1 | /* $NetBSD: cpu_extended_state.h,v 1.17 2019/06/26 12:30:13 mgorny Exp $ */ |
2 | |
3 | #ifndef _X86_CPU_EXTENDED_STATE_H_ |
4 | #define _X86_CPU_EXTENDED_STATE_H_ |
5 | |
6 | #ifdef __lint__ |
7 | /* Lint has different packing rules and doesn't understand __aligned() */ |
8 | #define __CTASSERT_NOLINT(x) __CTASSERT(1) |
9 | #else |
10 | #define __CTASSERT_NOLINT(x) __CTASSERT(x) |
11 | #endif |
12 | |
13 | /* |
14 | * This file contains definitions of structures that match the memory layouts |
15 | * used on x86 processors to save floating point registers and other extended |
16 | * cpu states. |
17 | * |
18 | * This includes registers (etc) used by SSE/SSE2/SSE3/SSSE3/SSE4 and the later |
19 | * AVX instructions. |
20 | * |
21 | * The definitions are such that any future 'extended state' should be handled, |
22 | * provided the kernel doesn't need to know the actual contents. |
23 | * |
24 | * The actual structures the cpu accesses must be aligned to 16 bytes for FXSAVE |
25 | * and 64 for XSAVE. The types aren't aligned because copies do not need extra |
26 | * alignment. |
27 | * |
28 | * The slightly different layout saved by the i387 fsave is also defined. |
29 | * This is only normally written by pre Pentium II type cpus that don't |
30 | * support the fxsave instruction. |
31 | * |
32 | * Associated save instructions: |
33 | * FNSAVE: Saves x87 state in 108 bytes (original i387 layout). Then |
34 | * reinitializes the fpu. |
35 | * FSAVE: Encodes to FWAIT followed by FNSAVE. |
36 | * FXSAVE: Saves the x87 state and XMM (aka SSE) registers to the first |
37 | * 448 (max) bytes of a 512 byte area. This layout does not match |
38 | * that written by FNSAVE. |
39 | * XSAVE: Uses the same layout for the x87 and XMM registers, followed by |
40 | * a 64byte header and separate save areas for additional extended |
41 | * cpu states. The x87 state is always saved, the others |
42 | * conditionally. |
43 | * XSAVEOPT: Same as XSAVE but only writes the registers blocks that have |
44 | * been modified. |
45 | */ |
46 | |
47 | /* |
48 | * Layout for code/data pointers relating to FP exceptions. Marked 'packed' |
49 | * because they aren't always 64bit aligned. Since the x86 cpu supports |
50 | * misaligned accesses it isn't worth avoiding the 'packed' attribute. |
51 | */ |
52 | union fp_addr { |
53 | uint64_t fa_64; /* Linear address for 64bit systems */ |
54 | struct { |
55 | uint32_t fa_off; /* linear address for 32 bit */ |
56 | uint16_t fa_seg; /* code/data (etc) segment */ |
57 | uint16_t fa_opcode; /* last opcode (sometimes) */ |
58 | } fa_32; |
59 | } __packed __aligned(4); |
60 | |
61 | /* The x87 registers are 80 bits */ |
62 | struct fpacc87 { |
63 | uint64_t f87_mantissa; /* mantissa */ |
64 | uint16_t f87_exp_sign; /* exponent and sign */ |
65 | } __packed __aligned(2); |
66 | |
67 | /* The x87 registers padded out to 16 bytes for fxsave */ |
68 | struct fpaccfx { |
69 | struct fpacc87 r __aligned(16); |
70 | }; |
71 | |
72 | /* The SSE/SSE2 registers are 128 bits */ |
73 | struct xmmreg { |
74 | uint8_t xmm_bytes[16]; |
75 | }; |
76 | |
77 | /* The AVX registers are 256 bits, but the low bits are the xmmregs */ |
78 | struct ymmreg { |
79 | uint8_t ymm_bytes[16]; |
