| 1 | /* |
| 2 | * CDDL HEADER START |
| 3 | * |
| 4 | * The contents of this file are subject to the terms of the |
| 5 | * Common Development and Distribution License (the "License"). |
| 6 | * You may not use this file except in compliance with the License. |
| 7 | * |
| 8 | * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE |
| 9 | * or http://www.opensolaris.org/os/licensing. |
| 10 | * See the License for the specific language governing permissions |
| 11 | * and limitations under the License. |
| 12 | * |
| 13 | * When distributing Covered Code, include this CDDL HEADER in each |
| 14 | * file and include the License file at usr/src/OPENSOLARIS.LICENSE. |
| 15 | * If applicable, add the following below this CDDL HEADER, with the |
| 16 | * fields enclosed by brackets "[]" replaced with your own identifying |
| 17 | * information: Portions Copyright [yyyy] [name of copyright owner] |
| 18 | * |
| 19 | * CDDL HEADER END |
| 20 | */ |
| 21 | /* |
| 22 | * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. |
| 23 | * Copyright (c) 2012, Joyent, Inc. All rights reserved. |
| 24 | * Copyright (c) 2011, 2016 by Delphix. All rights reserved. |
| 25 | * Copyright (c) 2014 by Saso Kiselkov. All rights reserved. |
| 26 | * Copyright 2015 Nexenta Systems, Inc. All rights reserved. |
| 27 | */ |
| 28 | |
| 29 | /* |
| 30 | * DVA-based Adjustable Replacement Cache |
| 31 | * |
| 32 | * While much of the theory of operation used here is |
| 33 | * based on the self-tuning, low overhead replacement cache |
| 34 | * presented by Megiddo and Modha at FAST 2003, there are some |
| 35 | * significant differences: |
| 36 | * |
| 37 | * 1. The Megiddo and Modha model assumes any page is evictable. |
| 38 | * Pages in its cache cannot be "locked" into memory. This makes |
| 39 | * the eviction algorithm simple: evict the last page in the list. |
| 40 | * This also make the performance characteristics easy to reason |
| 41 | * about. Our cache is not so simple. At any given moment, some |
| 42 | * subset of the blocks in the cache are un-evictable because we |
| 43 | * have handed out a reference to them. Blocks are only evictable |
| 44 | * when there are no external references active. This makes |
| 45 | * eviction far more problematic: we choose to evict the evictable |
| 46 | * blocks that are the "lowest" in the list. |
| 47 | * |
| 48 | * There are times when it is not possible to evict the requested |
| 49 | * space. In these circumstances we are unable to adjust the cache |
| 50 | * size. To prevent the cache growing unbounded at these times we |
| 51 | * implement a "cache throttle" that slows the flow of new data |
| 52 | * into the cache until we can make space available. |
| 53 | * |
| 54 | * 2. The Megiddo and Modha model assumes a fixed cache size. |
| 55 | * Pages are evicted when the cache is full and there is a cache |
| 56 | * miss. Our model has a variable sized cache. It grows with |
| 57 | * high use, but also tries to react to memory pressure from the |
| 58 | * operating system: decreasing its size when system memory is |
| 59 | * tight. |
| 60 | * |
| 61 | * 3. The Megiddo and Modha model assumes a fixed page size. All |
| 62 | * elements of the cache are therefore exactly the same size. So |
| 63 | * when adjusting the cache size following a cache miss, its simply |
| 64 | * a matter of choosing a single page to evict. In our model, we |
| 65 | * have variable sized cache blocks (rangeing from 512 bytes to |
| 66 | * 128K bytes). We therefore choose a set of blocks to evict to make |
| 67 | * space for a cache miss that approximates as closely as possible |
| 68 | * the space used by the new block. |
| 69 | * |
| 70 | * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" |
| 71 | * by N. Megiddo & D. Modha, FAST 2003 |
| 72 | */ |
| 73 | |
| 74 | /* |
| 75 | * The locking model: |
| 76 | * |
| 77 | * A new reference to a cache buffer can be obtained in two |
| 78 | * ways: 1) via a hash table lookup using the DVA as a key, |
| 79 | * or 2) via one of the ARC lists. The arc_read() interface |
| 80 | * uses method 1, while the internal arc algorithms for |
| 81 | * adjusting the cache use method 2. We therefore provide two |
| 82 | * types of locks: 1) the hash table lock array, and 2) the |
| 83 | * arc list locks. |
| 84 | * |
| 85 | * Buffers do not have their own mutexes, rather they rely on the |
| 86 | * hash table mutexes for the bulk of their protection (i.e. most |
| 87 | * fields in the arc_buf_hdr_t are protected by these mutexes). |
| 88 | * |
| 89 | * buf_hash_find() returns the appropriate mutex (held) when it |
| 90 | * locates the requested buffer in the hash table. It returns |
| 91 | * NULL for the mutex if the buffer was not in the table. |
| 92 | * |
| 93 | * buf_hash_remove() expects the appropriate hash mutex to be |
| 94 | * already held before it is invoked. |
| 95 | * |
| 96 | * Each arc state also has a mutex which is used to protect the |
| 97 | * buffer list associated with the state. When attempting to |
| 98 | * obtain a hash table lock while holding an arc list lock you |
| 99 | * must use: mutex_tryenter() to avoid deadlock. Also note that |
| 100 | * the active state mutex must be held before the ghost state mutex. |
| 101 | * |
| 102 | * Arc buffers may have an associated eviction callback function. |
| 103 | * This function will be invoked prior to removing the buffer (e.g. |
| 104 | * in arc_do_user_evicts()). Note however that the data associated |
| 105 | * with the buffer may be evicted prior to the callback. The callback |
| 106 | * must be made with *no locks held* (to prevent deadlock). Additionally, |
| 107 | * the users of callbacks must ensure that their private data is |
| 108 | * protected from simultaneous callbacks from arc_clear_callback() |
| 109 | * and arc_do_user_evicts(). |
| 110 | * |
| 111 | * Note that the majority of the performance stats are manipulated |
| 112 | * with atomic operations. |
| 113 | * |
| 114 | * The L2ARC uses the l2ad_mtx on each vdev for the following: |
| 115 | * |
| 116 | * - L2ARC buflist creation |
| 117 | * - L2ARC buflist eviction |
| 118 | * - L2ARC write completion, which walks L2ARC buflists |
| 119 | * - ARC header destruction, as it removes from L2ARC buflists |
| 120 | * - ARC header release, as it removes from L2ARC buflists |
| 121 | */ |
| 122 | |
| 123 | /* |
| 124 | * ARC operation: |
| 125 | * |
| 126 | * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure. |
| 127 | * This structure can point either to a block that is still in the cache or to |
| 128 | * one that is only accessible in an L2 ARC device, or it can provide |
| 129 | * information about a block that was recently evicted. If a block is |
| 130 | * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough |
| 131 | * information to retrieve it from the L2ARC device. This information is |
| 132 | * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block |
| 133 | * that is in this state cannot access the data directly. |
| 134 | * |
| 135 | * Blocks that are actively being referenced or have not been evicted |
| 136 | * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within |
| 137 | * the arc_buf_hdr_t that will point to the data block in memory. A block can |
| 138 | * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC |
| 139 | * caches data in two ways -- in a list of arc buffers (arc_buf_t) and |
| 140 | * also in the arc_buf_hdr_t's private physical data block pointer (b_pdata). |
| 141 | * Each arc buffer (arc_buf_t) is being actively accessed by a specific ARC |
| 142 | * consumer, and always contains uncompressed data. The ARC will provide |
| 143 | * references to this data and will keep it cached until it is no longer in |
| 144 | * use. Typically, the arc will try to cache only the L1ARC's physical data |
| 145 | * block and will aggressively evict any arc_buf_t that is no longer referenced. |
| 146 | * The amount of memory consumed by the arc_buf_t's can be seen via the |
| 147 | * "overhead_size" kstat. |
| 148 | * |
| 149 | * |
| 150 | * arc_buf_hdr_t |
| 151 | * +-----------+ |
| 152 | * | | |
| 153 | * | | |
| 154 | * | | |
| 155 | * +-----------+ |
| 156 | * l2arc_buf_hdr_t| | |
| 157 | * | | |
| 158 | * +-----------+ |
| 159 | * l1arc_buf_hdr_t| | |
| 160 | * | | arc_buf_t |
| 161 | * | b_buf +------------>+---------+ arc_buf_t |
| 162 | * | | |b_next +---->+---------+ |
| 163 | * | b_pdata +-+ |---------| |b_next +-->NULL |
| 164 | * +-----------+ | | | +---------+ |
| 165 | * | |b_data +-+ | | |
| 166 | * | +---------+ | |b_data +-+ |
| 167 | * +->+------+ | +---------+ | |
| 168 | * (potentially) | | | | |
| 169 | * compressed | | | | |
| 170 | * data +------+ | v |
| 171 | * +->+------+ +------+ |
| 172 | * uncompressed | | | | |
| 173 | * data | | | | |
| 174 | * +------+ +------+ |
| 175 | * |
| 176 | * The L1ARC's data pointer, however, may or may not be uncompressed. The |
| 177 | * ARC has the ability to store the physical data (b_pdata) associated with |
| 178 | * the DVA of the arc_buf_hdr_t. Since the b_pdata is a copy of the on-disk |
| 179 | * physical block, it will match its on-disk compression characteristics. |
| 180 | * If the block on-disk is compressed, then the physical data block |
| 181 | * in the cache will also be compressed and vice-versa. This behavior |
| 182 | * can be disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the |
| 183 | * compressed ARC functionality is disabled, the b_pdata will point to an |
| 184 | * uncompressed version of the on-disk data. |
| 185 | * |
| 186 | * When a consumer reads a block, the ARC must first look to see if the |
| 187 | * arc_buf_hdr_t is cached. If the hdr is cached and already has an arc_buf_t, |
| 188 | * then an additional arc_buf_t is allocated and the uncompressed data is |
| 189 | * bcopied from the existing arc_buf_t. If the hdr is cached but does not |
| 190 | * have an arc_buf_t, then the ARC allocates a new arc_buf_t and decompresses |
| 191 | * the b_pdata contents into the arc_buf_t's b_data. If the arc_buf_hdr_t's |
| 192 | * b_pdata is not compressed, then the block is shared with the newly |
| 193 | * allocated arc_buf_t. This block sharing only occurs with one arc_buf_t |
| 194 | * in the arc buffer chain. Sharing the block reduces the memory overhead |
| 195 | * required when the hdr is caching uncompressed blocks or the compressed |
| 196 | * arc functionality has been disabled via 'zfs_compressed_arc_enabled'. |
| 197 | * |
| 198 | * The diagram below shows an example of an uncompressed ARC hdr that is |
| 199 | * sharing its data with an arc_buf_t: |
| 200 | * |
| 201 | * arc_buf_hdr_t |
| 202 | * +-----------+ |
| 203 | * | | |
| 204 | * | | |
| 205 | * | | |
| 206 | * +-----------+ |
| 207 | * l2arc_buf_hdr_t| | |
| 208 | * | | |
| 209 | * +-----------+ |
| 210 | * l1arc_buf_hdr_t| | |
| 211 | * | | arc_buf_t (shared) |
| 212 | * | b_buf +------------>+---------+ arc_buf_t |
| 213 | * | | |b_next +---->+---------+ |
| 214 | * | b_pdata +-+ |---------| |b_next +-->NULL |
| 215 | * +-----------+ | | | +---------+ |
| 216 | * | |b_data +-+ | | |
| 217 | * | +---------+ | |b_data +-+ |
| 218 | * +->+------+ | +---------+ | |
| 219 | * | | | | |
| 220 | * uncompressed | | | | |
| 221 | * data +------+ | | |
| 222 | * ^ +->+------+ | |
| 223 | * | uncompressed | | | |
| 224 | * | data | | | |
