1 | /* $NetBSD: pmap.h,v 1.123 2019/03/09 09:09:56 maxv Exp $ */ |
2 | |
3 | /* |
4 | * Copyright (c) 1997 Charles D. Cranor and Washington University. |
5 | * All rights reserved. |
6 | * |
7 | * Redistribution and use in source and binary forms, with or without |
8 | * modification, are permitted provided that the following conditions |
9 | * are met: |
10 | * 1. Redistributions of source code must retain the above copyright |
11 | * notice, this list of conditions and the following disclaimer. |
12 | * 2. Redistributions in binary form must reproduce the above copyright |
13 | * notice, this list of conditions and the following disclaimer in the |
14 | * documentation and/or other materials provided with the distribution. |
15 | * |
16 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
17 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
18 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
19 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
20 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
21 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
22 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
23 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
24 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
25 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
26 | */ |
27 | |
28 | /* |
29 | * Copyright (c) 2001 Wasabi Systems, Inc. |
30 | * All rights reserved. |
31 | * |
32 | * Written by Frank van der Linden for Wasabi Systems, Inc. |
33 | * |
34 | * Redistribution and use in source and binary forms, with or without |
35 | * modification, are permitted provided that the following conditions |
36 | * are met: |
37 | * 1. Redistributions of source code must retain the above copyright |
38 | * notice, this list of conditions and the following disclaimer. |
39 | * 2. Redistributions in binary form must reproduce the above copyright |
40 | * notice, this list of conditions and the following disclaimer in the |
41 | * documentation and/or other materials provided with the distribution. |
42 | * 3. All advertising materials mentioning features or use of this software |
43 | * must display the following acknowledgement: |
44 | * This product includes software developed for the NetBSD Project by |
45 | * Wasabi Systems, Inc. |
46 | * 4. The name of Wasabi Systems, Inc. may not be used to endorse |
47 | * or promote products derived from this software without specific prior |
48 | * written permission. |
49 | * |
50 | * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND |
51 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
52 | * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
53 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC |
54 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
55 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
56 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
57 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
58 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
59 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
60 | * POSSIBILITY OF SUCH DAMAGE. |
61 | */ |
62 | |
63 | #ifndef _I386_PMAP_H_ |
64 | #define _I386_PMAP_H_ |
65 | |
66 | #if defined(_KERNEL_OPT) |
67 | #include "opt_user_ldt.h" |
68 | #include "opt_xen.h" |