80 | }; |
81 | |
82 | /* The AVX-512 registers are 512 bits but the low bits are in xmmregs |
83 | * and ymmregs */ |
84 | struct zmmreg { |
85 | uint8_t zmm_bytes[32]; |
86 | }; |
87 | |
88 | /* 512-bit ZMM register. */ |
89 | struct hi16_zmmreg { |
90 | uint8_t zmm_bytes[64]; |
91 | }; |
92 | |
93 | /* |
94 | * Floating point unit registers (FSAVE instruction). |
95 | * |
96 | * The s87_ac[] and fx_87_ac[] are relative to the stack top. The 'tag word' |
97 | * contains 2 bits per register and refers to absolute register numbers. |
98 | * |
99 | * The cpu sets the tag values 0b01 (zero) and 0b10 (special) when a value |
100 | * is loaded. The software need only set 0b00 (used) and 0xb11 (unused). |
101 | * The fxsave 'Abridged tag word' in inverted. |
102 | */ |
103 | struct save87 { |
104 | uint16_t s87_cw __aligned(4); /* control word */ |
105 | uint16_t s87_sw __aligned(4); /* status word */ |
106 | uint16_t s87_tw __aligned(4); /* tag word */ |
107 | union fp_addr s87_ip; /* floating point instruction pointer */ |
108 | #define s87_opcode s87_ip.fa_32.fa_opcode /* opcode last executed (11bits) */ |
109 | union fp_addr s87_dp; /* floating operand offset */ |
110 | struct fpacc87 s87_ac[8]; /* accumulator contents */ |
111 | }; |
112 | __CTASSERT_NOLINT(sizeof(struct save87) == 108); |
113 | |
114 | /* |
115 | * FPU/MMX/SSE/SSE2 context (FXSAVE instruction). |
116 | */ |
117 | struct fxsave { |
118 | uint16_t fx_cw; /* FPU Control Word */ |
119 | uint16_t fx_sw; /* FPU Status Word */ |
120 | uint8_t fx_tw; /* FPU Tag Word (abridged) */ |
121 | uint8_t fx_zero; /* zero */ |
122 | uint16_t fx_opcode; /* FPU Opcode */ |
123 | union fp_addr fx_ip; /* FPU Instruction Pointer */ |
124 | union fp_addr fx_dp; /* FPU Data pointer */ |
125 | uint32_t fx_mxcsr; /* MXCSR Register State */ |
126 | uint32_t fx_mxcsr_mask; |
127 | struct fpaccfx fx_87_ac[8]; /* 8 x87 registers */ |
128 | struct xmmreg fx_xmm[16]; /* XMM regs (8 in 32bit modes) */ |
129 | uint8_t fx_rsvd[96]; |
130 | } __aligned(16); |
131 | __CTASSERT_NOLINT(sizeof(struct fxsave) == 512); |
132 | |
133 | /* |
134 | * For XSAVE, a 64byte header follows the fxsave data. |
135 | */ |
136 | struct { |
137 | uint8_t [512]; /* struct fxsave */ |
138 | uint64_t ; /* bitmap of saved sub structures */ |
139 | uint64_t ; /* bitmap of compact sub structures */ |
140 | uint8_t [8]; /* must be zero */ |
141 | uint8_t [40]; /* best if zero */ |
142 | }; |
143 | __CTASSERT(sizeof(struct xsave_header) == 512 + 64); |
144 | |
145 | /* |
146 | * The ymm save area actually follows the xsave_header. |
147 | */ |
148 | struct xsave_ymm { |
149 | struct ymmreg xs_ymm[16]; /* High bits of YMM registers */ |
150 | }; |
151 | __CTASSERT(sizeof(struct xsave_ymm) == 256); |
152 | |
153 | /* |
154 | * AVX-512: opmask state. |
155 | */ |
156 | struct xsave_opmask { |
157 | uint64_t xs_k[8]; /* k0..k7 registers. */ |
158 | }; |
159 | __CTASSERT(sizeof(struct xsave_opmask) == 64); |
160 | |
161 | /* |
162 | * AVX-512: ZMM_Hi256 state. |
163 | */ |
164 | struct xsave_zmm_hi256 { |
165 | struct zmmreg xs_zmm[16]; /* High bits of zmm0..zmm15 registers. */ |
166 | }; |
167 | __CTASSERT(sizeof(struct xsave_zmm_hi256) == 512); |
168 | |
169 | /* |