| 225 | * | +------+ | |
| 226 | * +---------------------------------+ |
| 227 | * |
| 228 | * Writing to the arc requires that the ARC first discard the b_pdata |
| 229 | * since the physical block is about to be rewritten. The new data contents |
| 230 | * will be contained in the arc_buf_t (uncompressed). As the I/O pipeline |
| 231 | * performs the write, it may compress the data before writing it to disk. |
| 232 | * The ARC will be called with the transformed data and will bcopy the |
| 233 | * transformed on-disk block into a newly allocated b_pdata. |
| 234 | * |
| 235 | * When the L2ARC is in use, it will also take advantage of the b_pdata. The |
| 236 | * L2ARC will always write the contents of b_pdata to the L2ARC. This means |
| 237 | * that when compressed arc is enabled that the L2ARC blocks are identical |
| 238 | * to the on-disk block in the main data pool. This provides a significant |
| 239 | * advantage since the ARC can leverage the bp's checksum when reading from the |
| 240 | * L2ARC to determine if the contents are valid. However, if the compressed |
| 241 | * arc is disabled, then the L2ARC's block must be transformed to look |
| 242 | * like the physical block in the main data pool before comparing the |
| 243 | * checksum and determining its validity. |
| 244 | */ |
| 245 | |
| 246 | #include <sys/spa.h> |
| 247 | #include <sys/zio.h> |
| 248 | #include <sys/spa_impl.h> |
| 249 | #include <sys/zio_compress.h> |
| 250 | #include <sys/zio_checksum.h> |
| 251 | #include <sys/zfs_context.h> |
| 252 | #include <sys/arc.h> |
| 253 | #include <sys/refcount.h> |
| 254 | #include <sys/vdev.h> |
| 255 | #include <sys/vdev_impl.h> |
| 256 | #include <sys/dsl_pool.h> |
| 257 | #include <sys/multilist.h> |
| 258 | #ifdef _KERNEL |
| 259 | #include <sys/dnlc.h> |
| 260 | #include <sys/racct.h> |
| 261 | #endif |
| 262 | #include <sys/callb.h> |
| 263 | #include <sys/kstat.h> |
| 264 | #include <sys/trim_map.h> |
| 265 | #include <zfs_fletcher.h> |
| 266 | #include <sys/sdt.h> |
| 267 | |
| 268 | #include <machine/vmparam.h> |
| 269 | |
| 270 | #ifdef illumos |
| 271 | #ifndef _KERNEL |
| 272 | /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ |
| 273 | boolean_t arc_watch = B_FALSE; |
| 274 | int arc_procfd; |
| 275 | #endif |
| 276 | #endif /* illumos */ |
| 277 | |
| 278 | #ifdef __NetBSD__ |
| 279 | #include <uvm/uvm.h> |
| 280 | #ifndef btop |
| 281 | #define btop(x) ((x) / PAGE_SIZE) |
| 282 | #endif |
| 283 | //#define needfree (uvmexp.free < uvmexp.freetarg ? uvmexp.freetarg : 0) |
| 284 | #define buf_init arc_buf_init |
| 285 | #define freemem uvmexp.free |
| 286 | #define minfree uvmexp.freemin |
| 287 | #define desfree uvmexp.freetarg |
| 288 | #define lotsfree (desfree * 2) |
| 289 | #define availrmem desfree |
| 290 | #define swapfs_minfree 0 |
| 291 | #define swapfs_reserve 0 |
| 292 | #undef curproc |
| 293 | #define curproc curlwp |
| 294 | #define proc_pageout uvm.pagedaemon_lwp |
| 295 | |
| 296 | static void *zio_arena; |
| 297 | |
| 298 | #include <sys/callback.h> |
| 299 | /* Structures used for memory and kva space reclaim. */ |
| 300 | static struct callback_entry arc_kva_reclaim_entry; |
| 301 | |
| 302 | #endif /* __NetBSD__ */ |
| 303 | |
| 304 | static kmutex_t arc_reclaim_lock; |
| 305 | static kcondvar_t arc_reclaim_thread_cv; |
| 306 | static boolean_t arc_reclaim_thread_exit; |
| 307 | static kcondvar_t arc_reclaim_waiters_cv; |
| 308 | |
| 309 | #ifdef __FreeBSD__ |
| 310 | static kmutex_t arc_dnlc_evicts_lock; |
| 311 | static kcondvar_t arc_dnlc_evicts_cv; |
| 312 | static boolean_t arc_dnlc_evicts_thread_exit; |
| 313 | |
| 314 | uint_t arc_reduce_dnlc_percent = 3; |
| 315 | #endif |
| 316 | |
| 317 | /* |
| 318 | * The number of headers to evict in arc_evict_state_impl() before |
| 319 | * dropping the sublist lock and evicting from another sublist. A lower |
| 320 | * value means we're more likely to evict the "correct" header (i.e. the |
| 321 | * oldest header in the arc state), but comes with higher overhead |
| 322 | * (i.e. more invocations of arc_evict_state_impl()). |
| 323 | */ |
| 324 | int zfs_arc_evict_batch_limit = 10; |
| 325 | |
| 326 | /* |
| 327 | * The number of sublists used for each of the arc state lists. If this |
| 328 | * is not set to a suitable value by the user, it will be configured to |
| 329 | * the number of CPUs on the system in arc_init(). |
| 330 | */ |
| 331 | int zfs_arc_num_sublists_per_state = 0; |
| 332 | |
| 333 | /* number of seconds before growing cache again */ |
| 334 | static int arc_grow_retry = 60; |
| 335 | |
| 336 | /* shift of arc_c for calculating overflow limit in arc_get_data_buf */ |
| 337 | int zfs_arc_overflow_shift = 8; |
| 338 | |
| 339 | /* shift of arc_c for calculating both min and max arc_p */ |
| 340 | static int arc_p_min_shift = 4; |
| 341 | |
| 342 | /* log2(fraction of arc to reclaim) */ |
| 343 | static int arc_shrink_shift = 7; |
| 344 | |
| 345 | /* |
| 346 | * log2(fraction of ARC which must be free to allow growing). |
| 347 | * I.e. If there is less than arc_c >> arc_no_grow_shift free memory, |
| 348 | * when reading a new block into the ARC, we will evict an equal-sized block |
| 349 | * from the ARC. |
| 350 | * |
| 351 | * This must be less than arc_shrink_shift, so that when we shrink the ARC, |
| 352 | * we will still not allow it to grow. |
| 353 | */ |
| 354 | int arc_no_grow_shift = 5; |
| 355 | |
| 356 | |
| 357 | /* |
| 358 | * minimum lifespan of a prefetch block in clock ticks |
| 359 | * (initialized in arc_init()) |
| 360 | */ |
| 361 | static int arc_min_prefetch_lifespan; |
| 362 | |
| 363 | /* |
| 364 | * If this percent of memory is free, don't throttle. |
| 365 | */ |
| 366 | int arc_lotsfree_percent = 10; |
| 367 | |
| 368 | static int arc_dead; |
| 369 | extern boolean_t zfs_prefetch_disable; |
| 370 | |
| 371 | /* |
| 372 | * The arc has filled available memory and has now warmed up. |
| 373 | */ |
| 374 | static boolean_t arc_warm; |
| 375 | |
| 376 | /* |
| 377 | * These tunables are for performance analysis. |
| 378 | */ |
| 379 | uint64_t zfs_arc_max; |
| 380 | uint64_t zfs_arc_min; |
| 381 | uint64_t zfs_arc_meta_limit = 0; |
| 382 | uint64_t zfs_arc_meta_min = 0; |
| 383 | int zfs_arc_grow_retry = 0; |
| 384 | int zfs_arc_shrink_shift = 0; |
| 385 | int zfs_arc_p_min_shift = 0; |
| 386 | uint64_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ |
| 387 | u_int zfs_arc_free_target = 0; |
| 388 | |
| 389 | /* Absolute min for arc min / max is 16MB. */ |
| 390 | static uint64_t arc_abs_min = 16 << 20; |
| 391 | |
| 392 | boolean_t zfs_compressed_arc_enabled = B_TRUE; |
| 393 | |
| 394 | #if defined(__FreeBSD__) && defined(_KERNEL) |
| 395 | static int sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS); |
| 396 | static int sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS); |
| 397 | static int sysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS); |
| 398 | static int sysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS); |
| 399 | |
| 400 | static void |
| 401 | arc_free_target_init(void *unused __unused) |
| 402 | { |
| 403 | |
| 404 | zfs_arc_free_target = vm_pageout_wakeup_thresh; |
| 405 | } |
| 406 | SYSINIT(arc_free_target_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_ANY, |
| 407 | arc_free_target_init, NULL); |
| 408 | |
| 409 | TUNABLE_QUAD("vfs.zfs.arc_meta_limit" , &zfs_arc_meta_limit); |
| 410 | TUNABLE_QUAD("vfs.zfs.arc_meta_min" , &zfs_arc_meta_min); |
| 411 | TUNABLE_INT("vfs.zfs.arc_shrink_shift" , &zfs_arc_shrink_shift); |
| 412 | SYSCTL_DECL(_vfs_zfs); |
| 413 | SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_max, CTLTYPE_U64 | CTLFLAG_RWTUN, |
| 414 | 0, sizeof(uint64_t), sysctl_vfs_zfs_arc_max, "QU" , "Maximum ARC size" ); |
| 415 | SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_min, CTLTYPE_U64 | CTLFLAG_RWTUN, |
| 416 | 0, sizeof(uint64_t), sysctl_vfs_zfs_arc_min, "QU" , "Minimum ARC size" ); |
| 417 | SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_average_blocksize, CTLFLAG_RDTUN, |
| 418 | &zfs_arc_average_blocksize, 0, |
| 419 | "ARC average blocksize" ); |
| 420 | SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_shrink_shift, CTLFLAG_RW, |
| 421 | &arc_shrink_shift, 0, |
| 422 | "log2(fraction of arc to reclaim)" ); |
| 423 | SYSCTL_INT(_vfs_zfs, OID_AUTO, compressed_arc_enabled, CTLFLAG_RDTUN, |
| 424 | &zfs_compressed_arc_enabled, 0, "Enable compressed ARC" ); |
| 425 | |
| 426 | /* |
| 427 | * We don't have a tunable for arc_free_target due to the dependency on |
| 428 | * pagedaemon initialisation. |
| 429 | */ |
| 430 | SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_free_target, |
| 431 | CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(u_int), |
| 432 | sysctl_vfs_zfs_arc_free_target, "IU" , |
| 433 | "Desired number of free pages below which ARC triggers reclaim" ); |
| 434 | |
| 435 | static int |
| 436 | sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS) |
| 437 | { |
| 438 | u_int val; |
| 439 | int err; |
| 440 | |
| 441 | val = zfs_arc_free_target; |
| 442 | err = sysctl_handle_int(oidp, &val, 0, req); |
| 443 | if (err != 0 || req->newptr == NULL) |
| 444 | return (err); |
| 445 | |
| 446 | if (val < minfree) |
| 447 | return (EINVAL); |
| 448 | if (val > vm_cnt.v_page_count) |
| 449 | return (EINVAL); |
| 450 | |
| 451 | zfs_arc_free_target = val; |
| 452 | |
| 453 | return (0); |
| 454 | } |
| 455 | |
| 456 | /* |
| 457 | * Must be declared here, before the definition of corresponding kstat |
| 458 | * macro which uses the same names will confuse the compiler. |
| 459 | */ |
| 460 | SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_meta_limit, |
| 461 | CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t), |
| 462 | sysctl_vfs_zfs_arc_meta_limit, "QU" , |
| 463 | "ARC metadata limit" ); |
| 464 | #endif |
| 465 | |
| 466 | /* |
| 467 | * Note that buffers can be in one of 6 states: |
| 468 | * ARC_anon - anonymous (discussed below) |
| 469 | * ARC_mru - recently used, currently cached |
| 470 | * ARC_mru_ghost - recentely used, no longer in cache |
| 471 | * ARC_mfu - frequently used, currently cached |
| 472 | * ARC_mfu_ghost - frequently used, no longer in cache |
| 473 | * ARC_l2c_only - exists in L2ARC but not other states |
| 474 | * When there are no active references to the buffer, they are |
| 475 | * are linked onto a list in one of these arc states. These are |
| 476 | * the only buffers that can be evicted or deleted. Within each |
| 477 | * state there are multiple lists, one for meta-data and one for |
| 478 | * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, |
| 479 | * etc.) is tracked separately so that it can be managed more |
| 480 | * explicitly: favored over data, limited explicitly. |
| 481 | * |
| 482 | * Anonymous buffers are buffers that are not associated with |
| 483 | * a DVA. These are buffers that hold dirty block copies |
| 484 | * before they are written to stable storage. By definition, |
| 485 | * they are "ref'd" and are considered part of arc_mru |
| 486 | * that cannot be freed. Generally, they will aquire a DVA |
| 487 | * as they are written and migrate onto the arc_mru list. |
| 488 | * |
| 489 | * The ARC_l2c_only state is for buffers that are in the second |
| 490 | * level ARC but no longer in any of the ARC_m* lists. The second |
| 491 | * level ARC itself may also contain buffers that are in any of |
