1 | /* $NetBSD: kvm_proc.c,v 1.92 2016/04/04 22:14:38 christos Exp $ */ |
2 | |
3 | /*- |
4 | * Copyright (c) 1998 The NetBSD Foundation, Inc. |
5 | * All rights reserved. |
6 | * |
7 | * This code is derived from software contributed to The NetBSD Foundation |
8 | * by Charles M. Hannum. |
9 | * |
10 | * Redistribution and use in source and binary forms, with or without |
11 | * modification, are permitted provided that the following conditions |
12 | * are met: |
13 | * 1. Redistributions of source code must retain the above copyright |
14 | * notice, this list of conditions and the following disclaimer. |
15 | * 2. Redistributions in binary form must reproduce the above copyright |
16 | * notice, this list of conditions and the following disclaimer in the |
17 | * documentation and/or other materials provided with the distribution. |
18 | * |
19 | * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS |
20 | * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
21 | * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
22 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS |
23 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
24 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
25 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
26 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
27 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
28 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
29 | * POSSIBILITY OF SUCH DAMAGE. |
30 | */ |
31 | |
32 | /*- |
33 | * Copyright (c) 1989, 1992, 1993 |
34 | * The Regents of the University of California. All rights reserved. |
35 | * |
36 | * This code is derived from software developed by the Computer Systems |
37 | * Engineering group at Lawrence Berkeley Laboratory under DARPA contract |
38 | * BG 91-66 and contributed to Berkeley. |
39 | * |
40 | * Redistribution and use in source and binary forms, with or without |
41 | * modification, are permitted provided that the following conditions |
42 | * are met: |
43 | * 1. Redistributions of source code must retain the above copyright |
44 | * notice, this list of conditions and the following disclaimer. |
45 | * 2. Redistributions in binary form must reproduce the above copyright |
46 | * notice, this list of conditions and the following disclaimer in the |
47 | * documentation and/or other materials provided with the distribution. |
48 | * 3. Neither the name of the University nor the names of its contributors |
49 | * may be used to endorse or promote products derived from this software |
50 | * without specific prior written permission. |
51 | * |
52 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
53 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
54 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
55 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
56 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
57 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
58 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
59 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
60 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
61 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
62 | * SUCH DAMAGE. |
63 | */ |
64 | |
65 | #include <sys/cdefs.h> |
66 | #if defined(LIBC_SCCS) && !defined(lint) |
67 | #if 0 |
68 | static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93" ; |
69 | #else |
70 | __RCSID("$NetBSD: kvm_proc.c,v 1.92 2016/04/04 22:14:38 christos Exp $" ); |
71 | #endif |
72 | #endif /* LIBC_SCCS and not lint */ |
73 | |
74 | /* |
75 | * Proc traversal interface for kvm. ps and w are (probably) the exclusive |
76 | * users of this code, so we've factored it out into a separate module. |
77 | * Thus, we keep this grunge out of the other kvm applications (i.e., |
78 | * most other applications are interested only in open/close/read/nlist). |
79 | */ |
80 | |
81 | #include <sys/param.h> |
82 | #include <sys/lwp.h> |
83 | #include <sys/wait.h> |
84 | #include <sys/proc.h> |
85 | #include <sys/exec.h> |
86 | #include <sys/stat.h> |
87 | #include <sys/ioctl.h> |
88 | #include <sys/tty.h> |
89 | #include <sys/resourcevar.h> |
90 | #include <sys/mutex.h> |
91 | #include <sys/specificdata.h> |
92 | #include <sys/types.h> |
93 | |
94 | #include <errno.h> |
95 | #include <stdlib.h> |
96 | #include <stddef.h> |
97 | #include <string.h> |
98 | #include <unistd.h> |
99 | #include <nlist.h> |
100 | #include <kvm.h> |
101 | |
102 | #include <uvm/uvm_extern.h> |
103 | #include <uvm/uvm_param.h> |
104 | #include <uvm/uvm_amap.h> |
105 | #include <uvm/uvm_page.h> |
106 | |
107 | #include <sys/sysctl.h> |
108 | |
109 | #include <limits.h> |
110 | #include <db.h> |
111 | #include <paths.h> |
112 | |
113 | #include "kvm_private.h" |
114 | |
115 | /* |
116 | * Common info from kinfo_proc and kinfo_proc2 used by helper routines. |
117 | */ |
118 | struct miniproc { |
119 | struct vmspace *p_vmspace; |
120 | char p_stat; |
121 | struct proc *p_paddr; |
122 | pid_t p_pid; |
123 | }; |
124 | |
125 | /* |
126 | * Convert from struct proc and kinfo_proc{,2} to miniproc. |