170 | * AVX-512: Hi16_ZMM state. |
171 | */ |
172 | struct xsave_hi16_zmm { |
173 | struct hi16_zmmreg xs_hi16_zmm[16]; /* zmm16..zmm31 registers. */ |
174 | }; |
175 | __CTASSERT(sizeof(struct xsave_hi16_zmm) == 1024); |
176 | |
177 | /* |
178 | * Structure used to hold all interesting data from XSAVE, in predictable form. |
179 | * Note that this structure can have new members added to the end. |
180 | */ |
181 | struct xstate { |
182 | /* |
183 | * The two following fields are bitmaps of XSAVE components. They can be |
184 | * matched against XCR0_* constants from <machine/specialreg.h>). |
185 | */ |
186 | /* |
187 | * XSAVE/XRSTOR RFBM parameter. |
188 | * |
189 | * PT_GETXSTATE: 1 indicates that the respective XSAVE component is |
190 | * supported and has been enabled for saving. 0 indicates that it is not |
191 | * supported by the platform or kernel. |
192 | * |
193 | * PT_SETXSTATE: 1 indicates that the respective XSAVE component should |
194 | * be updated to the value of respective field (or reset if xs_xsave_bv |
195 | * bit is 0). 0 indicates that it should be left intact. It is an error |
196 | * to enable bits that are not supported by the platform or kernel. |
197 | */ |
198 | uint64_t xs_rfbm; |
199 | /* |
200 | * XSAVE/XRSTOR xstate header. |
201 | * |
202 | * PT_GETXSTATE: 1 indicates that the respective XSAVE component has been |
203 | * saved. 0 indicates that it had been in its CPU-defined initial value |
204 | * at the time of saving (i.e. was not used by the program). |
205 | * |
206 | * PT_SETXSTATE: 1 indicates that the respective XSAVE component (if present |
207 | * in xs_rfbm) should be set to the values in respective field. 0 indicates |
208 | * that it should be reset to CPU-defined initial value. |
209 | */ |
210 | uint64_t xs_xstate_bv; |
211 | |
212 | /* legacy FXSAVE area (used for x87 & SSE state) */ |
213 | struct fxsave xs_fxsave; |
214 | /* AVX state: high bits of ymm0..ymm15 registers */ |
215 | struct xsave_ymm xs_ymm_hi128; |
216 | /* AVX-512: opmask */ |
217 | struct xsave_opmask xs_opmask; |
218 | /* AVX-512: high bits of zmm0..zmm15 registers */ |
219 | struct xsave_zmm_hi256 xs_zmm_hi256; |
220 | /* AVX-512: whole zmm16..zmm31 registers */ |
221 | struct xsave_hi16_zmm xs_hi16_zmm; |
222 | }; |
223 | |
224 | /* |
225 | * The following union is placed at the end of the pcb. |
226 | * It is defined this way to separate the definitions and to |
227 | * minimise the number of union/struct selectors. |
228 | * NB: Some userspace stuff (eg firefox) uses it to parse ucontext. |
229 | */ |
230 | union savefpu { |
231 | struct save87 sv_87; |
232 | struct fxsave sv_xmm; |
233 | #ifdef _KERNEL |
234 | struct xsave_header sv_xsave_hdr; |
235 | #endif |
236 | }; |
237 | |
238 | /* |
239 | * 80387 control and status word bits |
240 | * |
241 | * The only reference I can find to bits 0x40 and 0x80 in the control word |
242 | * is for the Weitek 1167/3167. |
243 | * I (dsl) can't find why the default word has 0x40 set. |
244 | * |
245 | * A stack error is signalled as an INVOP that also sets STACK_FAULT |
246 | * (other INVOP do not clear STACK_FAULT). |
247 | */ |
248 | /* Interrupt masks (set masks interrupt) and status bits */ |