| 492 | * the ARC_m* states - meaning that a buffer can exist in two |
| 493 | * places. The reason for the ARC_l2c_only state is to keep the |
| 494 | * buffer header in the hash table, so that reads that hit the |
| 495 | * second level ARC benefit from these fast lookups. |
| 496 | */ |
| 497 | |
| 498 | typedef struct arc_state { |
| 499 | /* |
| 500 | * list of evictable buffers |
| 501 | */ |
| 502 | multilist_t arcs_list[ARC_BUFC_NUMTYPES]; |
| 503 | /* |
| 504 | * total amount of evictable data in this state |
| 505 | */ |
| 506 | refcount_t arcs_esize[ARC_BUFC_NUMTYPES]; |
| 507 | /* |
| 508 | * total amount of data in this state; this includes: evictable, |
| 509 | * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA. |
| 510 | */ |
| 511 | refcount_t arcs_size; |
| 512 | } arc_state_t; |
| 513 | |
| 514 | /* The 6 states: */ |
| 515 | static arc_state_t ARC_anon; |
| 516 | static arc_state_t ARC_mru; |
| 517 | static arc_state_t ARC_mru_ghost; |
| 518 | static arc_state_t ARC_mfu; |
| 519 | static arc_state_t ARC_mfu_ghost; |
| 520 | static arc_state_t ARC_l2c_only; |
| 521 | |
| 522 | typedef struct arc_stats { |
| 523 | kstat_named_t arcstat_hits; |
| 524 | kstat_named_t arcstat_misses; |
| 525 | kstat_named_t arcstat_demand_data_hits; |
| 526 | kstat_named_t arcstat_demand_data_misses; |
| 527 | kstat_named_t arcstat_demand_metadata_hits; |
| 528 | kstat_named_t arcstat_demand_metadata_misses; |
| 529 | kstat_named_t arcstat_prefetch_data_hits; |
| 530 | kstat_named_t arcstat_prefetch_data_misses; |
| 531 | kstat_named_t arcstat_prefetch_metadata_hits; |
| 532 | kstat_named_t arcstat_prefetch_metadata_misses; |
| 533 | kstat_named_t arcstat_mru_hits; |
| 534 | kstat_named_t arcstat_mru_ghost_hits; |
| 535 | kstat_named_t arcstat_mfu_hits; |
| 536 | kstat_named_t arcstat_mfu_ghost_hits; |
| 537 | kstat_named_t arcstat_allocated; |
| 538 | kstat_named_t arcstat_deleted; |
| 539 | /* |
| 540 | * Number of buffers that could not be evicted because the hash lock |
| 541 | * was held by another thread. The lock may not necessarily be held |
| 542 | * by something using the same buffer, since hash locks are shared |
| 543 | * by multiple buffers. |
| 544 | */ |
| 545 | kstat_named_t arcstat_mutex_miss; |
| 546 | /* |
| 547 | * Number of buffers skipped because they have I/O in progress, are |
| 548 | * indrect prefetch buffers that have not lived long enough, or are |
| 549 | * not from the spa we're trying to evict from. |
| 550 | */ |
| 551 | kstat_named_t arcstat_evict_skip; |
| 552 | /* |
| 553 | * Number of times arc_evict_state() was unable to evict enough |
| 554 | * buffers to reach it's target amount. |
| 555 | */ |
| 556 | kstat_named_t arcstat_evict_not_enough; |
| 557 | kstat_named_t arcstat_evict_l2_cached; |
| 558 | kstat_named_t arcstat_evict_l2_eligible; |
| 559 | kstat_named_t arcstat_evict_l2_ineligible; |
| 560 | kstat_named_t arcstat_evict_l2_skip; |
| 561 | kstat_named_t arcstat_hash_elements; |
| 562 | kstat_named_t arcstat_hash_elements_max; |
| 563 | kstat_named_t arcstat_hash_collisions; |
| 564 | kstat_named_t arcstat_hash_chains; |
| 565 | kstat_named_t arcstat_hash_chain_max; |
| 566 | kstat_named_t arcstat_p; |
| 567 | kstat_named_t arcstat_c; |
| 568 | kstat_named_t arcstat_c_min; |
| 569 | kstat_named_t arcstat_c_max; |
| 570 | kstat_named_t arcstat_size; |
| 571 | /* |
| 572 | * Number of compressed bytes stored in the arc_buf_hdr_t's b_pdata. |
| 573 | * Note that the compressed bytes may match the uncompressed bytes |
| 574 | * if the block is either not compressed or compressed arc is disabled. |
| 575 | */ |
| 576 | kstat_named_t arcstat_compressed_size; |
| 577 | /* |
| 578 | * Uncompressed size of the data stored in b_pdata. If compressed |
| 579 | * arc is disabled then this value will be identical to the stat |
| 580 | * above. |
| 581 | */ |
| 582 | kstat_named_t arcstat_uncompressed_size; |
| 583 | /* |
| 584 | * Number of bytes stored in all the arc_buf_t's. This is classified |
| 585 | * as "overhead" since this data is typically short-lived and will |
| 586 | * be evicted from the arc when it becomes unreferenced unless the |
| 587 | * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level |
| 588 | * values have been set (see comment in dbuf.c for more information). |
| 589 | */ |
| 590 | kstat_named_t arcstat_overhead_size; |
| 591 | /* |
| 592 | * Number of bytes consumed by internal ARC structures necessary |
| 593 | * for tracking purposes; these structures are not actually |
| 594 | * backed by ARC buffers. This includes arc_buf_hdr_t structures |
| 595 | * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only |
| 596 | * caches), and arc_buf_t structures (allocated via arc_buf_t |
| 597 | * cache). |
| 598 | */ |
| 599 | kstat_named_t arcstat_hdr_size; |
| 600 | /* |
| 601 | * Number of bytes consumed by ARC buffers of type equal to |
| 602 | * ARC_BUFC_DATA. This is generally consumed by buffers backing |
| 603 | * on disk user data (e.g. plain file contents). |
| 604 | */ |
| 605 | kstat_named_t arcstat_data_size; |
| 606 | /* |
| 607 | * Number of bytes consumed by ARC buffers of type equal to |
| 608 | * ARC_BUFC_METADATA. This is generally consumed by buffers |
| 609 | * backing on disk data that is used for internal ZFS |
| 610 | * structures (e.g. ZAP, dnode, indirect blocks, etc). |
| 611 | */ |
| 612 | kstat_named_t arcstat_metadata_size; |
| 613 | /* |
| 614 | * Number of bytes consumed by various buffers and structures |
| 615 | * not actually backed with ARC buffers. This includes bonus |
| 616 | * buffers (allocated directly via zio_buf_* functions), |
| 617 | * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t |
| 618 | * cache), and dnode_t structures (allocated via dnode_t cache). |
| 619 | */ |
| 620 | kstat_named_t arcstat_other_size; |
| 621 | /* |
| 622 | * Total number of bytes consumed by ARC buffers residing in the |
| 623 | * arc_anon state. This includes *all* buffers in the arc_anon |
| 624 | * state; e.g. data, metadata, evictable, and unevictable buffers |
| 625 | * are all included in this value. |
| 626 | */ |
| 627 | kstat_named_t arcstat_anon_size; |
| 628 | /* |
| 629 | * Number of bytes consumed by ARC buffers that meet the |
| 630 | * following criteria: backing buffers of type ARC_BUFC_DATA, |
| 631 | * residing in the arc_anon state, and are eligible for eviction |
| 632 | * (e.g. have no outstanding holds on the buffer). |
| 633 | */ |
| 634 | kstat_named_t arcstat_anon_evictable_data; |
| 635 | /* |
| 636 | * Number of bytes consumed by ARC buffers that meet the |
| 637 | * following criteria: backing buffers of type ARC_BUFC_METADATA, |
| 638 | * residing in the arc_anon state, and are eligible for eviction |
| 639 | * (e.g. have no outstanding holds on the buffer). |
| 640 | */ |
| 641 | kstat_named_t arcstat_anon_evictable_metadata; |
| 642 | /* |
| 643 | * Total number of bytes consumed by ARC buffers residing in the |
| 644 | * arc_mru state. This includes *all* buffers in the arc_mru |
| 645 | * state; e.g. data, metadata, evictable, and unevictable buffers |
| 646 | * are all included in this value. |
| 647 | */ |
| 648 | kstat_named_t arcstat_mru_size; |
| 649 | /* |
| 650 | * Number of bytes consumed by ARC buffers that meet the |
| 651 | * following criteria: backing buffers of type ARC_BUFC_DATA, |
| 652 | * residing in the arc_mru state, and are eligible for eviction |
| 653 | * (e.g. have no outstanding holds on the buffer). |
| 654 | */ |
| 655 | kstat_named_t arcstat_mru_evictable_data; |
| 656 | /* |
| 657 | * Number of bytes consumed by ARC buffers that meet the |
| 658 | * following criteria: backing buffers of type ARC_BUFC_METADATA, |
| 659 | * residing in the arc_mru state, and are eligible for eviction |
| 660 | * (e.g. have no outstanding holds on the buffer). |
| 661 | */ |
| 662 | kstat_named_t arcstat_mru_evictable_metadata; |
| 663 | /* |
| 664 | * Total number of bytes that *would have been* consumed by ARC |
| 665 | * buffers in the arc_mru_ghost state. The key thing to note |
| 666 | * here, is the fact that this size doesn't actually indicate |
| 667 | * RAM consumption. The ghost lists only consist of headers and |
| 668 | * don't actually have ARC buffers linked off of these headers. |
| 669 | * Thus, *if* the headers had associated ARC buffers, these |
| 670 | * buffers *would have* consumed this number of bytes. |
| 671 | */ |
| 672 | kstat_named_t arcstat_mru_ghost_size; |
| 673 | /* |
| 674 | * Number of bytes that *would have been* consumed by ARC |
| 675 | * buffers that are eligible for eviction, of type |
| 676 | * ARC_BUFC_DATA, and linked off the arc_mru_ghost state. |
| 677 | */ |
| 678 | kstat_named_t arcstat_mru_ghost_evictable_data; |
| 679 | /* |
| 680 | * Number of bytes that *would have been* consumed by ARC |
| 681 | * buffers that are eligible for eviction, of type |
| 682 | * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state. |
| 683 | */ |
| 684 | kstat_named_t arcstat_mru_ghost_evictable_metadata; |
| 685 | /* |
| 686 | * Total number of bytes consumed by ARC buffers residing in the |
| 687 | * arc_mfu state. This includes *all* buffers in the arc_mfu |
| 688 | * state; e.g. data, metadata, evictable, and unevictable buffers |
| 689 | * are all included in this value. |
| 690 | */ |
| 691 | kstat_named_t arcstat_mfu_size; |
| 692 | /* |
| 693 | * Number of bytes consumed by ARC buffers that are eligible for |
| 694 | * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu |
| 695 | * state. |
| 696 | */ |
| 697 | kstat_named_t arcstat_mfu_evictable_data; |
| 698 | /* |
| 699 | * Number of bytes consumed by ARC buffers that are eligible for |
| 700 | * eviction, of type ARC_BUFC_METADATA, and reside in the |
| 701 | * arc_mfu state. |
| 702 | */ |
| 703 | kstat_named_t arcstat_mfu_evictable_metadata; |
| 704 | /* |
| 705 | * Total number of bytes that *would have been* consumed by ARC |
| 706 | * buffers in the arc_mfu_ghost state. See the comment above |
| 707 | * arcstat_mru_ghost_size for more details. |
| 708 | */ |
| 709 | kstat_named_t arcstat_mfu_ghost_size; |
| 710 | /* |
| 711 | * Number of bytes that *would have been* consumed by ARC |
| 712 | * buffers that are eligible for eviction, of type |
| 713 | * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state. |
| 714 | */ |
| 715 | kstat_named_t arcstat_mfu_ghost_evictable_data; |
| 716 | /* |
| 717 | * Number of bytes that *would have been* consumed by ARC |
| 718 | * buffers that are eligible for eviction, of type |
| 719 | * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state. |
| 720 | */ |
| 721 | kstat_named_t arcstat_mfu_ghost_evictable_metadata; |
| 722 | kstat_named_t arcstat_l2_hits; |
| 723 | kstat_named_t arcstat_l2_misses; |
| 724 | kstat_named_t arcstat_l2_feeds; |
| 725 | kstat_named_t arcstat_l2_rw_clash; |
| 726 | kstat_named_t arcstat_l2_read_bytes; |
| 727 | kstat_named_t arcstat_l2_write_bytes; |
| 728 | kstat_named_t arcstat_l2_writes_sent; |
| 729 | kstat_named_t arcstat_l2_writes_done; |
| 730 | kstat_named_t arcstat_l2_writes_error; |
| 731 | kstat_named_t arcstat_l2_writes_lock_retry; |
| 732 | kstat_named_t arcstat_l2_evict_lock_retry; |
| 733 | kstat_named_t arcstat_l2_evict_reading; |
| 734 | kstat_named_t arcstat_l2_evict_l1cached; |
| 735 | kstat_named_t arcstat_l2_free_on_write; |