127 | */ |
128 | #define PTOMINI(kp, p) \ |
129 | do { \ |
130 | (p)->p_stat = (kp)->p_stat; \ |
131 | (p)->p_pid = (kp)->p_pid; \ |
132 | (p)->p_paddr = NULL; \ |
133 | (p)->p_vmspace = (kp)->p_vmspace; \ |
134 | } while (/*CONSTCOND*/0); |
135 | |
136 | #define KPTOMINI(kp, p) \ |
137 | do { \ |
138 | (p)->p_stat = (kp)->kp_proc.p_stat; \ |
139 | (p)->p_pid = (kp)->kp_proc.p_pid; \ |
140 | (p)->p_paddr = (kp)->kp_eproc.e_paddr; \ |
141 | (p)->p_vmspace = (kp)->kp_proc.p_vmspace; \ |
142 | } while (/*CONSTCOND*/0); |
143 | |
144 | #define KP2TOMINI(kp, p) \ |
145 | do { \ |
146 | (p)->p_stat = (kp)->p_stat; \ |
147 | (p)->p_pid = (kp)->p_pid; \ |
148 | (p)->p_paddr = (void *)(long)(kp)->p_paddr; \ |
149 | (p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \ |
150 | } while (/*CONSTCOND*/0); |
151 | |
152 | /* |
153 | * NetBSD uses kauth(9) to manage credentials, which are stored in kauth_cred_t, |
154 | * a kernel-only opaque type. This is an embedded version which is *INTERNAL* to |
155 | * kvm(3) so dumps can be read properly. |
156 | * |
157 | * Whenever NetBSD starts exporting credentials to userland consistently (using |
158 | * 'struct uucred', or something) this will have to be updated again. |
159 | */ |
160 | struct kvm_kauth_cred { |
161 | u_int cr_refcnt; /* reference count */ |
162 | uint8_t cr_pad[CACHE_LINE_SIZE - sizeof(u_int)]; |
163 | uid_t cr_uid; /* user id */ |
164 | uid_t cr_euid; /* effective user id */ |
165 | uid_t cr_svuid; /* saved effective user id */ |
166 | gid_t cr_gid; /* group id */ |
167 | gid_t cr_egid; /* effective group id */ |
168 | gid_t cr_svgid; /* saved effective group id */ |
169 | u_int cr_ngroups; /* number of groups */ |
170 | gid_t cr_groups[NGROUPS]; /* group memberships */ |
171 | specificdata_reference cr_sd; /* specific data */ |
172 | }; |
173 | |
174 | /* XXX: What uses these two functions? */ |
175 | char *_kvm_uread(kvm_t *, const struct proc *, u_long, u_long *); |
176 | ssize_t kvm_uread(kvm_t *, const struct proc *, u_long, char *, |
177 | size_t); |
178 | |
179 | static char *_kvm_ureadm(kvm_t *, const struct miniproc *, u_long, |
180 | u_long *); |
181 | static ssize_t kvm_ureadm(kvm_t *, const struct miniproc *, u_long, |
182 | char *, size_t); |
183 | |
184 | static char **kvm_argv(kvm_t *, const struct miniproc *, u_long, int, int); |
185 | static int kvm_deadprocs(kvm_t *, int, int, u_long, u_long, int); |
186 | static char **kvm_doargv(kvm_t *, const struct miniproc *, int, |
187 | void (*)(struct ps_strings *, u_long *, int *)); |
188 | static char **kvm_doargv2(kvm_t *, pid_t, int, int); |
189 | static int kvm_proclist(kvm_t *, int, int, struct proc *, |
190 | struct kinfo_proc *, int); |
191 | static int proc_verify(kvm_t *, u_long, const struct miniproc *); |
192 | static void ps_str_a(struct ps_strings *, u_long *, int *); |
193 | static void ps_str_e(struct ps_strings *, u_long *, int *); |
194 | |
195 | |
196 | static char * |
197 | _kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long va, u_long *cnt) |
198 | { |
199 | u_long addr, head; |
200 | u_long offset; |
201 | struct vm_map_entry vme; |
202 | struct vm_amap amap; |
203 | struct vm_anon *anonp, anon; |
204 | struct vm_page pg; |
205 | u_long slot; |
206 | |
207 | if (kd->swapspc == NULL) { |
208 | kd->swapspc = _kvm_malloc(kd, (size_t)kd->nbpg); |
209 | if (kd->swapspc == NULL) |
210 | return (NULL); |
211 | } |
212 | |
213 | /* |
214 | * Look through the address map for the memory object |
215 | * that corresponds to the given virtual address. |
216 | * The header just has the entire valid range. |
217 | */ |
218 | head = (u_long)&p->p_vmspace->vm_map.header; |
219 | addr = head; |
220 | for (;;) { |
221 | if (KREAD(kd, addr, &vme)) |
222 | return (NULL); |
223 | |
224 | if (va >= vme.start && va < vme.end && |
225 | vme.aref.ar_amap != NULL) |
226 | break; |
227 | |
228 | addr = (u_long)vme.next; |
229 | if (addr == head) |
230 | return (NULL); |
231 | } |
232 | |
233 | /* |
234 | * we found the map entry, now to find the object... |
235 | */ |
236 | if (vme.aref.ar_amap == NULL) |
237 | return (NULL); |
238 | |
239 | addr = (u_long)vme.aref.ar_amap; |
240 | if (KREAD(kd, addr, &amap)) |
241 | return (NULL); |
242 | |
243 | offset = va - vme.start; |
244 | slot = offset / kd->nbpg + vme.aref.ar_pageoff; |
245 | /* sanity-check slot number */ |
246 | if (slot > amap.am_nslot) |
247 | return (NULL); |
248 | |
249 | addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp); |
250 | if (KREAD(kd, addr, &anonp)) |
251 | return (NULL); |
252 | |
253 | addr = (u_long)anonp; |
254 | if (KREAD(kd, addr, &anon)) |
255 | return (NULL); |
256 | |
257 | addr = (u_long)anon.an_page; |
258 | if (addr) { |
259 | if (KREAD(kd, addr, &pg)) |
260 | return (NULL); |
261 | |
262 | if (_kvm_pread(kd, kd->pmfd, kd->swapspc, (size_t)kd->nbpg, |
263 | (off_t)pg.phys_addr) != kd->nbpg) |
264 | return (NULL); |
265 | } else { |
266 | if (kd->swfd < 0 || |
267 | _kvm_pread(kd, kd->swfd, kd->swapspc, (size_t)kd->nbpg, |
268 | (off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg) |
