type = CLOCK_REALTIME; |
| 174 | ptp->pt_entry = CLOCK_REALTIME; |
| 175 | ptp->pt_active = 0; |
| 176 | ptp->pt_queued = 0; |
| 177 | callout_init(&ptp->pt_ch, CALLOUT_MPSAFE); |
| 178 | pts->pts_timers[ITIMER_REAL] = ptp; |
| 179 | } |
| 180 | |
| 181 | if (timespecisset(&it.it_value)) { |
| 182 | /* |
| 183 | * Don't need to check tvhzto() return value, here. |
| 184 | * callout_reset() does it for us. |
| 185 | */ |
| 186 | getnanotime(&now); |
| 187 | timespecadd(&it.it_value, &now, &it.it_value); |
| 188 | callout_reset(&ptp->pt_ch, tshzto(&it.it_value), |
| 189 | realtimerexpire, ptp); |
| 190 | } |
| 191 | ptp->pt_time = it; |
| 192 | mutex_spin_exit(&timer_lock); |
| 193 | |
| 194 | return 0; |
| 195 | } |
| 196 | #endif /* !COMPAT_LINUX32 */ |
| 197 | |
| 198 | #if !defined(__amd64__) |
| 199 | int |
| 200 | linux_sys_nice(struct lwp *l, const struct linux_sys_nice_args *uap, register_t *retval) |
| 201 | { |
| 202 | /* { |
| 203 | syscallarg(int) incr; |
| 204 | } */ |
| 205 | struct proc *p = l->l_proc; |
| 206 | struct sys_setpriority_args bsa; |
| 207 | int error; |
| 208 | |
| 209 | SCARG(&bsa, which) = PRIO_PROCESS; |
| 210 | SCARG(&bsa, who) = 0; |
| 211 | SCARG(&bsa, prio) = p->p_nice - NZERO + SCARG(uap, incr); |
| 212 | |
| 213 | error = sys_setpriority(l, &bsa, retval); |
| 214 | return (error) ? EPERM : 0; |
| 215 | } |
| 216 | #endif /* !__amd64__ */ |
| 217 | |
| 218 | #ifndef COMPAT_LINUX32 |
| 219 | #ifndef __amd64__ |
| 220 | /* |
| 221 | * The old Linux readdir was only able to read one entry at a time, |
| 222 | * even though it had a 'count' argument. In fact, the emulation |
| 223 | * of the old call was better than the original, because it did handle |
| 224 | * the count arg properly. Don't bother with it anymore now, and use |
| 225 | * it to distinguish between old and new. The difference is that the |
| 226 | * newer one actually does multiple entries, and the reclen field |
| 227 | * really is the reclen, not the namelength. |
| 228 | */ |
| 229 | int |
| 230 | linux_sys_readdir(struct lwp *l, const struct linux_sys_readdir_args *uap, register_t *retval) |
| 231 | { |
| 232 | /* { |
| 233 | syscallarg(int) fd; |
| 234 | syscallarg(struct linux_dirent *) dent; |
| 235 | syscallarg(unsigned int) count; |
| 236 | } */ |
| 237 | int error; |
| 238 | struct linux_sys_getdents_args da; |
| 239 | |
| 240 | SCARG(&da, fd) = SCARG(uap, fd); |
| 241 | SCARG(&da, dent) = SCARG(uap, dent); |
| 242 | SCARG(&da, count) = 1; |
| 243 | |
| 244 | error = linux_sys_getdents(l, &da, retval); |
| 245 | if (error == 0 && *retval > 1) |
| 246 | *retval = 1; |
| 247 | |
| 248 | return error; |
| 249 | } |
| 250 | #endif /* !amd64 */ |
| 251 | |
| 252 | /* |
| 253 | * I wonder why Linux has gettimeofday() _and_ time().. Still, we |
| 254 | * need to deal with it. |
| 255 | */ |
| 256 | int |
| 257 | linux_sys_time(struct lwp *l, const struct linux_sys_time_args *uap, register_t *retval) |
| 258 | { |
| 259 | /* { |
| 260 | syscallarg(linux_time_t) *t; |
| 261 | } */ |
| 262 | struct timeval atv; |
| 263 | linux_time_t tt; |
| 264 | int error; |