| 736 | kstat_named_t arcstat_l2_abort_lowmem; |
| 737 | kstat_named_t arcstat_l2_cksum_bad; |
| 738 | kstat_named_t arcstat_l2_io_error; |
| 739 | kstat_named_t arcstat_l2_size; |
| 740 | kstat_named_t arcstat_l2_asize; |
| 741 | kstat_named_t arcstat_l2_hdr_size; |
| 742 | kstat_named_t arcstat_l2_write_trylock_fail; |
| 743 | kstat_named_t arcstat_l2_write_passed_headroom; |
| 744 | kstat_named_t arcstat_l2_write_spa_mismatch; |
| 745 | kstat_named_t arcstat_l2_write_in_l2; |
| 746 | kstat_named_t arcstat_l2_write_hdr_io_in_progress; |
| 747 | kstat_named_t arcstat_l2_write_not_cacheable; |
| 748 | kstat_named_t arcstat_l2_write_full; |
| 749 | kstat_named_t arcstat_l2_write_buffer_iter; |
| 750 | kstat_named_t arcstat_l2_write_pios; |
| 751 | kstat_named_t arcstat_l2_write_buffer_bytes_scanned; |
| 752 | kstat_named_t arcstat_l2_write_buffer_list_iter; |
| 753 | kstat_named_t arcstat_l2_write_buffer_list_null_iter; |
| 754 | kstat_named_t arcstat_memory_throttle_count; |
| 755 | kstat_named_t arcstat_meta_used; |
| 756 | kstat_named_t arcstat_meta_limit; |
| 757 | kstat_named_t arcstat_meta_max; |
| 758 | kstat_named_t arcstat_meta_min; |
| 759 | kstat_named_t arcstat_sync_wait_for_async; |
| 760 | kstat_named_t arcstat_demand_hit_predictive_prefetch; |
| 761 | } arc_stats_t; |
| 762 | |
| 763 | static arc_stats_t arc_stats = { |
| 764 | { "hits" , KSTAT_DATA_UINT64 }, |
| 765 | { "misses" , KSTAT_DATA_UINT64 }, |
| 766 | { "demand_data_hits" , KSTAT_DATA_UINT64 }, |
| 767 | { "demand_data_misses" , KSTAT_DATA_UINT64 }, |
| 768 | { "demand_metadata_hits" , KSTAT_DATA_UINT64 }, |
| 769 | { "demand_metadata_misses" , KSTAT_DATA_UINT64 }, |
| 770 | { "prefetch_data_hits" , KSTAT_DATA_UINT64 }, |
| 771 | { "prefetch_data_misses" , KSTAT_DATA_UINT64 }, |
| 772 | { "prefetch_metadata_hits" , KSTAT_DATA_UINT64 }, |
| 773 | { "prefetch_metadata_misses" , KSTAT_DATA_UINT64 }, |
| 774 | { "mru_hits" , KSTAT_DATA_UINT64 }, |
| 775 | { "mru_ghost_hits" , KSTAT_DATA_UINT64 }, |
| 776 | { "mfu_hits" , KSTAT_DATA_UINT64 }, |
| 777 | { "mfu_ghost_hits" , KSTAT_DATA_UINT64 }, |
| 778 | { "allocated" , KSTAT_DATA_UINT64 }, |
| 779 | { "deleted" , KSTAT_DATA_UINT64 }, |
| 780 | { "mutex_miss" , KSTAT_DATA_UINT64 }, |
| 781 | { "evict_skip" , KSTAT_DATA_UINT64 }, |
| 782 | { "evict_not_enough" , KSTAT_DATA_UINT64 }, |
| 783 | { "evict_l2_cached" , KSTAT_DATA_UINT64 }, |
| 784 | { "evict_l2_eligible" , KSTAT_DATA_UINT64 }, |
| 785 | { "evict_l2_ineligible" , KSTAT_DATA_UINT64 }, |
| 786 | { "evict_l2_skip" , KSTAT_DATA_UINT64 }, |
| 787 | { "hash_elements" , KSTAT_DATA_UINT64 }, |
| 788 | { "hash_elements_max" , KSTAT_DATA_UINT64 }, |
| 789 | { "hash_collisions" , KSTAT_DATA_UINT64 }, |
| 790 | { "hash_chains" , KSTAT_DATA_UINT64 }, |
| 791 | { "hash_chain_max" , KSTAT_DATA_UINT64 }, |
| 792 | { "p" , KSTAT_DATA_UINT64 }, |
| 793 | { "c" , KSTAT_DATA_UINT64 }, |
| 794 | { "c_min" , KSTAT_DATA_UINT64 }, |
| 795 | { "c_max" , KSTAT_DATA_UINT64 }, |
| 796 | { "size" , KSTAT_DATA_UINT64 }, |
| 797 | { "compressed_size" , KSTAT_DATA_UINT64 }, |
| 798 | { "uncompressed_size" , KSTAT_DATA_UINT64 }, |
| 799 | { "overhead_size" , KSTAT_DATA_UINT64 }, |
| 800 | { "hdr_size" , KSTAT_DATA_UINT64 }, |
| 801 | { "data_size" , KSTAT_DATA_UINT64 }, |
| 802 | { "metadata_size" , KSTAT_DATA_UINT64 }, |
| 803 | { "other_size" , KSTAT_DATA_UINT64 }, |
| 804 | { "anon_size" , KSTAT_DATA_UINT64 }, |
| 805 | { "anon_evictable_data" , KSTAT_DATA_UINT64 }, |
| 806 | { "anon_evictable_metadata" , KSTAT_DATA_UINT64 }, |
| 807 | { "mru_size" , KSTAT_DATA_UINT64 }, |
| 808 | { "mru_evictable_data" , KSTAT_DATA_UINT64 }, |
| 809 | { "mru_evictable_metadata" , KSTAT_DATA_UINT64 }, |
| 810 | { "mru_ghost_size" , KSTAT_DATA_UINT64 }, |
| 811 | { "mru_ghost_evictable_data" , KSTAT_DATA_UINT64 }, |
| 812 | { "mru_ghost_evictable_metadata" , KSTAT_DATA_UINT64 }, |
| 813 | { "mfu_size" , KSTAT_DATA_UINT64 }, |
| 814 | { "mfu_evictable_data" , KSTAT_DATA_UINT64 }, |
| 815 | { "mfu_evictable_metadata" , KSTAT_DATA_UINT64 }, |
| 816 | { "mfu_ghost_size" , KSTAT_DATA_UINT64 }, |
| 817 | { "mfu_ghost_evictable_data" , KSTAT_DATA_UINT64 }, |
| 818 | { "mfu_ghost_evictable_metadata" , KSTAT_DATA_UINT64 }, |
| 819 | { "l2_hits" , KSTAT_DATA_UINT64 }, |
| 820 | { "l2_misses" , KSTAT_DATA_UINT64 }, |
| 821 | { "l2_feeds" , KSTAT_DATA_UINT64 }, |
| 822 | { "l2_rw_clash" , KSTAT_DATA_UINT64 }, |
| 823 | { "l2_read_bytes" , KSTAT_DATA_UINT64 }, |
| 824 | { "l2_write_bytes" , KSTAT_DATA_UINT64 }, |
| 825 | { "l2_writes_sent" , KSTAT_DATA_UINT64 }, |
| 826 | { "l2_writes_done" , KSTAT_DATA_UINT64 }, |
| 827 | { "l2_writes_error" , KSTAT_DATA_UINT64 }, |
| 828 | { "l2_writes_lock_retry" , KSTAT_DATA_UINT64 }, |
| 829 | { "l2_evict_lock_retry" , KSTAT_DATA_UINT64 }, |
| 830 | { "l2_evict_reading" , KSTAT_DATA_UINT64 }, |
| 831 | { "l2_evict_l1cached" , KSTAT_DATA_UINT64 }, |
| 832 | { "l2_free_on_write" , KSTAT_DATA_UINT64 }, |
| 833 | { "l2_abort_lowmem" , KSTAT_DATA_UINT64 }, |
| 834 | { "l2_cksum_bad" , KSTAT_DATA_UINT64 }, |
| 835 | { "l2_io_error" , KSTAT_DATA_UINT64 }, |
| 836 | { "l2_size" , KSTAT_DATA_UINT64 }, |
| 837 | { "l2_asize" , KSTAT_DATA_UINT64 }, |
| 838 | { "l2_hdr_size" , KSTAT_DATA_UINT64 }, |
| 839 | { "l2_write_trylock_fail" , KSTAT_DATA_UINT64 }, |
| 840 | { "l2_write_passed_headroom" , KSTAT_DATA_UINT64 }, |
| 841 | { "l2_write_spa_mismatch" , KSTAT_DATA_UINT64 }, |
| 842 | { "l2_write_in_l2" , KSTAT_DATA_UINT64 }, |
| 843 | { "l2_write_io_in_progress" , KSTAT_DATA_UINT64 }, |
| 844 | { "l2_write_not_cacheable" , KSTAT_DATA_UINT64 }, |
| 845 | { "l2_write_full" , KSTAT_DATA_UINT64 }, |
| 846 | { "l2_write_buffer_iter" , KSTAT_DATA_UINT64 }, |
| 847 | { "l2_write_pios" , KSTAT_DATA_UINT64 }, |
| 848 | { "l2_write_buffer_bytes_scanned" , KSTAT_DATA_UINT64 }, |
| 849 | { "l2_write_buffer_list_iter" , KSTAT_DATA_UINT64 }, |
| 850 | { "l2_write_buffer_list_null_iter" , KSTAT_DATA_UINT64 }, |
| 851 | { "memory_throttle_count" , KSTAT_DATA_UINT64 }, |
| 852 | { "arc_meta_used" , KSTAT_DATA_UINT64 }, |
| 853 | { "arc_meta_limit" , KSTAT_DATA_UINT64 }, |
| 854 | { "arc_meta_max" , KSTAT_DATA_UINT64 }, |
| 855 | { "arc_meta_min" , KSTAT_DATA_UINT64 }, |
| 856 | { "sync_wait_for_async" , KSTAT_DATA_UINT64 }, |
| 857 | { "demand_hit_predictive_prefetch" , KSTAT_DATA_UINT64 }, |
| 858 | }; |
| 859 | |
| 860 | #define ARCSTAT(stat) (arc_stats.stat.value.ui64) |
| 861 | |
| 862 | #define ARCSTAT_INCR(stat, val) \ |
| 863 | atomic_add_64(&arc_stats.stat.value.ui64, (val)) |
| 864 | |
| 865 | #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) |
| 866 | #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) |
| 867 | |
| 868 | #define ARCSTAT_MAX(stat, val) { \ |
| 869 | uint64_t m; \ |
| 870 | while ((val) > (m = arc_stats.stat.value.ui64) && \ |
| 871 | (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ |
| 872 | continue; \ |
| 873 | } |
| 874 | |
| 875 | #define ARCSTAT_MAXSTAT(stat) \ |
| 876 | ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) |
| 877 | |
| 878 | /* |
| 879 | * We define a macro to allow ARC hits/misses to be easily broken down by |
| 880 | * two separate conditions, giving a total of four different subtypes for |
| 881 | * each of hits and misses (so eight statistics total). |
| 882 | */ |
| 883 | #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ |
| 884 | if (cond1) { \ |
| 885 | if (cond2) { \ |
| 886 | ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ |
| 887 | } else { \ |
| 888 | ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ |
| 889 | } \ |
| 890 | } else { \ |
| 891 | if (cond2) { \ |
| 892 | ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ |
| 893 | } else { \ |
| 894 | ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ |
| 895 | } \ |
| 896 | } |
| 897 | |
| 898 | kstat_t *arc_ksp; |
| 899 | static arc_state_t *arc_anon; |
| 900 | static arc_state_t *arc_mru; |
| 901 | static arc_state_t *arc_mru_ghost; |
| 902 | static arc_state_t *arc_mfu; |
| 903 | static arc_state_t *arc_mfu_ghost; |
| 904 | static arc_state_t *arc_l2c_only; |
| 905 | |
| 906 | /* |
| 907 | * There are several ARC variables that are critical to export as kstats -- |
| 908 | * but we don't want to have to grovel around in the kstat whenever we wish to |
| 909 | * manipulate them. For these variables, we therefore define them to be in |
| 910 | * terms of the statistic variable. This assures that we are not introducing |
| 911 | * the possibility of inconsistency by having shadow copies of the variables, |
| 912 | * while still allowing the code to be readable. |
| 913 | */ |
| 914 | #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ |
| 915 | #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ |
| 916 | #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ |
| 917 | #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ |
| 918 | #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ |
| 919 | #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ |
| 920 | #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */ |
| 921 | #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */ |
| 922 | #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */ |
| 923 | |
| 924 | /* compressed size of entire arc */ |
| 925 | #define arc_compressed_size ARCSTAT(arcstat_compressed_size) |
| 926 | /* uncompressed size of entire arc */ |
| 927 | #define arc_uncompressed_size ARCSTAT(arcstat_uncompressed_size) |
| 928 | /* number of bytes in the arc from arc_buf_t's */ |
| 929 | #define arc_overhead_size ARCSTAT(arcstat_overhead_size) |
| 930 | |
| 931 | static int arc_no_grow; /* Don't try to grow cache size */ |
| 932 | static uint64_t arc_tempreserve; |
| 933 | static uint64_t arc_loaned_bytes; |
| 934 | |
| 935 | typedef struct arc_callback arc_callback_t; |
| 936 | |
| 937 | struct arc_callback { |
| 938 | void *acb_private; |
| 939 | arc_done_func_t *acb_done; |
| 940 | arc_buf_t *acb_buf; |
| 941 | zio_t *acb_zio_dummy; |
| 942 | arc_callback_t *acb_next; |
| 943 | }; |
| 944 | |
| 945 | typedef struct arc_write_callback arc_write_callback_t; |
| 946 | |
| 947 | struct arc_write_callback { |
| 948 | void *awcb_private; |
| 949 | arc_done_func_t *awcb_ready; |
| 950 | arc_done_func_t *awcb_children_ready; |
| 951 | arc_done_func_t *awcb_physdone; |
| 952 | arc_done_func_t *awcb_done; |
| 953 | arc_buf_t *awcb_buf; |
| 954 | }; |
| 955 | |
| 956 | /* |
| 957 | * ARC buffers are separated into multiple structs as a memory saving measure: |
| 958 | * - Common fields struct, always defined, and embedded within it: |
| 959 | * - L2-only fields, always allocated but undefined when not in L2ARC |
| 960 | * - L1-only fields, only allocated when in L1ARC |
| 961 | * |
| 962 | * Buffer in L1 Buffer only in L2 |
| 963 | * +------------------------+ +------------------------+ |
| 964 | * | arc_buf_hdr_t | | arc_buf_hdr_t | |
| 965 | * | | | | |
| 966 | * | | | | |
| 967 | * | | | | |
| 968 | * +------------------------+ +------------------------+ |
| 969 | * | l2arc_buf_hdr_t | | l2arc_buf_hdr_t | |
| 970 | * | (undefined if L1-only) | | | |
| 971 | * +------------------------+ +------------------------+ |
| 972 | * | l1arc_buf_hdr_t | |
| 973 | * | | |
| 974 | * | | |
| 975 | * | | |
| 976 | * | | |
| 977 | * +------------------------+ |
| 978 | * |
| 979 | * Because it's possible for the L2ARC to become extremely large, we can wind |