269 | return (NULL); |
270 | } |
271 | |
272 | /* Found the page. */ |
273 | offset %= kd->nbpg; |
274 | *cnt = kd->nbpg - offset; |
275 | return (&kd->swapspc[(size_t)offset]); |
276 | } |
277 | |
278 | char * |
279 | _kvm_uread(kvm_t *kd, const struct proc *p, u_long va, u_long *cnt) |
280 | { |
281 | struct miniproc mp; |
282 | |
283 | PTOMINI(p, &mp); |
284 | return (_kvm_ureadm(kd, &mp, va, cnt)); |
285 | } |
286 | |
287 | /* |
288 | * Convert credentials located in kernel space address 'cred' and store |
289 | * them in the appropriate members of 'eproc'. |
290 | */ |
291 | static int |
292 | _kvm_convertcred(kvm_t *kd, u_long cred, struct eproc *eproc) |
293 | { |
294 | struct kvm_kauth_cred kauthcred; |
295 | struct ki_pcred *pc = &eproc->e_pcred; |
296 | struct ki_ucred *uc = &eproc->e_ucred; |
297 | |
298 | if (KREAD(kd, cred, &kauthcred) != 0) |
299 | return (-1); |
300 | |
301 | /* inlined version of kauth_cred_to_pcred, see kauth(9). */ |
302 | pc->p_ruid = kauthcred.cr_uid; |
303 | pc->p_svuid = kauthcred.cr_svuid; |
304 | pc->p_rgid = kauthcred.cr_gid; |
305 | pc->p_svgid = kauthcred.cr_svgid; |
306 | pc->p_refcnt = kauthcred.cr_refcnt; |
307 | pc->p_pad = NULL; |
308 | |
309 | /* inlined version of kauth_cred_to_ucred(), see kauth(9). */ |
310 | uc->cr_ref = kauthcred.cr_refcnt; |
311 | uc->cr_uid = kauthcred.cr_euid; |
312 | uc->cr_gid = kauthcred.cr_egid; |
313 | uc->cr_ngroups = (uint32_t)MIN(kauthcred.cr_ngroups, |
314 | sizeof(uc->cr_groups) / sizeof(uc->cr_groups[0])); |
315 | memcpy(uc->cr_groups, kauthcred.cr_groups, |
316 | uc->cr_ngroups * sizeof(uc->cr_groups[0])); |
317 | |
318 | return (0); |
319 | } |
320 | |
321 | /* |
322 | * Read proc's from memory file into buffer bp, which has space to hold |
323 | * at most maxcnt procs. |
324 | */ |
325 | static int |
326 | kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p, |
327 | struct kinfo_proc *bp, int maxcnt) |
328 | { |
329 | int cnt = 0; |
330 | int nlwps; |
331 | struct kinfo_lwp *kl; |
332 | struct eproc eproc; |
333 | struct pgrp pgrp; |
334 | struct session sess; |
335 | struct tty tty; |
336 | struct proc proc; |
337 | |
338 | for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) { |
339 | if (KREAD(kd, (u_long)p, &proc)) { |
340 | _kvm_err(kd, kd->program, "can't read proc at %p" , p); |
341 | return (-1); |
342 | } |
343 | if (_kvm_convertcred(kd, (u_long)proc.p_cred, &eproc) != 0) { |
344 | _kvm_err(kd, kd->program, |
345 | "can't read proc credentials at %p" , p); |
346 | return (-1); |
347 | } |
348 | |
349 | switch (what) { |
350 | |
351 | case KERN_PROC_PID: |
352 | if (proc.p_pid != (pid_t)arg) |
353 | continue; |
354 | break; |
355 | |
356 | case KERN_PROC_UID: |
357 | if (eproc.e_ucred.cr_uid != (uid_t)arg) |
358 | continue; |
359 | break; |
360 | |
361 | case KERN_PROC_RUID: |
362 | if (eproc.e_pcred.p_ruid != (uid_t)arg) |
363 | continue; |
364 | break; |
365 | } |
366 | /* |
367 | * We're going to add another proc to the set. If this |
368 | * will overflow the buffer, assume the reason is because |
369 | * nprocs (or the proc list) is corrupt and declare an error. |
370 | */ |
371 | if (cnt >= maxcnt) { |
372 | _kvm_err(kd, kd->program, "nprocs corrupt" ); |
373 | return (-1); |
374 | } |
375 | /* |
376 | * gather eproc |
377 | */ |
378 | eproc.e_paddr = p; |
379 | if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { |
380 | _kvm_err(kd, kd->program, "can't read pgrp at %p" , |
381 | proc.p_pgrp); |
382 | return (-1); |
383 | } |
384 | eproc.e_sess = pgrp.pg_session; |
385 | eproc.e_pgid = pgrp.pg_id; |
386 | eproc.e_jobc = pgrp.pg_jobc; |
387 | if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { |
388 | _kvm_err(kd, kd->program, "can't read session at %p" , |
389 | pgrp.pg_session); |
390 | return (-1); |
391 | } |
392 | if ((proc.p_lflag & PL_CONTROLT) && sess.s_ttyp != NULL) { |
393 | if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { |
394 | _kvm_err(kd, kd->program, |
395 | "can't read tty at %p" , sess.s_ttyp); |
396 | return (-1); |
397 | } |
398 | eproc.e_tdev = (uint32_t)tty.t_dev; |
399 | eproc.e_tsess = tty.t_session; |
400 | if (tty.t_pgrp != NULL) { |
401 | if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { |
402 | _kvm_err(kd, kd->program, |
403 | "can't read tpgrp at %p" , |
404 | tty.t_pgrp); |
405 | return (-1); |
406 | } |
407 | eproc.e_tpgid = pgrp.pg_id; |
408 | } else |
409 | eproc.e_tpgid = -1; |
410 | } else |
411 | eproc.e_tdev = (uint32_t)NODEV; |
412 | eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0; |
413 | eproc.e_sid = sess.s_sid; |
414 | if (sess.s_leader == p) |
415 | eproc.e_flag |= EPROC_SLEADER; |
416 | /* |
417 | * Fill in the old-style proc.p_wmesg by copying the wmesg |
418 | * from the first available LWP. |
419 | */ |
420 | kl = kvm_getlwps(kd, proc.p_pid, |
421 | (u_long)PTRTOUINT64(eproc.e_paddr), |
422 | sizeof(struct kinfo_lwp), &nlwps); |
423 | if (kl) { |
424 | if (nlwps > 0) { |
425 | strcpy(eproc.e_wmesg, kl[0].l_wmesg); |
426 | } |
427 | } |
428 | (void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm, |