69 | #endif |
70 | |
71 | #include <sys/atomic.h> |
72 | |
73 | #include <i386/pte.h> |
74 | #include <machine/segments.h> |
75 | #if defined(_KERNEL) |
76 | #include <machine/cpufunc.h> |
77 | #endif |
78 | |
79 | #include <uvm/uvm_object.h> |
80 | #ifdef XENPV |
81 | #include <xen/xenfunc.h> |
82 | #include <xen/xenpmap.h> |
83 | #endif /* XENPV */ |
84 | |
85 | /* |
86 | * see pte.h for a description of i386 MMU terminology and hardware |
87 | * interface. |
88 | * |
89 | * a pmap describes a processes' 4GB virtual address space. when PAE |
90 | * is not in use, this virtual address space can be broken up into 1024 4MB |
91 | * regions which are described by PDEs in the PDP. the PDEs are defined as |
92 | * follows: |
93 | * |
94 | * (ranges are inclusive -> exclusive, just like vm_map_entry start/end) |
95 | * (the following assumes that KERNBASE is 0xc0000000) |
96 | * |
97 | * PDE#s VA range usage |
98 | * 0->766 0x0 -> 0xbfc00000 user address space |
99 | * 767 0xbfc00000-> recursive mapping of PDP (used for |
100 | * 0xc0000000 linear mapping of PTPs) |
101 | * 768->1023 0xc0000000-> kernel address space (constant |
102 | * 0xffc00000 across all pmap's/processes) |
103 | * <end> |
104 | * |
105 | * |
106 | * note: a recursive PDP mapping provides a way to map all the PTEs for |
107 | * a 4GB address space into a linear chunk of virtual memory. in other |
108 | * words, the PTE for page 0 is the first int mapped into the 4MB recursive |
109 | * area. the PTE for page 1 is the second int. the very last int in the |
110 | * 4MB range is the PTE that maps VA 0xfffff000 (the last page in a 4GB |
111 | * address). |
112 | * |
113 | * all pmap's PD's must have the same values in slots 768->1023 so that |
114 | * the kernel is always mapped in every process. these values are loaded |
115 | * into the PD at pmap creation time. |
116 | * |
117 | * at any one time only one pmap can be active on a processor. this is |
118 | * the pmap whose PDP is pointed to by processor register %cr3. this pmap |
119 | * will have all its PTEs mapped into memory at the recursive mapping |
120 | * point (slot #767 as show above). when the pmap code wants to find the |
121 | * PTE for a virtual address, all it has to do is the following: |
122 | * |
123 | * address of PTE = (767 * 4MB) + (VA / PAGE_SIZE) * sizeof(pt_entry_t) |
124 | * = 0xbfc00000 + (VA / 4096) * 4 |
125 | * |
126 | * what happens if the pmap layer is asked to perform an operation |
127 | * on a pmap that is not the one which is currently active? in that |
128 | * case we temporarily load this pmap, perform the operation, and mark |
129 | * the currently active one as pending lazy reload. |
130 | * |
131 | * the following figure shows the effects of the recursive PDP mapping: |
132 | * |
133 | * PDP (%cr3) |
134 | * +----+ |
135 | * | 0| -> PTP#0 that maps VA 0x0 -> 0x400000 |
136 | * | | |
137 | * | | |
138 | * | 767| -> points back to PDP (%cr3) mapping VA 0xbfc00000 -> 0xc0000000 |
139 | * | 768| -> first kernel PTP (maps 0xc0000000 -> 0xc0400000) |
140 | * | | |
141 | * +----+ |
142 | * |
143 | * note that the PDE#767 VA (0xbfc00000) is defined as "PTE_BASE" |
144 | * |
145 | * starting at VA 0xbfc00000 the current active PDP (%cr3) acts as a |
146 | * PTP: |
147 | * |