| 980 | * up eating a lot of memory in L2ARC buffer headers, so the size of a header |
| 981 | * is minimized by only allocating the fields necessary for an L1-cached buffer |
| 982 | * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and |
| 983 | * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple |
| 984 | * words in pointers. arc_hdr_realloc() is used to switch a header between |
| 985 | * these two allocation states. |
| 986 | */ |
| 987 | typedef struct l1arc_buf_hdr { |
| 988 | kmutex_t b_freeze_lock; |
| 989 | zio_cksum_t *b_freeze_cksum; |
| 990 | #ifdef ZFS_DEBUG |
| 991 | /* |
| 992 | * used for debugging wtih kmem_flags - by allocating and freeing |
| 993 | * b_thawed when the buffer is thawed, we get a record of the stack |
| 994 | * trace that thawed it. |
| 995 | */ |
| 996 | void *b_thawed; |
| 997 | #endif |
| 998 | |
| 999 | arc_buf_t *b_buf; |
| 1000 | uint32_t b_bufcnt; |
| 1001 | /* for waiting on writes to complete */ |
| 1002 | kcondvar_t b_cv; |
| 1003 | uint8_t b_byteswap; |
| 1004 | |
| 1005 | /* protected by arc state mutex */ |
| 1006 | arc_state_t *b_state; |
| 1007 | multilist_node_t b_arc_node; |
| 1008 | |
| 1009 | /* updated atomically */ |
| 1010 | clock_t b_arc_access; |
| 1011 | |
| 1012 | /* self protecting */ |
| 1013 | refcount_t b_refcnt; |
| 1014 | |
| 1015 | arc_callback_t *b_acb; |
| 1016 | void *b_pdata; |
| 1017 | } l1arc_buf_hdr_t; |
| 1018 | |
| 1019 | typedef struct l2arc_dev l2arc_dev_t; |
| 1020 | |
| 1021 | typedef struct l2arc_buf_hdr { |
| 1022 | /* protected by arc_buf_hdr mutex */ |
| 1023 | l2arc_dev_t *b_dev; /* L2ARC device */ |
| 1024 | uint64_t b_daddr; /* disk address, offset byte */ |
| 1025 | |
| 1026 | list_node_t b_l2node; |
| 1027 | } l2arc_buf_hdr_t; |
| 1028 | |
| 1029 | struct arc_buf_hdr { |
| 1030 | /* protected by hash lock */ |
| 1031 | dva_t b_dva; |
| 1032 | uint64_t b_birth; |
| 1033 | |
| 1034 | arc_buf_contents_t b_type; |
| 1035 | arc_buf_hdr_t *b_hash_next; |
| 1036 | arc_flags_t b_flags; |
| 1037 | |
| 1038 | /* |
| 1039 | * This field stores the size of the data buffer after |
| 1040 | * compression, and is set in the arc's zio completion handlers. |
| 1041 | * It is in units of SPA_MINBLOCKSIZE (e.g. 1 == 512 bytes). |
| 1042 | * |
| 1043 | * While the block pointers can store up to 32MB in their psize |
| 1044 | * field, we can only store up to 32MB minus 512B. This is due |
| 1045 | * to the bp using a bias of 1, whereas we use a bias of 0 (i.e. |
| 1046 | * a field of zeros represents 512B in the bp). We can't use a |
| 1047 | * bias of 1 since we need to reserve a psize of zero, here, to |
| 1048 | * represent holes and embedded blocks. |
| 1049 | * |
| 1050 | * This isn't a problem in practice, since the maximum size of a |
| 1051 | * buffer is limited to 16MB, so we never need to store 32MB in |
| 1052 | * this field. Even in the upstream illumos code base, the |
| 1053 | * maximum size of a buffer is limited to 16MB. |
| 1054 | */ |
| 1055 | uint16_t b_psize; |
| 1056 | |
| 1057 | /* |
| 1058 | * This field stores the size of the data buffer before |
| 1059 | * compression, and cannot change once set. It is in units |
| 1060 | * of SPA_MINBLOCKSIZE (e.g. 2 == 1024 bytes) |
| 1061 | */ |
| 1062 | uint16_t b_lsize; /* immutable */ |
| 1063 | uint64_t b_spa; /* immutable */ |
| 1064 | |
| 1065 | /* L2ARC fields. Undefined when not in L2ARC. */ |
| 1066 | l2arc_buf_hdr_t b_l2hdr; |
| 1067 | /* L1ARC fields. Undefined when in l2arc_only state */ |
| 1068 | l1arc_buf_hdr_t b_l1hdr; |
| 1069 | }; |
| 1070 | |
| 1071 | #if defined(__FreeBSD__) && defined(_KERNEL) |
| 1072 | static int |
| 1073 | sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS) |
| 1074 | { |
| 1075 | uint64_t val; |
| 1076 | int err; |
| 1077 | |
| 1078 | val = arc_meta_limit; |
| 1079 | err = sysctl_handle_64(oidp, &val, 0, req); |
| 1080 | if (err != 0 || req->newptr == NULL) |
| 1081 | return (err); |
| 1082 | |
| 1083 | if (val <= 0 || val > arc_c_max) |
| 1084 | return (EINVAL); |
| 1085 | |
| 1086 | arc_meta_limit = val; |
| 1087 | return (0); |
| 1088 | } |
| 1089 | |
| 1090 | static int |
| 1091 | sysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS) |
| 1092 | { |
| 1093 | uint64_t val; |
| 1094 | int err; |
| 1095 | |
| 1096 | val = zfs_arc_max; |
| 1097 | err = sysctl_handle_64(oidp, &val, 0, req); |
| 1098 | if (err != 0 || req->newptr == NULL) |
| 1099 | return (err); |
| 1100 | |
| 1101 | if (zfs_arc_max == 0) { |
| 1102 | /* Loader tunable so blindly set */ |
| 1103 | zfs_arc_max = val; |
| 1104 | return (0); |
| 1105 | } |
| 1106 | |
| 1107 | if (val < arc_abs_min || val > kmem_size()) |
| 1108 | return (EINVAL); |
| 1109 | if (val < arc_c_min) |
| 1110 | return (EINVAL); |
| 1111 | if (zfs_arc_meta_limit > 0 && val < zfs_arc_meta_limit) |
| 1112 | return (EINVAL); |
| 1113 | |
| 1114 | arc_c_max = val; |
| 1115 | |
| 1116 | arc_c = arc_c_max; |
| 1117 | arc_p = (arc_c >> 1); |
| 1118 | |
| 1119 | if (zfs_arc_meta_limit == 0) { |
| 1120 | /* limit meta-data to 1/4 of the arc capacity */ |
| 1121 | arc_meta_limit = arc_c_max / 4; |
| 1122 | } |
| 1123 | |
| 1124 | /* if kmem_flags are set, lets try to use less memory */ |
| 1125 | if (kmem_debugging()) |
| 1126 | arc_c = arc_c / 2; |
| 1127 | |
| 1128 | zfs_arc_max = arc_c; |
| 1129 | |
| 1130 | return (0); |
| 1131 | } |
| 1132 | |
| 1133 | static int |
| 1134 | sysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS) |
| 1135 | { |
| 1136 | uint64_t val; |
| 1137 | int err; |
| 1138 | |
| 1139 | val = zfs_arc_min; |
| 1140 | err = sysctl_handle_64(oidp, &val, 0, req); |
| 1141 | if (err != 0 || req->newptr == NULL) |
| 1142 | return (err); |
| 1143 | |
| 1144 | if (zfs_arc_min == 0) { |
| 1145 | /* Loader tunable so blindly set */ |
| 1146 | zfs_arc_min = val; |
| 1147 | return (0); |
| 1148 | } |
| 1149 | |
| 1150 | if (val < arc_abs_min || val > arc_c_max) |
| 1151 | return (EINVAL); |
| 1152 | |
| 1153 | arc_c_min = val; |
| 1154 | |
| 1155 | if (zfs_arc_meta_min == 0) |
| 1156 | arc_meta_min = arc_c_min / 2; |
| 1157 | |
| 1158 | if (arc_c < arc_c_min) |
| 1159 | arc_c = arc_c_min; |
| 1160 | |
| 1161 | zfs_arc_min = arc_c_min; |
| 1162 | |
| 1163 | return (0); |
| 1164 | } |
| 1165 | #endif |
| 1166 | |
| 1167 | #define GHOST_STATE(state) \ |
| 1168 | ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ |
| 1169 | (state) == arc_l2c_only) |
| 1170 | |
| 1171 | #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE) |
| 1172 | #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) |
| 1173 | #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR) |
| 1174 | #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH) |
| 1175 | #define HDR_COMPRESSION_ENABLED(hdr) \ |
| 1176 | ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC) |
| 1177 | |
| 1178 | #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE) |
| 1179 | #define HDR_L2_READING(hdr) \ |
| 1180 | (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \ |
| 1181 | ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)) |
| 1182 | #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING) |
| 1183 | #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED) |
| 1184 | #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD) |
| 1185 | #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA) |
| 1186 | |
| 1187 | #define HDR_ISTYPE_METADATA(hdr) \ |
| 1188 | ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA) |
| 1189 | #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr)) |
| 1190 | |
| 1191 | #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR) |
| 1192 | #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR) |
| 1193 | |
| 1194 | /* For storing compression mode in b_flags */ |
| 1195 | #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1) |
| 1196 | |
| 1197 | #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \ |
| 1198 | HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS)) |
| 1199 | #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \ |
| 1200 | HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp)); |
| 1201 | |
| 1202 | #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL) |
| 1203 | |
| 1204 | /* |
| 1205 | * Other sizes |
| 1206 | */ |
| 1207 | |
| 1208 | #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) |
| 1209 | #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr)) |
| 1210 | |
| 1211 | /* |
| 1212 | * Hash table routines |
| 1213 | */ |
| 1214 | |
| 1215 | #define HT_LOCK_PAD CACHE_LINE_SIZE |
| 1216 | |
| 1217 | struct ht_lock { |
| 1218 | kmutex_t ht_lock; |
| 1219 | #ifdef _KERNEL |
| 1220 | unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; |
| 1221 | #endif |
| 1222 | }; |
| 1223 | |
| 1224 | #define BUF_LOCKS 256 |
| 1225 | typedef struct buf_hash_table { |
| 1226 | uint64_t ht_mask; |
| 1227 | arc_buf_hdr_t **ht_table; |
| 1228 | struct ht_lock ht_locks[BUF_LOCKS] __aligned(CACHE_LINE_SIZE); |
| 1229 | } buf_hash_table_t; |
| 1230 | |
| 1231 | static buf_hash_table_t buf_hash_table; |
| 1232 | |
| 1233 | #define BUF_HASH_INDEX(spa, dva, birth) \ |
| 1234 | (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) |
| 1235 | #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) |
| 1236 | #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) |
| 1237 | #define HDR_LOCK(hdr) \ |
| 1238 | (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) |
| 1239 | |
| 1240 | uint64_t zfs_crc64_table[256]; |
| 1241 | |
| 1242 | /* |
| 1243 | * Level 2 ARC |
| 1244 | */ |
| 1245 | |
| 1246 | #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ |
| 1247 | #define L2ARC_HEADROOM 2 /* num of writes */ |
| 1248 | /* |
| 1249 | * If we discover during ARC scan any buffers to be compressed, we boost |
| 1250 | * our headroom for the next scanning cycle by this percentage multiple. |
| 1251 | */ |
| 1252 | #define L2ARC_HEADROOM_BOOST 200 |
| 1253 | #define L2ARC_FEED_SECS 1 /* caching interval secs */ |
| 1254 | #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ |
| 1255 | |
| 1256 | #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) |
| 1257 | #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) |
| 1258 | |
| 1259 | /* L2ARC Performance Tunables */ |
| 1260 | uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ |
| 1261 | uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ |
| 1262 | uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ |
| 1263 | uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; |
| 1264 | uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ |
| 1265 | uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ |
| 1266 | boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ |
| 1267 | boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ |
| 1268 | boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ |
| 1269 | |
| 1270 | SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_max, CTLFLAG_RW, |
| 1271 | &l2arc_write_max, 0, "max write size" ); |
| 1272 | SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_boost, CTLFLAG_RW, |
| 1273 | &l2arc_write_boost, 0, "extra write during warmup" ); |
| 1274 | SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom, CTLFLAG_RW, |
| 1275 | &l2arc_headroom, 0, "number of dev writes" ); |
| 1276 | SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_secs, CTLFLAG_RW, |
| 1277 | &l2arc_feed_secs, 0, "interval seconds" ); |