| 265 | |
| 266 | microtime(&atv); |
| 267 | |
| 268 | tt = atv.tv_sec; |
| 269 | if (SCARG(uap, t) && (error = copyout(&tt, SCARG(uap, t), sizeof tt))) |
| 270 | return error; |
| 271 | |
| 272 | retval[0] = tt; |
| 273 | return 0; |
| 274 | } |
| 275 | |
| 276 | /* |
| 277 | * utime(). Do conversion to things that utimes() understands, |
| 278 | * and pass it on. |
| 279 | */ |
| 280 | int |
| 281 | linux_sys_utime(struct lwp *l, const struct linux_sys_utime_args *uap, register_t *retval) |
| 282 | { |
| 283 | /* { |
| 284 | syscallarg(const char *) path; |
| 285 | syscallarg(struct linux_utimbuf *)times; |
| 286 | } */ |
| 287 | int error; |
| 288 | struct timeval tv[2], *tvp; |
| 289 | struct linux_utimbuf lut; |
| 290 | |
| 291 | if (SCARG(uap, times) != NULL) { |
| 292 | if ((error = copyin(SCARG(uap, times), &lut, sizeof lut))) |
| 293 | return error; |
| 294 | tv[0].tv_usec = tv[1].tv_usec = 0; |
| 295 | tv[0].tv_sec = lut.l_actime; |
| 296 | tv[1].tv_sec = lut.l_modtime; |
| 297 | tvp = tv; |
| 298 | } else |
| 299 | tvp = NULL; |
| 300 | |
| 301 | return do_sys_utimes(l, NULL, SCARG(uap, path), FOLLOW, |
| 302 | tvp, UIO_SYSSPACE); |
| 303 | } |
| 304 | |
| 305 | #ifndef __amd64__ |
| 306 | /* |
| 307 | * waitpid(2). Just forward on to linux_sys_wait4 with a NULL rusage. |
| 308 | */ |
| 309 | int |
| 310 | linux_sys_waitpid(struct lwp *l, const struct linux_sys_waitpid_args *uap, register_t *retval) |
| 311 | { |
| 312 | /* { |
| 313 | syscallarg(int) pid; |
| 314 | syscallarg(int *) status; |
| 315 | syscallarg(int) options; |
| 316 | } */ |
| 317 | struct linux_sys_wait4_args linux_w4a; |
| 318 | |
| 319 | SCARG(&linux_w4a, pid) = SCARG(uap, pid); |
| 320 | SCARG(&linux_w4a, status) = SCARG(uap, status); |
| 321 | SCARG(&linux_w4a, options) = SCARG(uap, options); |
| 322 | SCARG(&linux_w4a, rusage) = NULL; |
| 323 | |
| 324 | return linux_sys_wait4(l, &linux_w4a, retval); |
| 325 | } |
| 326 | #endif /* !amd64 */ |
| 327 | |
| 328 | int |
| 329 | linux_sys_setresgid(struct lwp *l, const struct linux_sys_setresgid_args *uap, register_t *retval) |
| 330 | { |
| 331 | /* { |
| 332 | syscallarg(gid_t) rgid; |
| 333 | syscallarg(gid_t) egid; |
| 334 | syscallarg(gid_t) sgid; |
| 335 | } */ |
| 336 | |
| 337 | /* |
| 338 | * Note: These checks are a little different than the NetBSD |
| 339 | * setregid(2) call performs. This precisely follows the |
| 340 | * behavior of the Linux kernel. |
| 341 | */ |
| 342 | return do_setresgid(l, SCARG(uap,rgid), SCARG(uap, egid), |
| 343 | SCARG(uap, sgid), |
| 344 | ID_R_EQ_R | ID_R_EQ_E | ID_R_EQ_S | |
| 345 | ID_E_EQ_R | ID_E_EQ_E | ID_E_EQ_S | |
| 346 | ID_S_EQ_R | ID_S_EQ_E | ID_S_EQ_S ); |
| 347 | } |
| 348 | |
| 349 | int |
| 350 | linux_sys_getresgid(struct lwp *l, const struct linux_sys_getresgid_args *uap, register_t *retval) |
| 351 | { |
| 352 | /* { |
| 353 | syscallarg(gid_t *) rgid; |
| 354 | syscallarg(gid_t *) egid; |
| 355 | syscallarg(gid_t *) sgid; |
| 356 | } */ |
| 357 | kauth_cred_t pc = l->l_cred; |
| 358 | int error; |
| 359 | gid_t gid; |
| 360 | |
| 361 | /* |