429 | sizeof(eproc.e_vm)); |
430 | |
431 | eproc.e_xsize = eproc.e_xrssize = 0; |
432 | eproc.e_xccount = eproc.e_xswrss = 0; |
433 | |
434 | switch (what) { |
435 | |
436 | case KERN_PROC_PGRP: |
437 | if (eproc.e_pgid != (pid_t)arg) |
438 | continue; |
439 | break; |
440 | |
441 | case KERN_PROC_TTY: |
442 | if ((proc.p_lflag & PL_CONTROLT) == 0 || |
443 | eproc.e_tdev != (dev_t)arg) |
444 | continue; |
445 | break; |
446 | } |
447 | memcpy(&bp->kp_proc, &proc, sizeof(proc)); |
448 | memcpy(&bp->kp_eproc, &eproc, sizeof(eproc)); |
449 | ++bp; |
450 | ++cnt; |
451 | } |
452 | return (cnt); |
453 | } |
454 | |
455 | /* |
456 | * Build proc info array by reading in proc list from a crash dump. |
457 | * Return number of procs read. maxcnt is the max we will read. |
458 | */ |
459 | static int |
460 | kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc, |
461 | u_long a_zombproc, int maxcnt) |
462 | { |
463 | struct kinfo_proc *bp = kd->procbase; |
464 | int acnt, zcnt; |
465 | struct proc *p; |
466 | |
467 | if (KREAD(kd, a_allproc, &p)) { |
468 | _kvm_err(kd, kd->program, "cannot read allproc" ); |
469 | return (-1); |
470 | } |
471 | acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); |
472 | if (acnt < 0) |
473 | return (acnt); |
474 | |
475 | if (KREAD(kd, a_zombproc, &p)) { |
476 | _kvm_err(kd, kd->program, "cannot read zombproc" ); |
477 | return (-1); |
478 | } |
479 | zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, |
480 | maxcnt - acnt); |
481 | if (zcnt < 0) |
482 | zcnt = 0; |
483 | |
484 | return (acnt + zcnt); |
485 | } |
486 | |
487 | struct kinfo_proc2 * |
488 | kvm_getproc2(kvm_t *kd, int op, int arg, size_t esize, int *cnt) |
489 | { |
490 | size_t size; |
491 | int mib[6], st, nprocs; |
492 | struct pstats pstats; |
493 | |
494 | if (ISSYSCTL(kd)) { |
495 | size = 0; |
496 | mib[0] = CTL_KERN; |
497 | mib[1] = KERN_PROC2; |
498 | mib[2] = op; |
499 | mib[3] = arg; |
500 | mib[4] = (int)esize; |
501 | again: |
502 | mib[5] = 0; |
503 | st = sysctl(mib, 6, NULL, &size, NULL, (size_t)0); |
504 | if (st == -1) { |
505 | _kvm_syserr(kd, kd->program, "kvm_getproc2" ); |
506 | return (NULL); |
507 | } |
508 | |
509 | mib[5] = (int) (size / esize); |
510 | KVM_ALLOC(kd, procbase2, size); |
511 | st = sysctl(mib, 6, kd->procbase2, &size, NULL, (size_t)0); |
512 | if (st == -1) { |
513 | if (errno == ENOMEM) { |
514 | goto again; |
515 | } |
516 | _kvm_syserr(kd, kd->program, "kvm_getproc2" ); |
517 | return (NULL); |
518 | } |
519 | nprocs = (int) (size / esize); |
520 | } else { |
521 | char *kp2c; |
522 | struct kinfo_proc *kp; |
523 | struct kinfo_proc2 kp2, *kp2p; |
524 | struct kinfo_lwp *kl; |
525 | int i, nlwps; |
526 | |
527 | kp = kvm_getprocs(kd, op, arg, &nprocs); |
528 | if (kp == NULL) |
529 | return (NULL); |
530 | |
531 | size = nprocs * esize; |
532 | KVM_ALLOC(kd, procbase2, size); |
533 | kp2c = (char *)(void *)kd->procbase2; |
534 | kp2p = &kp2; |
535 | for (i = 0; i < nprocs; i++, kp++) { |
536 | struct timeval tv; |
537 | |
538 | kl = kvm_getlwps(kd, kp->kp_proc.p_pid, |
539 | (u_long)PTRTOUINT64(kp->kp_eproc.e_paddr), |
540 | sizeof(struct kinfo_lwp), &nlwps); |
541 | |
542 | if (kl == NULL) { |
543 | _kvm_syserr(kd, NULL, |
544 | "kvm_getlwps() failed on process %u\n" , |
545 | kp->kp_proc.p_pid); |
546 | if (nlwps == 0) |
547 | return NULL; |
548 | else |
549 | continue; |
550 | } |
551 | |
552 | /* We use kl[0] as the "representative" LWP */ |
553 | memset(kp2p, 0, sizeof(kp2)); |
554 | kp2p->p_forw = kl[0].l_forw; |
555 | kp2p->p_back = kl[0].l_back; |
556 | kp2p->p_paddr = PTRTOUINT64(kp->kp_eproc.e_paddr); |
557 | kp2p->p_addr = kl[0].l_addr; |
558 | kp2p->p_fd = PTRTOUINT64(kp->kp_proc.p_fd); |
559 | kp2p->p_cwdi = PTRTOUINT64(kp->kp_proc.p_cwdi); |
560 | kp2p->p_stats = PTRTOUINT64(kp->kp_proc.p_stats); |
561 | kp2p->p_limit = PTRTOUINT64(kp->kp_proc.p_limit); |
562 | kp2p->p_vmspace = PTRTOUINT64(kp->kp_proc.p_vmspace); |
563 | kp2p->p_sigacts = PTRTOUINT64(kp->kp_proc.p_sigacts); |
564 | kp2p->p_sess = PTRTOUINT64(kp->kp_eproc.e_sess); |
565 | kp2p->p_tsess = 0; |
566 | #if 1 /* XXX: dsl - p_ru was only ever non-zero for zombies */ |
567 | kp2p->p_ru = 0; |
568 | #else |
569 | kp2p->p_ru = PTRTOUINT64(pstats.p_ru); |
570 | #endif |
571 | |
572 | kp2p->p_eflag = 0; |
573 | kp2p->p_exitsig = kp->kp_proc.p_exitsig; |
574 | kp2p->p_flag = kp->kp_proc.p_flag; |
575 | |
576 | kp2p->p_pid = kp->kp_proc.p_pid; |
577 | |
578 | kp2p->p_ppid = kp->kp_eproc.e_ppid; |
579 | kp2p->p_sid = kp->kp_eproc.e_sid; |
580 | kp2p->p__pgid = kp->kp_eproc.e_pgid; |
581 | |
582 | kp2p->p_tpgid = -1 /* XXX NO_PGID! */; |
583 | |
584 | kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid; |
585 | kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid; |
586 | kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid; |
587 | kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid; |
588 | kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid; |
589 | kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid; |
590 | |
591 | /*CONSTCOND*/ |