| 1278 | SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_min_ms, CTLFLAG_RW, |
| 1279 | &l2arc_feed_min_ms, 0, "min interval milliseconds" ); |
| 1280 | |
| 1281 | SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_noprefetch, CTLFLAG_RW, |
| 1282 | &l2arc_noprefetch, 0, "don't cache prefetch bufs" ); |
| 1283 | SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_feed_again, CTLFLAG_RW, |
| 1284 | &l2arc_feed_again, 0, "turbo warmup" ); |
| 1285 | SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_norw, CTLFLAG_RW, |
| 1286 | &l2arc_norw, 0, "no reads during writes" ); |
| 1287 | |
| 1288 | SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_size, CTLFLAG_RD, |
| 1289 | &ARC_anon.arcs_size.rc_count, 0, "size of anonymous state" ); |
| 1290 | SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_metadata_esize, CTLFLAG_RD, |
| 1291 | &ARC_anon.arcs_esize[ARC_BUFC_METADATA].rc_count, 0, |
| 1292 | "size of anonymous state" ); |
| 1293 | SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_data_esize, CTLFLAG_RD, |
| 1294 | &ARC_anon.arcs_esize[ARC_BUFC_DATA].rc_count, 0, |
| 1295 | "size of anonymous state" ); |
| 1296 | |
| 1297 | SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_size, CTLFLAG_RD, |
| 1298 | &ARC_mru.arcs_size.rc_count, 0, "size of mru state" ); |
| 1299 | SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_metadata_esize, CTLFLAG_RD, |
| 1300 | &ARC_mru.arcs_esize[ARC_BUFC_METADATA].rc_count, 0, |
| 1301 | "size of metadata in mru state" ); |
| 1302 | SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_data_esize, CTLFLAG_RD, |
| 1303 | &ARC_mru.arcs_esize[ARC_BUFC_DATA].rc_count, 0, |
| 1304 | "size of data in mru state" ); |
| 1305 | |
| 1306 | SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_size, CTLFLAG_RD, |
| 1307 | &ARC_mru_ghost.arcs_size.rc_count, 0, "size of mru ghost state" ); |
| 1308 | SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_metadata_esize, CTLFLAG_RD, |
| 1309 | &ARC_mru_ghost.arcs_esize[ARC_BUFC_METADATA].rc_count, 0, |
| 1310 | "size of metadata in mru ghost state" ); |
| 1311 | SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_data_esize, CTLFLAG_RD, |
| 1312 | &ARC_mru_ghost.arcs_esize[ARC_BUFC_DATA].rc_count, 0, |
| 1313 | "size of data in mru ghost state" ); |
| 1314 | |
| 1315 | SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_size, CTLFLAG_RD, |
| 1316 | &ARC_mfu.arcs_size.rc_count, 0, "size of mfu state" ); |
| 1317 | SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_metadata_esize, CTLFLAG_RD, |
| 1318 | &ARC_mfu.arcs_esize[ARC_BUFC_METADATA].rc_count, 0, |
| 1319 | "size of metadata in mfu state" ); |
| 1320 | SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_data_esize, CTLFLAG_RD, |
| 1321 | &ARC_mfu.arcs_esize[ARC_BUFC_DATA].rc_count, 0, |
| 1322 | "size of data in mfu state" ); |
| 1323 | |
| 1324 | SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_size, CTLFLAG_RD, |
| 1325 | &ARC_mfu_ghost.arcs_size.rc_count, 0, "size of mfu ghost state" ); |
| 1326 | SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_metadata_esize, CTLFLAG_RD, |
| 1327 | &ARC_mfu_ghost.arcs_esize[ARC_BUFC_METADATA].rc_count, 0, |
| 1328 | "size of metadata in mfu ghost state" ); |
| 1329 | SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_data_esize, CTLFLAG_RD, |
| 1330 | &ARC_mfu_ghost.arcs_esize[ARC_BUFC_DATA].rc_count, 0, |
| 1331 | "size of data in mfu ghost state" ); |
| 1332 | |
| 1333 | SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2c_only_size, CTLFLAG_RD, |
| 1334 | &ARC_l2c_only.arcs_size.rc_count, 0, "size of mru state" ); |
| 1335 | |
| 1336 | /* |
| 1337 | * L2ARC Internals |
| 1338 | */ |
| 1339 | struct l2arc_dev { |
| 1340 | vdev_t *l2ad_vdev; /* vdev */ |
| 1341 | spa_t *l2ad_spa; /* spa */ |
| 1342 | uint64_t l2ad_hand; /* next write location */ |
| 1343 | uint64_t l2ad_start; /* first addr on device */ |
| 1344 | uint64_t l2ad_end; /* last addr on device */ |
| 1345 | boolean_t l2ad_first; /* first sweep through */ |
| 1346 | boolean_t l2ad_writing; /* currently writing */ |
| 1347 | kmutex_t l2ad_mtx; /* lock for buffer list */ |
| 1348 | list_t l2ad_buflist; /* buffer list */ |
| 1349 | list_node_t l2ad_node; /* device list node */ |
| 1350 | refcount_t l2ad_alloc; /* allocated bytes */ |
| 1351 | }; |
| 1352 | |
| 1353 | static list_t L2ARC_dev_list; /* device list */ |
| 1354 | static list_t *l2arc_dev_list; /* device list pointer */ |
| 1355 | static kmutex_t l2arc_dev_mtx; /* device list mutex */ |
| 1356 | static l2arc_dev_t *l2arc_dev_last; /* last device used */ |
| 1357 | static list_t L2ARC_free_on_write; /* free after write buf list */ |
| 1358 | static list_t *l2arc_free_on_write; /* free after write list ptr */ |
| 1359 | static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ |
| 1360 | static uint64_t l2arc_ndev; /* number of devices */ |
| 1361 | |
| 1362 | typedef struct l2arc_read_callback { |
| 1363 | arc_buf_hdr_t *l2rcb_hdr; /* read buffer */ |
| 1364 | blkptr_t l2rcb_bp; /* original blkptr */ |
| 1365 | zbookmark_phys_t l2rcb_zb; /* original bookmark */ |
| 1366 | int l2rcb_flags; /* original flags */ |
| 1367 | void *l2rcb_data; /* temporary buffer */ |
| 1368 | } l2arc_read_callback_t; |
| 1369 | |
| 1370 | typedef struct l2arc_write_callback { |
| 1371 | l2arc_dev_t *l2wcb_dev; /* device info */ |
| 1372 | arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ |
| 1373 | } l2arc_write_callback_t; |
| 1374 | |
| 1375 | typedef struct l2arc_data_free { |
| 1376 | /* protected by l2arc_free_on_write_mtx */ |
| 1377 | void *l2df_data; |
| 1378 | size_t l2df_size; |
| 1379 | arc_buf_contents_t l2df_type; |
| 1380 | list_node_t l2df_list_node; |
| 1381 | } l2arc_data_free_t; |
| 1382 | |
| 1383 | static kmutex_t l2arc_feed_thr_lock; |
| 1384 | static kcondvar_t l2arc_feed_thr_cv; |
| 1385 | static uint8_t l2arc_thread_exit; |
| 1386 | |
| 1387 | static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *); |
| 1388 | static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *); |
| 1389 | static void arc_hdr_free_pdata(arc_buf_hdr_t *hdr); |
| 1390 | static void arc_hdr_alloc_pdata(arc_buf_hdr_t *); |
| 1391 | static void arc_access(arc_buf_hdr_t *, kmutex_t *); |
| 1392 | static boolean_t arc_is_overflowing(); |
| 1393 | static void arc_buf_watch(arc_buf_t *); |
| 1394 | |
| 1395 | static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *); |
| 1396 | static uint32_t arc_bufc_to_flags(arc_buf_contents_t); |
| 1397 | static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); |
| 1398 | static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); |
| 1399 | |
| 1400 | static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); |
| 1401 | static void l2arc_read_done(zio_t *); |
| 1402 | |
| 1403 | static void |
| 1404 | l2arc_trim(const arc_buf_hdr_t *hdr) |
| 1405 | { |
| 1406 | l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; |
| 1407 | |
| 1408 | ASSERT(HDR_HAS_L2HDR(hdr)); |
| 1409 | ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); |
| 1410 | |
| 1411 | if (HDR_GET_PSIZE(hdr) != 0) { |
| 1412 | trim_map_free(dev->l2ad_vdev, hdr->b_l2hdr.b_daddr, |
| 1413 | HDR_GET_PSIZE(hdr), 0); |
| 1414 | } |
| 1415 | } |
| 1416 | |
| 1417 | static uint64_t |
| 1418 | buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) |
| 1419 | { |
| 1420 | uint8_t *vdva = (uint8_t *)dva; |
| 1421 | uint64_t crc = -1ULL; |
| 1422 | int i; |
| 1423 | |
| 1424 | ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); |
| 1425 | |
| 1426 | for (i = 0; i < sizeof (dva_t); i++) |
| 1427 | crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; |
| 1428 | |
| 1429 | crc ^= (spa>>8) ^ birth; |
| 1430 | |
| 1431 | return (crc); |
| 1432 | } |
| 1433 | |
| 1434 | #define HDR_EMPTY(hdr) \ |
| 1435 | ((hdr)->b_dva.dva_word[0] == 0 && \ |
| 1436 | (hdr)->b_dva.dva_word[1] == 0) |
| 1437 | |
| 1438 | #define HDR_EQUAL(spa, dva, birth, hdr) \ |
| 1439 | ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ |
| 1440 | ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ |
| 1441 | ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa) |
| 1442 | |
| 1443 | static void |
| 1444 | buf_discard_identity(arc_buf_hdr_t *hdr) |
| 1445 | { |
| 1446 | hdr->b_dva.dva_word[0] = 0; |
| 1447 | hdr->b_dva.dva_word[1] = 0; |
| 1448 | hdr->b_birth = 0; |
| 1449 | } |
| 1450 | |
| 1451 | static arc_buf_hdr_t * |
| 1452 | buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) |
| 1453 | { |
| 1454 | const dva_t *dva = BP_IDENTITY(bp); |
| 1455 | uint64_t birth = BP_PHYSICAL_BIRTH(bp); |
| 1456 | uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); |
| 1457 | kmutex_t *hash_lock = BUF_HASH_LOCK(idx); |
| 1458 | arc_buf_hdr_t *hdr; |
| 1459 | |
| 1460 | mutex_enter(hash_lock); |
| 1461 | for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL; |
| 1462 | hdr = hdr->b_hash_next) { |
| 1463 | if (HDR_EQUAL(spa, dva, birth, hdr)) { |
| 1464 | *lockp = hash_lock; |
| 1465 | return (hdr); |
| 1466 | } |
| 1467 | } |
| 1468 | mutex_exit(hash_lock); |
| 1469 | *lockp = NULL; |
| 1470 | return (NULL); |
| 1471 | } |
| 1472 | |
| 1473 | /* |
| 1474 | * Insert an entry into the hash table. If there is already an element |
| 1475 | * equal to elem in the hash table, then the already existing element |
| 1476 | * will be returned and the new element will not be inserted. |
| 1477 | * Otherwise returns NULL. |
| 1478 | * If lockp == NULL, the caller is assumed to already hold the hash lock. |
| 1479 | */ |
| 1480 | static arc_buf_hdr_t * |
| 1481 | buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp) |
| 1482 | { |
| 1483 | uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); |
| 1484 | kmutex_t *hash_lock = BUF_HASH_LOCK(idx); |
| 1485 | arc_buf_hdr_t *fhdr; |
| 1486 | uint32_t i; |
| 1487 | |
| 1488 | ASSERT(!DVA_IS_EMPTY(&hdr->b_dva)); |
| 1489 | ASSERT(hdr->b_birth != 0); |
| 1490 | ASSERT(!HDR_IN_HASH_TABLE(hdr)); |
| 1491 | |
| 1492 | if (lockp != NULL) { |
| 1493 | *lockp = hash_lock; |
| 1494 | mutex_enter(hash_lock); |
| 1495 | } else { |
| 1496 | ASSERT(MUTEX_HELD(hash_lock)); |
| 1497 | } |
| 1498 | |
| 1499 | for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL; |
| 1500 | fhdr = fhdr->b_hash_next, i++) { |
| 1501 | if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr)) |
| 1502 | return (fhdr); |
| 1503 | } |
| 1504 | |
| 1505 | hdr->b_hash_next = buf_hash_table.ht_table[idx]; |
| 1506 | buf_hash_table.ht_table[idx] = hdr; |
| 1507 | arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); |
| 1508 | |
| 1509 | /* collect some hash table performance data */ |
| 1510 | if (i > 0) { |
| 1511 | ARCSTAT_BUMP(arcstat_hash_collisions); |
| 1512 | if (i == 1) |
| 1513 | ARCSTAT_BUMP(arcstat_hash_chains); |
| 1514 | |
| 1515 | ARCSTAT_MAX(arcstat_hash_chain_max, i); |
| 1516 | } |
| 1517 | |
| 1518 | ARCSTAT_BUMP(arcstat_hash_elements); |
| 1519 | ARCSTAT_MAXSTAT(arcstat_hash_elements); |
| 1520 | |
| 1521 | return (NULL); |
| 1522 | } |
| 1523 | |
| 1524 | static void |
| 1525 | buf_hash_remove(arc_buf_hdr_t *hdr) |
| 1526 | { |
| 1527 | arc_buf_hdr_t *fhdr, **hdrp; |
| 1528 | uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); |
| 1529 | |
| 1530 | ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); |
| 1531 | ASSERT(HDR_IN_HASH_TABLE(hdr)); |
| 1532 | |
| 1533 | hdrp = &buf_hash_table.ht_table[idx]; |
| 1534 | while ((fhdr = *hdrp) != hdr) { |