148 | * PTP#767 == PDP(%cr3) => maps VA 0xbfc00000 -> 0xc0000000 |
149 | * +----+ |
150 | * | 0| -> maps the contents of PTP#0 at VA 0xbfc00000->0xbfc01000 |
151 | * | | |
152 | * | | |
153 | * | 767| -> maps contents of PTP#767 (the PDP) at VA 0xbfeff000 |
154 | * | 768| -> maps contents of first kernel PTP |
155 | * | | |
156 | * |1023| |
157 | * +----+ |
158 | * |
159 | * note that mapping of the PDP at PTP#767's VA (0xbfeff000) is |
160 | * defined as "PDP_BASE".... within that mapping there are two |
161 | * defines: |
162 | * "PDP_PDE" (0xbfeffbfc) is the VA of the PDE in the PDP |
163 | * which points back to itself. |
164 | * |
165 | * - PAE support - |
166 | * --------------- |
167 | * |
168 | * PAE adds another layer of indirection during address translation, breaking |
169 | * up the translation process in 3 different levels: |
170 | * - L3 page directory, containing 4 * 64-bits addresses (index determined by |
171 | * bits [31:30] from the virtual address). This breaks up the address space |
172 | * in 4 1GB regions. |
173 | * - the PD (L2), containing 512 64-bits addresses, breaking each L3 region |
174 | * in 512 * 2MB regions. |
175 | * - the PT (L1), also containing 512 64-bits addresses (at L1, the size of |
176 | * the pages is still 4K). |
177 | * |
178 | * The kernel virtual space is mapped by the last entry in the L3 page, |
179 | * the first 3 entries mapping the user VA space. |
180 | * |
181 | * Because the L3 has only 4 entries of 1GB each, we can't use recursive |
182 | * mappings at this level for PDP_PDE (this would eat up 2 of the 4GB |
183 | * virtual space). There are also restrictions imposed by Xen on the |
184 | * last entry of the L3 PD (reference count to this page cannot be |
185 | * bigger than 1), which makes it hard to use one L3 page per pmap to |
186 | * switch between pmaps using %cr3. |
187 | * |
188 | * As such, each CPU gets its own L3 page that is always loaded into its %cr3 |
189 | * (ci_pae_l3_pd in the associated cpu_info struct). We claim that the VM has |
190 | * only a 2-level PTP (similar to the non-PAE case). L2 PD is now 4 contiguous |
191 | * pages long (corresponding to the 4 entries of the L3), and the different |
192 | * index/slots (like PDP_PDE) are adapted accordingly. |
193 | * |
194 | * Kernel space remains in L3[3], L3[0-2] maps the user VA space. Switching |
195 | * between pmaps consists in modifying the first 3 entries of the CPU's L3 page. |
196 | * |
197 | * PTE_BASE will need 4 entries in the L2 PD pages to map the L2 pages |
198 | * recursively. |
199 | * |
200 | * In addition, for Xen, we can't recursively map L3[3] (Xen wants the ref |
201 | * count on this page to be exactly one), so we use a shadow PD page for |
202 | * the last L2 PD. The shadow page could be static too, but to make pm_pdir[] |
203 | * contiguous we'll allocate/copy one page per pmap. |
204 | */ |
205 | |
206 | /* |
207 | * Mask to get rid of the sign-extended part of addresses. |
208 | */ |
209 | #define VA_SIGN_MASK 0 |
210 | #define VA_SIGN_NEG(va) ((va) | VA_SIGN_MASK) |
211 | /* |
212 | * XXXfvdl this one's not right. |
213 | */ |
214 | #define VA_SIGN_POS(va) ((va) & ~VA_SIGN_MASK) |
215 | |
216 | /* |
217 | * the following defines identify the slots used as described above. |
218 | */ |