| 362 | * Linux copies these values out to userspace like so: |
| 363 | * |
| 364 | * 1. Copy out rgid. |
| 365 | * 2. If that succeeds, copy out egid. |
| 366 | * 3. If both of those succeed, copy out sgid. |
| 367 | */ |
| 368 | gid = kauth_cred_getgid(pc); |
| 369 | if ((error = copyout(&gid, SCARG(uap, rgid), sizeof(gid_t))) != 0) |
| 370 | return (error); |
| 371 | |
| 372 | gid = kauth_cred_getegid(pc); |
| 373 | if ((error = copyout(&gid, SCARG(uap, egid), sizeof(gid_t))) != 0) |
| 374 | return (error); |
| 375 | |
| 376 | gid = kauth_cred_getsvgid(pc); |
| 377 | |
| 378 | return (copyout(&gid, SCARG(uap, sgid), sizeof(gid_t))); |
| 379 | } |
| 380 | |
| 381 | #ifndef __amd64__ |
| 382 | /* |
| 383 | * I wonder why Linux has settimeofday() _and_ stime().. Still, we |
| 384 | * need to deal with it. |
| 385 | */ |
| 386 | int |
| 387 | linux_sys_stime(struct lwp *l, const struct linux_sys_stime_args *uap, register_t *retval) |
| 388 | { |
| 389 | /* { |
| 390 | syscallarg(linux_time_t) *t; |
| 391 | } */ |
| 392 | struct timespec ats; |
| 393 | linux_time_t tt; |
| 394 | int error; |
| 395 | |
| 396 | if ((error = copyin(SCARG(uap, t), &tt, sizeof tt)) != 0) |
| 397 | return error; |
| 398 | |
| 399 | ats.tv_sec = tt; |
| 400 | ats.tv_nsec = 0; |
| 401 | |
| 402 | if ((error = settime(l->l_proc, &ats))) |
| 403 | return (error); |
| 404 | |
| 405 | return 0; |
| 406 | } |
| 407 | |
| 408 | /* |
| 409 | * Implement the fs stat functions. Straightforward. |
| 410 | */ |
| 411 | int |
| 412 | linux_sys_statfs64(struct lwp *l, const struct linux_sys_statfs64_args *uap, register_t *retval) |
| 413 | { |
| 414 | /* { |
| 415 | syscallarg(const char *) path; |
| 416 | syscallarg(size_t) sz; |
| 417 | syscallarg(struct linux_statfs64 *) sp; |
| 418 | } */ |
| 419 | struct statvfs *sb; |
| 420 | struct linux_statfs64 ltmp; |
| 421 | int error; |
| 422 | |
| 423 | if (SCARG(uap, sz) != sizeof ltmp) |
| 424 | return (EINVAL); |
| 425 | |
| 426 | sb = STATVFSBUF_GET(); |
| 427 | error = do_sys_pstatvfs(l, SCARG(uap, path), ST_WAIT, sb); |
| 428 | if (error == 0) { |
| 429 | bsd_to_linux_statfs64(sb, <mp); |
| 430 | error = copyout(<mp, SCARG(uap, sp), sizeof ltmp); |
| 431 | } |
| 432 | STATVFSBUF_PUT(sb); |
| 433 | return error; |
| 434 | } |
| 435 | |
| 436 | int |
| 437 | linux_sys_fstatfs64(struct lwp *l, const struct linux_sys_fstatfs64_args *uap, register_t *retval) |
| 438 | { |
| 439 | /* { |
| 440 | syscallarg(int) fd; |
| 441 | syscallarg(size_t) sz; |
| 442 | syscallarg(struct linux_statfs64 *) sp; |
| 443 | } */ |
| 444 | struct statvfs *sb; |
| 445 | struct linux_statfs64 ltmp; |
| 446 | int error; |
| 447 | |
| 448 | if (SCARG(uap, sz) != sizeof ltmp) |
| 449 | return (EINVAL); |
| 450 | |
| 451 | sb = STATVFSBUF_GET(); |
| 452 | error = do_sys_fstatvfs(l, SCARG(uap, fd), ST_WAIT, sb); |
| 453 | if (error == 0) { |
| 454 | bsd_to_linux_statfs64(sb, <mp); |
| 455 | error = copyout(<mp, SCARG(uap, sp), sizeof ltmp); |
| 456 | } |
| 457 | STATVFSBUF_PUT(sb); |
| 458 | return error; |
| 459 | } |
| 460 | #endif /* !__amd64__ */ |
| 461 | #endif /* !COMPAT_LINUX32 */ |
| 462 | |