592 | memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups, |
593 | MIN(sizeof(kp2p->p_groups), |
594 | sizeof(kp->kp_eproc.e_ucred.cr_groups))); |
595 | kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups; |
596 | |
597 | kp2p->p_jobc = kp->kp_eproc.e_jobc; |
598 | kp2p->p_tdev = kp->kp_eproc.e_tdev; |
599 | kp2p->p_tpgid = kp->kp_eproc.e_tpgid; |
600 | kp2p->p_tsess = PTRTOUINT64(kp->kp_eproc.e_tsess); |
601 | |
602 | kp2p->p_estcpu = 0; |
603 | bintime2timeval(&kp->kp_proc.p_rtime, &tv); |
604 | kp2p->p_rtime_sec = (uint32_t)tv.tv_sec; |
605 | kp2p->p_rtime_usec = (uint32_t)tv.tv_usec; |
606 | kp2p->p_cpticks = kl[0].l_cpticks; |
607 | kp2p->p_pctcpu = kp->kp_proc.p_pctcpu; |
608 | kp2p->p_swtime = kl[0].l_swtime; |
609 | kp2p->p_slptime = kl[0].l_slptime; |
610 | #if 0 /* XXX thorpej */ |
611 | kp2p->p_schedflags = kp->kp_proc.p_schedflags; |
612 | #else |
613 | kp2p->p_schedflags = 0; |
614 | #endif |
615 | |
616 | kp2p->p_uticks = kp->kp_proc.p_uticks; |
617 | kp2p->p_sticks = kp->kp_proc.p_sticks; |
618 | kp2p->p_iticks = kp->kp_proc.p_iticks; |
619 | |
620 | kp2p->p_tracep = PTRTOUINT64(kp->kp_proc.p_tracep); |
621 | kp2p->p_traceflag = kp->kp_proc.p_traceflag; |
622 | |
623 | kp2p->p_holdcnt = kl[0].l_holdcnt; |
624 | |
625 | memcpy(&kp2p->p_siglist, |
626 | &kp->kp_proc.p_sigpend.sp_set, |
627 | sizeof(ki_sigset_t)); |
628 | memset(&kp2p->p_sigmask, 0, |
629 | sizeof(ki_sigset_t)); |
630 | memcpy(&kp2p->p_sigignore, |
631 | &kp->kp_proc.p_sigctx.ps_sigignore, |
632 | sizeof(ki_sigset_t)); |
633 | memcpy(&kp2p->p_sigcatch, |
634 | &kp->kp_proc.p_sigctx.ps_sigcatch, |
635 | sizeof(ki_sigset_t)); |
636 | |
637 | kp2p->p_stat = kl[0].l_stat; |
638 | kp2p->p_priority = kl[0].l_priority; |
639 | kp2p->p_usrpri = kl[0].l_priority; |
640 | kp2p->p_nice = kp->kp_proc.p_nice; |
641 | |
642 | kp2p->p_xstat = P_WAITSTATUS(&kp->kp_proc); |
643 | kp2p->p_acflag = kp->kp_proc.p_acflag; |
644 | |
645 | /*CONSTCOND*/ |
646 | strncpy(kp2p->p_comm, kp->kp_proc.p_comm, |
647 | MIN(sizeof(kp2p->p_comm), |
648 | sizeof(kp->kp_proc.p_comm))); |
649 | |
650 | strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg, |
651 | sizeof(kp2p->p_wmesg)); |
652 | kp2p->p_wchan = kl[0].l_wchan; |
653 | strncpy(kp2p->p_login, kp->kp_eproc.e_login, |
654 | sizeof(kp2p->p_login)); |
655 | |
656 | kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize; |
657 | kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize; |
658 | kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize; |
659 | kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize; |
660 | kp2p->p_vm_vsize = kp->kp_eproc.e_vm.vm_map.size |
661 | / kd->nbpg; |
662 | /* Adjust mapped size */ |
663 | kp2p->p_vm_msize = |
664 | (kp->kp_eproc.e_vm.vm_map.size / kd->nbpg) - |
665 | kp->kp_eproc.e_vm.vm_issize + |
666 | kp->kp_eproc.e_vm.vm_ssize; |
667 | |
668 | kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag; |
669 | |
670 | kp2p->p_realflag = kp->kp_proc.p_flag; |
671 | kp2p->p_nlwps = kp->kp_proc.p_nlwps; |
672 | kp2p->p_nrlwps = kp->kp_proc.p_nrlwps; |
673 | kp2p->p_realstat = kp->kp_proc.p_stat; |
674 | |
675 | if (P_ZOMBIE(&kp->kp_proc) || |
676 | kp->kp_proc.p_stats == NULL || |
677 | KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) { |
678 | kp2p->p_uvalid = 0; |
679 | } else { |
680 | kp2p->p_uvalid = 1; |
681 | |
682 | kp2p->p_ustart_sec = (u_int32_t) |
683 | pstats.p_start.tv_sec; |
684 | kp2p->p_ustart_usec = (u_int32_t) |
685 | pstats.p_start.tv_usec; |
686 | |
687 | kp2p->p_uutime_sec = (u_int32_t) |
688 | pstats.p_ru.ru_utime.tv_sec; |
689 | kp2p->p_uutime_usec = (u_int32_t) |
690 | pstats.p_ru.ru_utime.tv_usec; |
691 | kp2p->p_ustime_sec = (u_int32_t) |
692 | pstats.p_ru.ru_stime.tv_sec; |
693 | kp2p->p_ustime_usec = (u_int32_t) |
694 | pstats.p_ru.ru_stime.tv_usec; |
695 | |
696 | kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss; |
697 | kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss; |
698 | kp2p->p_uru_idrss = pstats.p_ru.ru_idrss; |
699 | kp2p->p_uru_isrss = pstats.p_ru.ru_isrss; |
700 | kp2p->p_uru_minflt = pstats.p_ru.ru_minflt; |
701 | kp2p->p_uru_majflt = pstats.p_ru.ru_majflt; |
702 | kp2p->p_uru_nswap = pstats.p_ru.ru_nswap; |
703 | kp2p->p_uru_inblock = pstats.p_ru.ru_inblock; |
704 | kp2p->p_uru_oublock = pstats.p_ru.ru_oublock; |
705 | kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd; |
706 | kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv; |
707 | kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals; |
708 | kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw; |
709 | kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw; |
710 | |
711 | kp2p->p_uctime_sec = (u_int32_t) |
712 | (pstats.p_cru.ru_utime.tv_sec + |
713 | pstats.p_cru.ru_stime.tv_sec); |
714 | kp2p->p_uctime_usec = (u_int32_t) |
715 | (pstats.p_cru.ru_utime.tv_usec + |
716 | pstats.p_cru.ru_stime.tv_usec); |
717 | } |
718 | |
719 | memcpy(kp2c, &kp2, esize); |
720 | kp2c += esize; |
721 | } |
722 | } |
723 | *cnt = nprocs; |
724 | return (kd->procbase2); |
725 | } |
726 | |
727 | struct kinfo_lwp * |