219 | #ifdef PAE |
220 | #define L2_SLOT_PTE (KERNBASE/NBPD_L2-4) /* 1532: for recursive PDP map */ |
221 | #define L2_SLOT_KERN (KERNBASE/NBPD_L2) /* 1536: start of kernel space */ |
222 | #else /* PAE */ |
223 | #define L2_SLOT_PTE (KERNBASE/NBPD_L2-1) /* 767: for recursive PDP map */ |
224 | #define L2_SLOT_KERN (KERNBASE/NBPD_L2) /* 768: start of kernel space */ |
225 | #endif /* PAE */ |
226 | |
227 | #define L2_SLOT_KERNBASE L2_SLOT_KERN |
228 | |
229 | #define PDIR_SLOT_KERN L2_SLOT_KERN |
230 | #define PDIR_SLOT_PTE L2_SLOT_PTE |
231 | |
232 | /* |
233 | * the following defines give the virtual addresses of various MMU |
234 | * data structures: |
235 | * PTE_BASE: the base VA of the linear PTE mappings |
236 | * PDP_BASE: the base VA of the recursive mapping of the PDP |
237 | * PDP_PDE: the VA of the PDE that points back to the PDP |
238 | */ |
239 | |
240 | #define PTE_BASE ((pt_entry_t *) (PDIR_SLOT_PTE * NBPD_L2)) |
241 | |
242 | #define L1_BASE PTE_BASE |
243 | |
244 | #define L2_BASE ((pd_entry_t *)((char *)L1_BASE + L2_SLOT_PTE * NBPD_L1)) |
245 | |
246 | #define PDP_PDE (L2_BASE + PDIR_SLOT_PTE) |
247 | |
248 | #define PDP_BASE L2_BASE |
249 | |
250 | /* largest value (-1 for APTP space) */ |
251 | #define NKL2_MAX_ENTRIES (NTOPLEVEL_PDES - (KERNBASE/NBPD_L2) - 1) |
252 | #define NKL1_MAX_ENTRIES (unsigned long)(NKL2_MAX_ENTRIES * NPDPG) |
253 | |
254 | #define NKL2_KIMG_ENTRIES 0 /* XXX unused */ |
255 | |
256 | #define NKL2_START_ENTRIES 0 /* XXX computed on runtime */ |
257 | #define NKL1_START_ENTRIES 0 /* XXX unused */ |
258 | |
259 | #ifndef XENPV |
260 | #define NTOPLEVEL_PDES (PAGE_SIZE * PDP_SIZE / (sizeof (pd_entry_t))) |
261 | #else /* !XENPV */ |
262 | #ifdef PAE |
263 | #define NTOPLEVEL_PDES 1964 /* 1964-2047 reserved by Xen */ |
264 | #else /* PAE */ |
265 | #define NTOPLEVEL_PDES 1008 /* 1008-1023 reserved by Xen */ |
266 | #endif /* PAE */ |
267 | #endif /* !XENPV */ |
268 | #define NPDPG (PAGE_SIZE / sizeof (pd_entry_t)) |
269 | |
270 | #define PTP_MASK_INITIALIZER { L1_MASK, L2_MASK } |
271 | #define PTP_FRAME_INITIALIZER { L1_FRAME, L2_FRAME } |
272 | #define PTP_SHIFT_INITIALIZER { L1_SHIFT, L2_SHIFT } |
273 | #define NKPTP_INITIALIZER { NKL1_START_ENTRIES, NKL2_START_ENTRIES } |
274 | #define NKPTPMAX_INITIALIZER { NKL1_MAX_ENTRIES, NKL2_MAX_ENTRIES } |
275 | #define NBPD_INITIALIZER { NBPD_L1, NBPD_L2 } |
276 | #define PDES_INITIALIZER { L2_BASE } |
277 | |
278 | #define PTP_LEVELS 2 |
279 | |
280 | /* |
281 | * PTE_AVL usage: we make use of the ignored bits of the PTE |
282 | */ |
283 | #define PTE_WIRED PTE_AVL1 /* Wired Mapping */ |
284 | #define PTE_PVLIST PTE_AVL2 /* Mapping has entry on pvlist */ |
285 | #define PTE_X PTE_AVL3 /* Executable */ |
286 | |
287 | /* XXX To be deleted. */ |
288 | #define PG_W PTE_WIRED |
289 | #define PG_PVLIST PTE_PVLIST |
290 | #define PG_X PTE_X |
291 | |
292 | #include <x86/pmap.h> |
293 | |
294 | #ifndef XENPV |
295 | #define pmap_pa2pte(a) (a) |
296 | #define pmap_pte2pa(a) ((a) & PTE_FRAME) |
297 | #define pmap_pte_set(p, n) do { *(p) = (n); } while (0) |
298 | #define pmap_pte_flush() /* nothing */ |
299 | |
300 | #ifdef PAE |
301 | #define pmap_pte_cas(p, o, n) atomic_cas_64((p), (o), (n)) |
302 | #define pmap_pte_testset(p, n) \ |