| 1535 | ASSERT3P(fhdr, !=, NULL); |
| 1536 | hdrp = &fhdr->b_hash_next; |
| 1537 | } |
| 1538 | *hdrp = hdr->b_hash_next; |
| 1539 | hdr->b_hash_next = NULL; |
| 1540 | arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE); |
| 1541 | |
| 1542 | /* collect some hash table performance data */ |
| 1543 | ARCSTAT_BUMPDOWN(arcstat_hash_elements); |
| 1544 | |
| 1545 | if (buf_hash_table.ht_table[idx] && |
| 1546 | buf_hash_table.ht_table[idx]->b_hash_next == NULL) |
| 1547 | ARCSTAT_BUMPDOWN(arcstat_hash_chains); |
| 1548 | } |
| 1549 | |
| 1550 | /* |
| 1551 | * Global data structures and functions for the buf kmem cache. |
| 1552 | */ |
| 1553 | static kmem_cache_t *hdr_full_cache; |
| 1554 | static kmem_cache_t *hdr_l2only_cache; |
| 1555 | static kmem_cache_t *buf_cache; |
| 1556 | |
| 1557 | static void |
| 1558 | buf_fini(void) |
| 1559 | { |
| 1560 | int i; |
| 1561 | |
| 1562 | kmem_free(buf_hash_table.ht_table, |
| 1563 | (buf_hash_table.ht_mask + 1) * sizeof (void *)); |
| 1564 | for (i = 0; i < BUF_LOCKS; i++) |
| 1565 | mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); |
| 1566 | kmem_cache_destroy(hdr_full_cache); |
| 1567 | kmem_cache_destroy(hdr_l2only_cache); |
| 1568 | kmem_cache_destroy(buf_cache); |
| 1569 | } |
| 1570 | |
| 1571 | /* |
| 1572 | * Constructor callback - called when the cache is empty |
| 1573 | * and a new buf is requested. |
| 1574 | */ |
| 1575 | /* ARGSUSED */ |
| 1576 | static int |
| 1577 | hdr_full_cons(void *vbuf, void *unused, int kmflag) |
| 1578 | { |
| 1579 | arc_buf_hdr_t *hdr = vbuf; |
| 1580 | |
| 1581 | bzero(hdr, HDR_FULL_SIZE); |
| 1582 | cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL); |
| 1583 | refcount_create(&hdr->b_l1hdr.b_refcnt); |
| 1584 | mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); |
| 1585 | multilist_link_init(&hdr->b_l1hdr.b_arc_node); |
| 1586 | arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS); |
| 1587 | |
| 1588 | return (0); |
| 1589 | } |
| 1590 | |
| 1591 | /* ARGSUSED */ |
| 1592 | static int |
| 1593 | hdr_l2only_cons(void *vbuf, void *unused, int kmflag) |
| 1594 | { |
| 1595 | arc_buf_hdr_t *hdr = vbuf; |
| 1596 | |
| 1597 | bzero(hdr, HDR_L2ONLY_SIZE); |
| 1598 | arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); |
| 1599 | |
| 1600 | return (0); |
| 1601 | } |
| 1602 | |
| 1603 | /* ARGSUSED */ |
| 1604 | static int |
| 1605 | buf_cons(void *vbuf, void *unused, int kmflag) |
| 1606 | { |
| 1607 | arc_buf_t *buf = vbuf; |
| 1608 | |
| 1609 | bzero(buf, sizeof (arc_buf_t)); |
| 1610 | mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); |
| 1611 | arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); |
| 1612 | |
| 1613 | return (0); |
| 1614 | } |
| 1615 | |
| 1616 | /* |
| 1617 | * Destructor callback - called when a cached buf is |
| 1618 | * no longer required. |
| 1619 | */ |
| 1620 | /* ARGSUSED */ |
| 1621 | static void |
| 1622 | hdr_full_dest(void *vbuf, void *unused) |
| 1623 | { |
| 1624 | arc_buf_hdr_t *hdr = vbuf; |
| 1625 | |
| 1626 | ASSERT(HDR_EMPTY(hdr)); |
| 1627 | cv_destroy(&hdr->b_l1hdr.b_cv); |
| 1628 | refcount_destroy(&hdr->b_l1hdr.b_refcnt); |
| 1629 | mutex_destroy(&hdr->b_l1hdr.b_freeze_lock); |
| 1630 | ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); |
| 1631 | arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS); |
| 1632 | } |
| 1633 | |
| 1634 | /* ARGSUSED */ |
| 1635 | static void |
| 1636 | hdr_l2only_dest(void *vbuf, void *unused) |
| 1637 | { |
| 1638 | arc_buf_hdr_t *hdr = vbuf; |
| 1639 | |
| 1640 | ASSERT(HDR_EMPTY(hdr)); |
| 1641 | arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); |
| 1642 | } |
| 1643 | |
| 1644 | /* ARGSUSED */ |
| 1645 | static void |
| 1646 | buf_dest(void *vbuf, void *unused) |
| 1647 | { |
| 1648 | arc_buf_t *buf = vbuf; |
| 1649 | |
| 1650 | mutex_destroy(&buf->b_evict_lock); |
| 1651 | arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); |
| 1652 | } |
| 1653 | |
| 1654 | /* |
| 1655 | * Reclaim callback -- invoked when memory is low. |
| 1656 | */ |
| 1657 | /* ARGSUSED */ |
| 1658 | static void |
| 1659 | hdr_recl(void *unused) |
| 1660 | { |
| 1661 | dprintf("hdr_recl called\n" ); |
| 1662 | /* |
| 1663 | * umem calls the reclaim func when we destroy the buf cache, |
| 1664 | * which is after we do arc_fini(). |
| 1665 | */ |
| 1666 | if (!arc_dead) |
| 1667 | cv_signal(&arc_reclaim_thread_cv); |
| 1668 | } |
| 1669 | |
| 1670 | static void |
| 1671 | buf_init(void) |
| 1672 | { |
| 1673 | uint64_t *ct; |
| 1674 | uint64_t hsize = 1ULL << 12; |
| 1675 | int i, j; |
| 1676 | |
| 1677 | /* |
| 1678 | * The hash table is big enough to fill all of physical memory |
| 1679 | * with an average block size of zfs_arc_average_blocksize (default 8K). |
| 1680 | * By default, the table will take up |
| 1681 | * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). |
| 1682 | */ |
| 1683 | while (hsize * zfs_arc_average_blocksize < (uint64_t)physmem * PAGESIZE) |
| 1684 | hsize <<= 1; |
| 1685 | retry: |
| 1686 | buf_hash_table.ht_mask = hsize - 1; |
| 1687 | buf_hash_table.ht_table = |
| 1688 | kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); |
| 1689 | if (buf_hash_table.ht_table == NULL) { |
| 1690 | ASSERT(hsize > (1ULL << 8)); |
| 1691 | hsize >>= 1; |
| 1692 | goto retry; |
| 1693 | } |
| 1694 | |
| 1695 | hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full" , HDR_FULL_SIZE, |
| 1696 | 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0); |
| 1697 | hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only" , |
| 1698 | HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl, |
| 1699 | NULL, NULL, 0); |
| 1700 | buf_cache = kmem_cache_create("arc_buf_t" , sizeof (arc_buf_t), |
| 1701 | 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); |
| 1702 | |
| 1703 | for (i = 0; i < 256; i++) |
| 1704 | for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) |
| 1705 | *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); |
| 1706 | |
| 1707 | for (i = 0; i < BUF_LOCKS; i++) { |
| 1708 | mutex_init(&buf_hash_table.ht_locks[i].ht_lock, |
| 1709 | NULL, MUTEX_DEFAULT, NULL); |
| 1710 | } |
| 1711 | } |
| 1712 | |
| 1713 | #define ARC_MINTIME (hz>>4) /* 62 ms */ |
| 1714 | |
| 1715 | static inline boolean_t |
| 1716 | arc_buf_is_shared(arc_buf_t *buf) |
| 1717 | { |
| 1718 | boolean_t shared = (buf->b_data != NULL && |
| 1719 | buf->b_data == buf->b_hdr->b_l1hdr.b_pdata); |
| 1720 | IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr)); |
| 1721 | return (shared); |
| 1722 | } |
| 1723 | |
| 1724 | static inline void |
| 1725 | arc_cksum_free(arc_buf_hdr_t *hdr) |
| 1726 | { |
| 1727 | ASSERT(HDR_HAS_L1HDR(hdr)); |
| 1728 | mutex_enter(&hdr->b_l1hdr.b_freeze_lock); |
| 1729 | if (hdr->b_l1hdr.b_freeze_cksum != NULL) { |
| 1730 | kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t)); |
| 1731 | hdr->b_l1hdr.b_freeze_cksum = NULL; |
| 1732 | } |
| 1733 | mutex_exit(&hdr->b_l1hdr.b_freeze_lock); |
| 1734 | } |
| 1735 | |
| 1736 | static void |
| 1737 | arc_cksum_verify(arc_buf_t *buf) |
| 1738 | { |
| 1739 | arc_buf_hdr_t *hdr = buf->b_hdr; |
| 1740 | zio_cksum_t zc; |
| 1741 | |
| 1742 | if (!(zfs_flags & ZFS_DEBUG_MODIFY)) |
| 1743 | return; |
| 1744 | |
| 1745 | ASSERT(HDR_HAS_L1HDR(hdr)); |
| 1746 | |
| 1747 | mutex_enter(&hdr->b_l1hdr.b_freeze_lock); |
| 1748 | if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) { |
| 1749 | mutex_exit(&hdr->b_l1hdr.b_freeze_lock); |
| 1750 | return; |
| 1751 | } |
| 1752 | fletcher_2_native(buf->b_data, HDR_GET_LSIZE(hdr), NULL, &zc); |
| 1753 | if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc)) |
| 1754 | panic("buffer modified while frozen!" ); |
| 1755 | mutex_exit(&hdr->b_l1hdr.b_freeze_lock); |
| 1756 | } |
| 1757 | |
| 1758 | static boolean_t |
| 1759 | arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio) |
| 1760 | { |
| 1761 | enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp); |
| 1762 | boolean_t valid_cksum; |
| 1763 | |
| 1764 | ASSERT(!BP_IS_EMBEDDED(zio->io_bp)); |
| 1765 | VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr)); |
| 1766 | |
| 1767 | /* |
| 1768 | * We rely on the blkptr's checksum to determine if the block |
| 1769 | * is valid or not. When compressed arc is enabled, the l2arc |
| 1770 | * writes the block to the l2arc just as it appears in the pool. |
| 1771 | * This allows us to use the blkptr's checksum to validate the |
| 1772 | * data that we just read off of the l2arc without having to store |
| 1773 | * a separate checksum in the arc_buf_hdr_t. However, if compressed |
| 1774 | * arc is disabled, then the data written to the l2arc is always |
| 1775 | * uncompressed and won't match the block as it exists in the main |
| 1776 | * pool. When this is the case, we must first compress it if it is |
| 1777 | * compressed on the main pool before we can validate the checksum. |
| 1778 | */ |
| 1779 | if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) { |
| 1780 | ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); |
| 1781 | uint64_t lsize = HDR_GET_LSIZE(hdr); |
| 1782 | uint64_t csize; |
| 1783 | |
| 1784 | void *cbuf = zio_buf_alloc(HDR_GET_PSIZE(hdr)); |
| 1785 | csize = zio_compress_data(compress, zio->io_data, cbuf, lsize); |
| 1786 | ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr)); |
| 1787 | if (csize < HDR_GET_PSIZE(hdr)) { |
| 1788 | /* |
| 1789 | * Compressed blocks are always a multiple of the |
| 1790 | * smallest ashift in the pool. Ideally, we would |
| 1791 | * like to round up the csize to the next |
| 1792 | * spa_min_ashift but that value may have changed |
| 1793 | * since the block was last written. Instead, |
| 1794 | * we rely on the fact that the hdr's psize |
| 1795 | * was set to the psize of the block when it was |
| 1796 | * last written. We set the csize to that value |
| 1797 | * and zero out any part that should not contain |
| 1798 | * data. |
| 1799 | */ |
| 1800 | bzero((char *)cbuf + csize, HDR_GET_PSIZE(hdr) - csize); |
| 1801 | csize = HDR_GET_PSIZE(hdr); |
| 1802 | } |
| 1803 | zio_push_transform(zio, cbuf, csize, HDR_GET_PSIZE(hdr), NULL); |
| 1804 | } |
| 1805 | |
| 1806 | /* |
| 1807 | * Block pointers always store the checksum for the logical data. |
| 1808 | * If the block pointer has the gang bit set, then the checksum |
| 1809 | * it represents is for the reconstituted data and not for an |
| 1810 | * individual gang member. The zio pipeline, however, must be able to |
| 1811 | * determine the checksum of each of the gang constituents so it |
| 1812 | * treats the checksum comparison differently than what we need |
| 1813 | * for l2arc blocks. This prevents us from using the |
| 1814 | * zio_checksum_error() interface directly. Instead we must call the |
| 1815 | * zio_checksum_error_impl() so that we can ensure the checksum is |
| 1816 | * generated using the correct checksum algorithm and accounts for the |
| 1817 | * logical I/O size and not just a gang fragment. |
| 1818 | */ |
| 1819 | valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp, |
| 1820 | BP_GET_CHECKSUM(zio->io_bp), zio->io_data, zio->io_size, |
| 1821 | zio->io_offset, NULL) == 0); |
| 1822 | zio_pop_transforms(zio); |
| 1823 | return (valid_cksum); |
| 1824 | } |
| 1825 | |
| 1826 | static void |
| 1827 | arc_cksum_compute(arc_buf_t *buf) |
| 1828 | { |
| 1829 | arc_buf_hdr_t *hdr = buf->b_hdr; |
| 1830 | |
| 1831 | if (!(zfs_flags & ZFS_DEBUG_MODIFY)) |