249 | #define EN_SW_INVOP 0x0001 /* Invalid operation */ |
250 | #define EN_SW_DENORM 0x0002 /* Denormalized operand */ |
251 | #define EN_SW_ZERODIV 0x0004 /* Divide by zero */ |
252 | #define EN_SW_OVERFLOW 0x0008 /* Overflow */ |
253 | #define EN_SW_UNDERFLOW 0x0010 /* Underflow */ |
254 | #define EN_SW_PRECLOSS 0x0020 /* Loss of precision */ |
255 | /* Status word bits (reserved in control word) */ |
256 | #define EN_SW_STACK_FAULT 0x0040 /* Stack under/overflow */ |
257 | #define EN_SW_ERROR_SUMMARY 0x0080 /* Unmasked error has occurred */ |
258 | /* Control bits (badly named) */ |
259 | #define EN_SW_CTL_PREC 0x0300 /* Precision control */ |
260 | #define EN_SW_PREC_24 0x0000 /* Single precision */ |
261 | #define EN_SW_PREC_53 0x0200 /* Double precision */ |
262 | #define EN_SW_PREC_64 0x0300 /* Extended precision */ |
263 | #define EN_SW_CTL_ROUND 0x0c00 /* Rounding control */ |
264 | #define EN_SW_ROUND_EVEN 0x0000 /* Round to nearest even */ |
265 | #define EN_SW_ROUND_DOWN 0x0400 /* Round towards minus infinity */ |
266 | #define EN_SW_ROUND_UP 0x0800 /* Round towards plus infinity */ |
267 | #define EN_SW_ROUND_ZERO 0x0c00 /* Round towards zero (truncates) */ |
268 | #define EN_SW_CTL_INF 0x1000 /* Infinity control, not used */ |
269 | |
270 | /* |
271 | * The standard 0x87 control word from finit is 0x37F, giving: |
272 | * round to nearest |
273 | * 64-bit precision |
274 | * all exceptions masked. |
275 | * |
276 | * NetBSD used to select: |
277 | * round to nearest |
278 | * 53-bit precision |
279 | * all exceptions masked. |
280 | * Stating: 64-bit precision often gives bad results with high level |
281 | * languages because it makes the results of calculations depend on whether |
282 | * intermediate values are stored in memory or in FPU registers. |
283 | * Also some 'pathological divisions' give an error in the LSB because |
284 | * the value is first rounded up when the 64bit mantissa is generated, |
285 | * and then again when it is truncated to 53 bits. |
286 | * |
287 | * However the C language explicitly allows the extra precision. |
288 | */ |
289 | #define __INITIAL_NPXCW__ 0x037f |
290 | /* Modern NetBSD uses the default control word.. */ |
291 | #define __NetBSD_NPXCW__ __INITIAL_NPXCW__ |
292 | /* NetBSD before 6.99.26 forced IEEE double precision. */ |
293 | #define __NetBSD_COMPAT_NPXCW__ 0x127f |
294 | /* FreeBSD leaves some exceptions unmasked as well. */ |
295 | #define __FreeBSD_NPXCW__ 0x1272 |
296 | /* Linux just uses the default control word. */ |
297 | #define __Linux_NPXCW__ __INITIAL_NPXCW__ |
298 | |
299 | /* |
300 | * The default MXCSR value at reset is 0x1f80, IA-32 Instruction |
301 | * Set Reference, pg. 3-369. |
302 | * |
303 | * The low 6 bits of the mxcsr are the fp status bits (same order as x87). |
304 | * Bit 6 is 'denormals are zero' (speeds up calculations). |
305 | * Bits 7-16 are the interrupt mask bits (same order, 1 to mask). |
306 | * Bits 13 and 14 are rounding control. |
307 | * Bit 15 is 'flush to zero' - affects underflow. |
308 | * Bits 16-31 must be zero. |
309 | */ |
310 | #define __INITIAL_MXCSR__ 0x1f80 |
311 | #define __INITIAL_MXCSR_MASK__ 0xffbf |
312 | |
313 | #endif /* _X86_CPU_EXTENDED_STATE_H_ */ |
314 | |