303 | atomic_swap_64((volatile uint64_t *)p, n) |
304 | #define pmap_pte_setbits(p, b) \ |
305 | atomic_or_64((volatile uint64_t *)p, b) |
306 | #define pmap_pte_clearbits(p, b) \ |
307 | atomic_and_64((volatile uint64_t *)p, ~(b)) |
308 | #else /* PAE */ |
309 | #define pmap_pte_cas(p, o, n) atomic_cas_32((p), (o), (n)) |
310 | #define pmap_pte_testset(p, n) \ |
311 | atomic_swap_ulong((volatile unsigned long *)p, n) |
312 | #define pmap_pte_setbits(p, b) \ |
313 | atomic_or_ulong((volatile unsigned long *)p, b) |
314 | #define pmap_pte_clearbits(p, b) \ |
315 | atomic_and_ulong((volatile unsigned long *)p, ~(b)) |
316 | #endif /* PAE */ |
317 | |
318 | #else /* XENPV */ |
319 | extern kmutex_t pte_lock; |
320 | |
321 | static __inline pt_entry_t |
322 | pmap_pa2pte(paddr_t pa) |
323 | { |
324 | return (pt_entry_t)xpmap_ptom_masked(pa); |
325 | } |
326 | |
327 | static __inline paddr_t |
328 | pmap_pte2pa(pt_entry_t pte) |
329 | { |
330 | return xpmap_mtop_masked(pte & PTE_FRAME); |
331 | } |
332 | static __inline void |
333 | pmap_pte_set(pt_entry_t *pte, pt_entry_t npte) |
334 | { |
335 | int s = splvm(); |
336 | xpq_queue_pte_update(xpmap_ptetomach(pte), npte); |
337 | splx(s); |
338 | } |
339 | |
340 | static __inline pt_entry_t |
341 | pmap_pte_cas(volatile pt_entry_t *ptep, pt_entry_t o, pt_entry_t n) |
342 | { |
343 | pt_entry_t opte; |
344 | |
345 | mutex_enter(&pte_lock); |
346 | opte = *ptep; |
347 | if (opte == o) { |
348 | xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(ptep)), n); |
349 | xpq_flush_queue(); |
350 | } |
351 | mutex_exit(&pte_lock); |
352 | return opte; |
353 | } |
354 | |
355 | static __inline pt_entry_t |
356 | pmap_pte_testset(volatile pt_entry_t *pte, pt_entry_t npte) |
357 | { |
358 | pt_entry_t opte; |
359 | |
360 | mutex_enter(&pte_lock); |
361 | opte = *pte; |
362 | xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)), |
363 | npte); |
364 | xpq_flush_queue(); |
365 | mutex_exit(&pte_lock); |
366 | return opte; |
367 | } |
368 | |
369 | static __inline void |
370 | pmap_pte_setbits(volatile pt_entry_t *pte, pt_entry_t bits) |
371 | { |
372 | mutex_enter(&pte_lock); |
373 | xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)), (*pte) | bits); |
374 | xpq_flush_queue(); |
375 | mutex_exit(&pte_lock); |
376 | } |
377 | |
378 | static __inline void |
379 | pmap_pte_clearbits(volatile pt_entry_t *pte, pt_entry_t bits) |
380 | { |
381 | mutex_enter(&pte_lock); |
382 | xpq_queue_pte_update(xpmap_ptetomach(__UNVOLATILE(pte)), |
383 | (*pte) & ~bits); |
384 | xpq_flush_queue(); |
385 | mutex_exit(&pte_lock); |
386 | } |
387 | |
388 | static __inline void |
389 | pmap_pte_flush(void) |
390 | { |
391 | int s = splvm(); |
392 | xpq_flush_queue(); |
393 | splx(s); |
394 | } |
395 | |
396 | #endif |
397 | |
398 | struct vm_map; |
399 | struct trapframe; |
400 | struct pcb; |
401 | |
402 | int pmap_exec_fixup(struct vm_map *, struct trapframe *, struct pcb *); |
403 | |
404 | #include <x86/pmap_pv.h> |
405 | |
406 | #define __HAVE_VM_PAGE_MD |
407 | #define VM_MDPAGE_INIT(pg) \ |
408 | memset(&(pg)->mdpage, 0, sizeof((pg)->mdpage)); \ |
409 | PMAP_PAGE_INIT(&(pg)->mdpage.mp_pp) |
410 | |
411 | struct vm_page_md { |
412 | struct pmap_page mp_pp; |
413 | }; |
414 | |
415 | #endif /* _I386_PMAP_H_ */ |
416 | |