728 | kvm_getlwps(kvm_t *kd, int pid, u_long paddr, size_t esize, int *cnt) |
729 | { |
730 | size_t size; |
731 | int mib[5], nlwps; |
732 | ssize_t st; |
733 | struct kinfo_lwp *kl; |
734 | |
735 | if (ISSYSCTL(kd)) { |
736 | size = 0; |
737 | mib[0] = CTL_KERN; |
738 | mib[1] = KERN_LWP; |
739 | mib[2] = pid; |
740 | mib[3] = (int)esize; |
741 | mib[4] = 0; |
742 | again: |
743 | st = sysctl(mib, 5, NULL, &size, NULL, (size_t)0); |
744 | if (st == -1) { |
745 | switch (errno) { |
746 | case ESRCH: /* Treat this as a soft error; see kvm.c */ |
747 | _kvm_syserr(kd, NULL, "kvm_getlwps" ); |
748 | return NULL; |
749 | default: |
750 | _kvm_syserr(kd, kd->program, "kvm_getlwps" ); |
751 | return NULL; |
752 | } |
753 | } |
754 | mib[4] = (int) (size / esize); |
755 | KVM_ALLOC(kd, lwpbase, size); |
756 | st = sysctl(mib, 5, kd->lwpbase, &size, NULL, (size_t)0); |
757 | if (st == -1) { |
758 | switch (errno) { |
759 | case ESRCH: /* Treat this as a soft error; see kvm.c */ |
760 | _kvm_syserr(kd, NULL, "kvm_getlwps" ); |
761 | return NULL; |
762 | case ENOMEM: |
763 | goto again; |
764 | default: |
765 | _kvm_syserr(kd, kd->program, "kvm_getlwps" ); |
766 | return NULL; |
767 | } |
768 | } |
769 | nlwps = (int) (size / esize); |
770 | } else { |
771 | /* grovel through the memory image */ |
772 | struct proc p; |
773 | struct lwp l; |
774 | u_long laddr; |
775 | void *back; |
776 | int i; |
777 | |
778 | st = kvm_read(kd, paddr, &p, sizeof(p)); |
779 | if (st == -1) { |
780 | _kvm_syserr(kd, kd->program, "kvm_getlwps" ); |
781 | return (NULL); |
782 | } |
783 | |
784 | nlwps = p.p_nlwps; |
785 | size = nlwps * sizeof(*kd->lwpbase); |
786 | KVM_ALLOC(kd, lwpbase, size); |
787 | laddr = (u_long)PTRTOUINT64(p.p_lwps.lh_first); |
788 | for (i = 0; (i < nlwps) && (laddr != 0); i++) { |
789 | st = kvm_read(kd, laddr, &l, sizeof(l)); |
790 | if (st == -1) { |
791 | _kvm_syserr(kd, kd->program, "kvm_getlwps" ); |
792 | return (NULL); |
793 | } |
794 | kl = &kd->lwpbase[i]; |
795 | kl->l_laddr = laddr; |
796 | kl->l_forw = PTRTOUINT64(l.l_runq.tqe_next); |
797 | laddr = (u_long)PTRTOUINT64(l.l_runq.tqe_prev); |
798 | st = kvm_read(kd, laddr, &back, sizeof(back)); |
799 | if (st == -1) { |
800 | _kvm_syserr(kd, kd->program, "kvm_getlwps" ); |
801 | return (NULL); |
802 | } |
803 | kl->l_back = PTRTOUINT64(back); |
804 | kl->l_addr = PTRTOUINT64(l.l_addr); |
805 | kl->l_lid = l.l_lid; |
806 | kl->l_flag = l.l_flag; |
807 | kl->l_swtime = l.l_swtime; |
808 | kl->l_slptime = l.l_slptime; |
809 | kl->l_schedflags = 0; /* XXX */ |
810 | kl->l_holdcnt = 0; |
811 | kl->l_priority = l.l_priority; |
812 | kl->l_usrpri = l.l_priority; |
813 | kl->l_stat = l.l_stat; |
814 | kl->l_wchan = PTRTOUINT64(l.l_wchan); |
815 | if (l.l_wmesg) |
816 | (void)kvm_read(kd, (u_long)l.l_wmesg, |
817 | kl->l_wmesg, (size_t)WMESGLEN); |
818 | kl->l_cpuid = KI_NOCPU; |
819 | laddr = (u_long)PTRTOUINT64(l.l_sibling.le_next); |
820 | } |
821 | } |
822 | |
823 | *cnt = nlwps; |
824 | return (kd->lwpbase); |
825 | } |
826 | |
827 | struct kinfo_proc * |
828 | kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt) |
829 | { |
830 | size_t size; |
831 | int mib[4], st, nprocs; |
832 | |
833 | if (ISALIVE(kd)) { |
834 | size = 0; |
835 | mib[0] = CTL_KERN; |
836 | mib[1] = KERN_PROC; |
837 | mib[2] = op; |
838 | mib[3] = arg; |
839 | st = sysctl(mib, 4, NULL, &size, NULL, (size_t)0); |
840 | if (st == -1) { |
841 | _kvm_syserr(kd, kd->program, "kvm_getprocs" ); |
842 | return (NULL); |
843 | } |
844 | KVM_ALLOC(kd, procbase, size); |
845 | st = sysctl(mib, 4, kd->procbase, &size, NULL, (size_t)0); |
846 | if (st == -1) { |
847 | _kvm_syserr(kd, kd->program, "kvm_getprocs" ); |
848 | return (NULL); |
849 | } |
850 | if (size % sizeof(struct kinfo_proc) != 0) { |
851 | _kvm_err(kd, kd->program, |
852 | "proc size mismatch (%lu total, %lu chunks)" , |
853 | (u_long)size, (u_long)sizeof(struct kinfo_proc)); |
854 | return (NULL); |
855 | } |
856 | nprocs = (int) (size / sizeof(struct kinfo_proc)); |
857 | } else { |
858 | struct nlist nl[4], *p; |
859 | |
860 | (void)memset(nl, 0, sizeof(nl)); |
861 | nl[0].n_name = "_nprocs" ; |
862 | nl[1].n_name = "_allproc" ; |
863 | nl[2].n_name = "_zombproc" ; |
864 | nl[3].n_name = NULL; |
865 | |
866 | if (kvm_nlist(kd, nl) != 0) { |
867 | for (p = nl; p->n_type != 0; ++p) |
868 | continue; |
869 | _kvm_err(kd, kd->program, |
870 | "%s: no such symbol" , p->n_name); |
871 | return (NULL); |
872 | } |
873 | if (KREAD(kd, nl[0].n_value, &nprocs)) { |
874 | _kvm_err(kd, kd->program, "can't read nprocs" ); |
875 | return (NULL); |
876 | } |
877 | size = nprocs * sizeof(*kd->procbase); |
878 | KVM_ALLOC(kd, procbase, size); |
879 | nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, |
880 | nl[2].n_value, nprocs); |
881 | if (nprocs < 0) |
882 | return (NULL); |
883 | #ifdef notdef |
884 | size = nprocs * sizeof(struct kinfo_proc); |
885 | (void)realloc(kd->procbase, size); |
886 | #endif |
887 | } |
888 | *cnt = nprocs; |
889 | return (kd->procbase); |
890 | } |
891 | |
892 | void * |
893 | _kvm_realloc(kvm_t *kd, void *p, size_t n) |
894 | { |
895 | void *np = realloc(p, n); |
896 | |
897 | if (np == NULL) |
898 | _kvm_err(kd, kd->program, "out of memory" ); |
899 | return (np); |
900 | } |
901 | |
902 | /* |
903 | * Read in an argument vector from the user address space of process p. |
904 | * addr if the user-space base address of narg null-terminated contiguous |
905 | * strings. This is used to read in both the command arguments and |
906 | * environment strings. Read at most maxcnt characters of strings. |
907 | */ |
908 | static char ** |
909 | kvm_argv(kvm_t *kd, const struct miniproc *p, u_long addr, int narg, |
910 | int maxcnt) |
911 | { |
912 | char *np, *cp, *ep, *ap; |
913 | u_long oaddr = (u_long)~0L; |
914 | u_long len; |
915 | size_t cc; |
916 | char **argv; |
917 | |
918 | /* |
919 | * Check that there aren't an unreasonable number of arguments, |
920 | * and that the address is in user space. |
921 | */ |
922 | if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva) |
923 | return (NULL); |
924 | |
925 | if (kd->argv == NULL) { |
926 | /* |
927 | * Try to avoid reallocs. |
928 | */ |
929 | kd->argc = MAX(narg + 1, 32); |
930 | kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv)); |
931 | if (kd->argv == NULL) |
932 | return (NULL); |
933 | } else if (narg + 1 > kd->argc) { |
934 | kd->argc = MAX(2 * kd->argc, narg + 1); |
935 | kd->argv = _kvm_realloc(kd, kd->argv, kd->argc * |
936 | sizeof(*kd->argv)); |
937 | if (kd->argv == NULL) |
938 | return (NULL); |
939 | } |
940 | if (kd->argspc == NULL) { |
941 | kd->argspc = _kvm_malloc(kd, (size_t)kd->nbpg); |
942 | if (kd->argspc == NULL) |
943 | return (NULL); |
944 | kd->argspc_len = kd->nbpg; |
945 | } |
946 | if (kd->argbuf == NULL) { |
947 | kd->argbuf = _kvm_malloc(kd, (size_t)kd->nbpg); |
948 | if (kd->argbuf == NULL) |
949 | return (NULL); |
950 | } |
951 | cc = sizeof(char *) * narg; |
952 | if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc) |
953 | return (NULL); |
954 | ap = np = kd->argspc; |
955 | argv = kd->argv; |
956 | len = 0; |
957 | /* |
958 | * Loop over pages, filling in the argument vector. |
959 | */ |
960 | while (argv < kd->argv + narg && *argv != NULL) { |
961 | addr = (u_long)*argv & ~(kd->nbpg - 1); |
962 | if (addr != oaddr) { |
963 | if (kvm_ureadm(kd, p, addr, kd->argbuf, |
964 | (size_t)kd->nbpg) != kd->nbpg) |
965 | return (NULL); |
966 | oaddr = addr; |
967 | } |
968 | addr = (u_long)*argv & (kd->nbpg - 1); |
969 | cp = kd->argbuf + (size_t)addr; |
970 | cc = kd->nbpg - (size_t)addr; |
971 | if (maxcnt > 0 && cc > (size_t)(maxcnt - len)) |
972 | cc = (size_t)(maxcnt - len); |
973 | ep = memchr(cp, '\0', cc); |
974 | if (ep != NULL) |
975 | cc = ep - cp + 1; |
976 | if (len + cc > kd->argspc_len) { |
977 | ptrdiff_t off; |
978 | char **pp; |
979 | char *op = kd->argspc; |
980 | |
981 | kd->argspc_len *= 2; |
982 | kd->argspc = _kvm_realloc(kd, kd->argspc, |
983 | kd->argspc_len); |
984 | if (kd->argspc == NULL) |
985 | return (NULL); |
986 | /* |
987 | * Adjust argv pointers in case realloc moved |
988 | * the string space. |
989 | */ |
990 | off = kd->argspc - op; |
991 | for (pp = kd->argv; pp < argv; pp++) |
992 | *pp += off; |
993 | ap += off; |
994 | np += off; |
995 | } |
996 | memcpy(np, cp, cc); |
997 | np += cc; |
998 | len += cc; |
999 | if (ep != NULL) { |
1000 | *argv++ = ap; |
1001 | ap = np; |
1002 | } else |
1003 | *argv += cc; |
1004 | if (maxcnt > 0 && len >= maxcnt) { |
1005 | /* |
1006 | * We're stopping prematurely. Terminate the |
1007 | * current string. |
1008 | */ |
1009 | if (ep == NULL) { |
1010 | *np = '\0'; |
1011 | *argv++ = ap; |
1012 | } |
1013 | break; |
1014 | } |
1015 | } |
1016 | /* Make sure argv is terminated. */ |
1017 | *argv = NULL; |
1018 | return (kd->argv); |
1019 | } |
1020 | |
1021 | static void |
1022 | ps_str_a(struct ps_strings *p, u_long *addr, int *n) |
1023 | { |
1024 | |
1025 | *addr = (u_long)p->ps_argvstr; |
1026 | *n = p->ps_nargvstr; |
1027 | } |
1028 | |
1029 | static void |
1030 | ps_str_e(struct ps_strings *p, u_long *addr, int *n) |
1031 | { |
1032 | |
1033 | *addr = (u_long)p->ps_envstr; |
1034 | *n = p->ps_nenvstr; |
1035 | } |
1036 | |
1037 | /* |
1038 | * Determine if the proc indicated by p is still active. |
1039 | * This test is not 100% foolproof in theory, but chances of |
1040 | * being wrong are very low. |
1041 | */ |
1042 | static int |
1043 | proc_verify(kvm_t *kd, u_long kernp, const struct miniproc *p) |
1044 | { |
1045 | struct proc kernproc; |
1046 | |
1047 | /* |
1048 | * Just read in the whole proc. It's not that big relative |
1049 | * to the cost of the read system call. |
1050 | */ |
1051 | if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) != |
1052 | sizeof(kernproc)) |
1053 | return (0); |
1054 | return (p->p_pid == kernproc.p_pid && |
1055 | (kernproc.p_stat != SZOMB || p->p_stat == SZOMB)); |
1056 | } |
1057 | |
1058 | static char ** |
1059 | kvm_doargv(kvm_t *kd, const struct miniproc *p, int nchr, |
1060 | void (*info)(struct ps_strings *, u_long *, int *)) |
1061 | { |
1062 | char **ap; |
1063 | u_long addr; |
1064 | int cnt; |
1065 | struct ps_strings arginfo; |
1066 | |
1067 | /* |
1068 | * Pointers are stored at the top of the user stack. |
1069 | */ |
1070 | if (p->p_stat == SZOMB) |
1071 | return (NULL); |
1072 | cnt = (int)kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo), |
1073 | (void *)&arginfo, sizeof(arginfo)); |
1074 | if (cnt != sizeof(arginfo)) |
1075 | return (NULL); |
1076 | |
1077 | (*info)(&arginfo, &addr, &cnt); |
1078 | if (cnt == 0) |
1079 | return (NULL); |
1080 | ap = kvm_argv(kd, p, addr, cnt, nchr); |
1081 | /* |
1082 | * For live kernels, make sure this process didn't go away. |
1083 | */ |
1084 | if (ap != NULL && ISALIVE(kd) && |
1085 | !proc_verify(kd, (u_long)p->p_paddr, p)) |
1086 | ap = NULL; |
1087 | return (ap); |
1088 | } |
1089 | |
1090 | /* |
1091 | * Get the command args. This code is now machine independent. |
1092 | */ |
1093 | char ** |
1094 | kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr) |
1095 | { |
1096 | struct miniproc p; |
1097 | |
1098 | KPTOMINI(kp, &p); |
1099 | return (kvm_doargv(kd, &p, nchr, ps_str_a)); |
1100 | } |
1101 | |
1102 | char ** |
1103 | kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr) |
1104 | { |
1105 | struct miniproc p; |
1106 | |
1107 | KPTOMINI(kp, &p); |
1108 | return (kvm_doargv(kd, &p, nchr, ps_str_e)); |
1109 | } |
1110 | |
1111 | static char ** |
1112 | kvm_doargv2(kvm_t *kd, pid_t pid, int type, int nchr) |
1113 | { |
1114 | size_t bufs; |
1115 | int narg, mib[4]; |
1116 | size_t newargspc_len; |
1117 | char **ap, *bp, *endp; |
1118 | |
1119 | /* |
1120 | * Check that there aren't an unreasonable number of arguments. |
1121 | */ |
1122 | if (nchr > ARG_MAX) |
1123 | return (NULL); |
1124 | |
1125 | if (nchr == 0) |
1126 | nchr = ARG_MAX; |
1127 | |
1128 | /* Get number of strings in argv */ |
1129 | mib[0] = CTL_KERN; |
1130 | mib[1] = KERN_PROC_ARGS; |
1131 | mib[2] = pid; |
1132 | mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV; |
1133 | bufs = sizeof(narg); |
1134 | if (sysctl(mib, 4, &narg, &bufs, NULL, (size_t)0) == -1) |
1135 | return (NULL); |
1136 | |
1137 | if (kd->argv == NULL) { |
1138 | /* |
1139 | * Try to avoid reallocs. |
1140 | */ |
1141 | kd->argc = MAX(narg + 1, 32); |
1142 | kd->argv = _kvm_malloc(kd, kd->argc * sizeof(*kd->argv)); |
1143 | if (kd->argv == NULL) |
1144 | return (NULL); |
1145 | } else if (narg + 1 > kd->argc) { |
1146 | kd->argc = MAX(2 * kd->argc, narg + 1); |
1147 | kd->argv = _kvm_realloc(kd, kd->argv, kd->argc * |
1148 | sizeof(*kd->argv)); |
1149 | if (kd->argv == NULL) |
1150 | return (NULL); |
1151 | } |
1152 | |
1153 | newargspc_len = MIN(nchr, ARG_MAX); |
1154 | KVM_ALLOC(kd, argspc, newargspc_len); |
1155 | memset(kd->argspc, 0, (size_t)kd->argspc_len); /* XXX necessary? */ |
1156 | |
1157 | mib[0] = CTL_KERN; |
1158 | mib[1] = KERN_PROC_ARGS; |
1159 | mib[2] = pid; |
1160 | mib[3] = type; |
1161 | bufs = kd->argspc_len; |
1162 | if (sysctl(mib, 4, kd->argspc, &bufs, NULL, (size_t)0) == -1) |
1163 | return (NULL); |
1164 | |
1165 | bp = kd->argspc; |
1166 | bp[kd->argspc_len-1] = '\0'; /* make sure the string ends with nul */ |
1167 | ap = kd->argv; |
1168 | endp = bp + MIN(nchr, bufs); |
1169 | |
1170 | while (bp < endp) { |
1171 | *ap++ = bp; |
1172 | /* |
1173 | * XXX: don't need following anymore, or stick check |
1174 | * for max argc in above while loop? |
1175 | */ |
1176 | if (ap >= kd->argv + kd->argc) { |
1177 | kd->argc *= 2; |
1178 | kd->argv = _kvm_realloc(kd, kd->argv, |
1179 | kd->argc * sizeof(*kd->argv)); |
1180 | ap = kd->argv; |
1181 | } |
1182 | bp += strlen(bp) + 1; |
1183 | } |
1184 | *ap = NULL; |
1185 | |
1186 | return (kd->argv); |
1187 | } |
1188 | |
1189 | char ** |
1190 | kvm_getargv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr) |
1191 | { |
1192 | |
1193 | return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr)); |
1194 | } |
1195 | |
1196 | char ** |
1197 | kvm_getenvv2(kvm_t *kd, const struct kinfo_proc2 *kp, int nchr) |
1198 | { |
1199 | |
1200 | return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr)); |
1201 | } |
1202 | |
1203 | /* |
1204 | * Read from user space. The user context is given by p. |
1205 | */ |
1206 | static ssize_t |
1207 | kvm_ureadm(kvm_t *kd, const struct miniproc *p, u_long uva, |
1208 | char *buf, size_t len) |
1209 | { |
1210 | char *cp; |
1211 | |
1212 | cp = buf; |
1213 | while (len > 0) { |
1214 | size_t cc; |
1215 | char *dp; |
1216 | u_long cnt; |
1217 | |
1218 | dp = _kvm_ureadm(kd, p, uva, &cnt); |
1219 | if (dp == NULL) { |
1220 | _kvm_err(kd, 0, "invalid address (%lx)" , uva); |
1221 | return (0); |
1222 | } |
1223 | cc = (size_t)MIN(cnt, len); |
1224 | memcpy(cp, dp, cc); |
1225 | cp += cc; |
1226 | uva += cc; |
1227 | len -= cc; |
1228 | } |
1229 | return (ssize_t)(cp - buf); |
1230 | } |
1231 | |
1232 | ssize_t |
1233 | kvm_uread(kvm_t *kd, const struct proc *p, u_long uva, char *buf, size_t len) |
1234 | { |
1235 | struct miniproc mp; |
1236 | |
1237 | PTOMINI(p, &mp); |
1238 | return (kvm_ureadm(kd, &mp, uva, buf, len)); |
1239 | } |
1240 | |