| 1832 | return; |
| 1833 | |
| 1834 | ASSERT(HDR_HAS_L1HDR(hdr)); |
| 1835 | mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); |
| 1836 | if (hdr->b_l1hdr.b_freeze_cksum != NULL) { |
| 1837 | mutex_exit(&hdr->b_l1hdr.b_freeze_lock); |
| 1838 | return; |
| 1839 | } |
| 1840 | hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), |
| 1841 | KM_SLEEP); |
| 1842 | fletcher_2_native(buf->b_data, HDR_GET_LSIZE(hdr), NULL, |
| 1843 | hdr->b_l1hdr.b_freeze_cksum); |
| 1844 | mutex_exit(&hdr->b_l1hdr.b_freeze_lock); |
| 1845 | #ifdef illumos |
| 1846 | arc_buf_watch(buf); |
| 1847 | #endif |
| 1848 | } |
| 1849 | |
| 1850 | #ifdef illumos |
| 1851 | #ifndef _KERNEL |
| 1852 | typedef struct procctl { |
| 1853 | long cmd; |
| 1854 | prwatch_t prwatch; |
| 1855 | } procctl_t; |
| 1856 | #endif |
| 1857 | |
| 1858 | /* ARGSUSED */ |
| 1859 | static void |
| 1860 | arc_buf_unwatch(arc_buf_t *buf) |
| 1861 | { |
| 1862 | #ifndef _KERNEL |
| 1863 | if (arc_watch) { |
| 1864 | int result; |
| 1865 | procctl_t ctl; |
| 1866 | ctl.cmd = PCWATCH; |
| 1867 | ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; |
| 1868 | ctl.prwatch.pr_size = 0; |
| 1869 | ctl.prwatch.pr_wflags = 0; |
| 1870 | result = write(arc_procfd, &ctl, sizeof (ctl)); |
| 1871 | ASSERT3U(result, ==, sizeof (ctl)); |
| 1872 | } |
| 1873 | #endif |
| 1874 | } |
| 1875 | |
| 1876 | /* ARGSUSED */ |
| 1877 | static void |
| 1878 | arc_buf_watch(arc_buf_t *buf) |
| 1879 | { |
| 1880 | #ifndef _KERNEL |
| 1881 | if (arc_watch) { |
| 1882 | int result; |
| 1883 | procctl_t ctl; |
| 1884 | ctl.cmd = PCWATCH; |
| 1885 | ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; |
| 1886 | ctl.prwatch.pr_size = HDR_GET_LSIZE(buf->b_hdr); |
| 1887 | ctl.prwatch.pr_wflags = WA_WRITE; |
| 1888 | result = write(arc_procfd, &ctl, sizeof (ctl)); |
| 1889 | ASSERT3U(result, ==, sizeof (ctl)); |
| 1890 | } |
| 1891 | #endif |
| 1892 | } |
| 1893 | #endif /* illumos */ |
| 1894 | |
| 1895 | static arc_buf_contents_t |
| 1896 | arc_buf_type(arc_buf_hdr_t *hdr) |
| 1897 | { |
| 1898 | arc_buf_contents_t type; |
| 1899 | if (HDR_ISTYPE_METADATA(hdr)) { |
| 1900 | type = ARC_BUFC_METADATA; |
| 1901 | } else { |
| 1902 | type = ARC_BUFC_DATA; |
| 1903 | } |
| 1904 | VERIFY3U(hdr->b_type, ==, type); |
| 1905 | return (type); |
| 1906 | } |
| 1907 | |
| 1908 | static uint32_t |
| 1909 | arc_bufc_to_flags(arc_buf_contents_t type) |
| 1910 | { |
| 1911 | switch (type) { |
| 1912 | case ARC_BUFC_DATA: |
| 1913 | /* metadata field is 0 if buffer contains normal data */ |
| 1914 | return (0); |
| 1915 | case ARC_BUFC_METADATA: |
| 1916 | return (ARC_FLAG_BUFC_METADATA); |
| 1917 | default: |
| 1918 | break; |
| 1919 | } |
| 1920 | panic("undefined ARC buffer type!" ); |
| 1921 | return ((uint32_t)-1); |
| 1922 | } |
| 1923 | |
| 1924 | void |
| 1925 | arc_buf_thaw(arc_buf_t *buf) |
| 1926 | { |
| 1927 | arc_buf_hdr_t *hdr = buf->b_hdr; |
| 1928 | |
| 1929 | if (zfs_flags & ZFS_DEBUG_MODIFY) { |
| 1930 | if (hdr->b_l1hdr.b_state != arc_anon) |
| 1931 | panic("modifying non-anon buffer!" ); |
| 1932 | if (HDR_IO_IN_PROGRESS(hdr)) |
| 1933 | panic("modifying buffer while i/o in progress!" ); |
| 1934 | arc_cksum_verify(buf); |
| 1935 | } |
| 1936 | |
| 1937 | ASSERT(HDR_HAS_L1HDR(hdr)); |
| 1938 | arc_cksum_free(hdr); |
| 1939 | |
| 1940 | mutex_enter(&hdr->b_l1hdr.b_freeze_lock); |
| 1941 | #ifdef ZFS_DEBUG |
| 1942 | if (zfs_flags & ZFS_DEBUG_MODIFY) { |
| 1943 | if (hdr->b_l1hdr.b_thawed != NULL) |
| 1944 | kmem_free(hdr->b_l1hdr.b_thawed, 1); |
| 1945 | hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP); |
| 1946 | } |
| 1947 | #endif |
| 1948 | |
| 1949 | mutex_exit(&hdr->b_l1hdr.b_freeze_lock); |
| 1950 | |
| 1951 | #ifdef illumos |
| 1952 | arc_buf_unwatch(buf); |
| 1953 | #endif |
| 1954 | } |
| 1955 | |
| 1956 | void |
| 1957 | arc_buf_freeze(arc_buf_t *buf) |
| 1958 | { |
| 1959 | arc_buf_hdr_t *hdr = buf->b_hdr; |
| 1960 | kmutex_t *hash_lock; |
| 1961 | |
| 1962 | if (!(zfs_flags & ZFS_DEBUG_MODIFY)) |
| 1963 | return; |
| 1964 | |
| 1965 | hash_lock = HDR_LOCK(hdr); |
| 1966 | mutex_enter(hash_lock); |
| 1967 | |
| 1968 | ASSERT(HDR_HAS_L1HDR(hdr)); |
| 1969 | ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL || |
| 1970 | hdr->b_l1hdr.b_state == arc_anon); |
| 1971 | arc_cksum_compute(buf); |
| 1972 | mutex_exit(hash_lock); |
| 1973 | |
| 1974 | } |
| 1975 | |
| 1976 | /* |
| 1977 | * The arc_buf_hdr_t's b_flags should never be modified directly. Instead, |
| 1978 | * the following functions should be used to ensure that the flags are |
| 1979 | * updated in a thread-safe way. When manipulating the flags either |
| 1980 | * the hash_lock must be held or the hdr must be undiscoverable. This |
| 1981 | * ensures that we're not racing with any other threads when updating |
| 1982 | * the flags. |
| 1983 | */ |
| 1984 | static inline void |
| 1985 | arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) |
| 1986 | { |
| 1987 | ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); |
| 1988 | hdr->b_flags |= flags; |
| 1989 | } |
| 1990 | |
| 1991 | static inline void |
| 1992 | arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) |
| 1993 | { |
| 1994 | ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); |
| 1995 | hdr->b_flags &= ~flags; |
| 1996 | } |
| 1997 | |
| 1998 | /* |
| 1999 | * Setting the compression bits in the arc_buf_hdr_t's b_flags is |
| 2000 | * done in a special way since we have to clear and set bits |
| 2001 | * at the same time. Consumers that wish to set the compression bits |
| 2002 | * must use this function to ensure that the flags are updated in |
| 2003 | * thread-safe manner. |
| 2004 | */ |
| 2005 | static void |
| 2006 | arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp) |
| 2007 | { |
| 2008 | ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); |
| 2009 | |
| 2010 | /* |
| 2011 | * Holes and embedded blocks will always have a psize = 0 so |
| 2012 | * we ignore the compression of the blkptr and set the |
| 2013 | * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF. |
| 2014 | * Holes and embedded blocks remain anonymous so we don't |
| 2015 | * want to uncompress them. Mark them as uncompressed. |
| 2016 | */ |
| 2017 | if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) { |
| 2018 | arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC); |
| 2019 | HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF); |
| 2020 | ASSERT(!HDR_COMPRESSION_ENABLED(hdr)); |
| 2021 | ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); |
| 2022 | } else { |
| 2023 | arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC); |
| 2024 | HDR_SET_COMPRESS(hdr, cmp); |
| 2025 | ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp); |
| 2026 | ASSERT(HDR_COMPRESSION_ENABLED(hdr)); |
| 2027 | } |
| 2028 | } |
| 2029 | |
| 2030 | static int |
| 2031 | arc_decompress(arc_buf_t *buf) |
| 2032 | { |
| 2033 | arc_buf_hdr_t *hdr = buf->b_hdr; |
| 2034 | dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap; |
| 2035 | int error; |
| 2036 | |
| 2037 | if (arc_buf_is_shared(buf)) { |
| 2038 | ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); |
| 2039 | } else if (HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) { |
| 2040 | /* |
| 2041 | * The arc_buf_hdr_t is either not compressed or is |
| 2042 | * associated with an embedded block or a hole in which |
| 2043 | * case they remain anonymous. |
| 2044 | */ |
| 2045 | IMPLY(HDR_COMPRESSION_ENABLED(hdr), HDR_GET_PSIZE(hdr) == 0 || |
| 2046 | HDR_GET_PSIZE(hdr) == HDR_GET_LSIZE(hdr)); |
| 2047 | ASSERT(!HDR_SHARED_DATA(hdr)); |
| 2048 | bcopy(hdr->b_l1hdr.b_pdata, buf->b_data, HDR_GET_LSIZE(hdr)); |
| 2049 | } else { |
| 2050 | ASSERT(!HDR_SHARED_DATA(hdr)); |
| 2051 | ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr)); |
| 2052 | error = zio_decompress_data(HDR_GET_COMPRESS(hdr), |
| 2053 | hdr->b_l1hdr.b_pdata, buf->b_data, HDR_GET_PSIZE(hdr), |
| 2054 | HDR_GET_LSIZE(hdr)); |
| 2055 | if (error != 0) { |
| 2056 | zfs_dbgmsg("hdr %p, compress %d, psize %d, lsize %d" , |
| 2057 | hdr, HDR_GET_COMPRESS(hdr), HDR_GET_PSIZE(hdr), |
| 2058 | HDR_GET_LSIZE(hdr)); |
| 2059 | return (SET_ERROR(EIO)); |
| 2060 | } |
| 2061 | } |
| 2062 | if (bswap != DMU_BSWAP_NUMFUNCS) { |
| 2063 | ASSERT(!HDR_SHARED_DATA(hdr)); |
| 2064 | ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS); |
| 2065 | dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr)); |
| 2066 | } |
| 2067 | arc_cksum_compute(buf); |
| 2068 | return (0); |
| 2069 | } |
| 2070 | |
| 2071 | /* |
| 2072 | * Return the size of the block, b_pdata, that is stored in the arc_buf_hdr_t. |
| 2073 | */ |
| 2074 | static uint64_t |
| 2075 | arc_hdr_size(arc_buf_hdr_t *hdr) |
| 2076 | { |
| 2077 | uint64_t size; |
| 2078 | |
| 2079 | if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && |
| 2080 | HDR_GET_PSIZE(hdr) > 0) { |
| 2081 | size = HDR_GET_PSIZE(hdr); |
| 2082 | } else { |
| 2083 | ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0); |
| 2084 | size = HDR_GET_LSIZE(hdr); |
| 2085 | } |
| 2086 | return (size); |
| 2087 | } |
| 2088 | |
| 2089 | /* |
| 2090 | * Increment the amount of evictable space in the arc_state_t's refcount. |
| 2091 | * We account for the space used by the hdr and the arc buf individually |
| 2092 | * so that we can add and remove them from the refcount individually. |
| 2093 | */ |
| 2094 | static void |
| 2095 | arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state) |
| 2096 | { |
| 2097 | arc_buf_contents_t type = arc_buf_type(hdr); |
| 2098 | uint64_t lsize = HDR_GET_LSIZE(hdr); |
| 2099 | |
| 2100 | ASSERT(HDR_HAS_L1HDR(hdr)); |
| 2101 | |
| 2102 | if (GHOST_STATE(state)) { |
| 2103 | ASSERT0(hdr->b_l1hdr.b_bufcnt); |
| 2104 | ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); |
| 2105 | ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); |
| 2106 | (void) refcount_add_many(&state->arcs_esize[type], lsize, hdr); |
| 2107 | return; |
| 2108 | } |
| 2109 | |
| 2110 | ASSERT(!GHOST_STATE(state)); |
| 2111 | if (hdr->b_l1hdr.b_pdata != NULL) { |
| 2112 | (void) refcount_add_many(&state->arcs_esize[type], |
| 2113 | arc_hdr_size(hdr), hdr); |
| 2114 | } |
| 2115 | for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; |
| 2116 | buf = buf->b_next) { |
| 2117 | if (arc_buf_is_shared(buf)) { |
| 2118 | ASSERT(ARC_BUF_LAST(buf)); |
| 2119 | continue; |
| 2120 | } |
| 2121 | (void) refcount_add_many(&state->arcs_esize[type], lsize, buf); |
| 2122 | } |
| 2123 | } |
| 2124 | |
| 2125 | /* |
| 2126 | * Decrement the amount of evictable space in the arc_state_t's refcount. |
| 2127 | * We account for the space used by the hdr and the arc buf individually |
| 2128 | * so that we can add and remove them from the refcount individually. |
| 2129 | */ |
| 2130 | static void |
| 2131 | arc_evitable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state) |
| 2132 | { |
| 2133 | arc_buf_contents_t type = arc_buf_type(hdr); |
| 2134 | uint64_t lsize = HDR_GET_LSIZE(hdr); |
| 2135 | |
| 2136 | ASSERT(HDR_HAS_L1HDR(hdr)); |
| 2137 | |
| 2138 | if (GHOST_STATE(state)) { |
| 2139 | ASSERT0(hdr->b_l1hdr.b_bufcnt); |
| 2140 | ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); |
| 2141 | ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); |
| 2142 | (void) refcount_remove_many(&state->arcs_esize[type], |
| 2143 | lsize, hdr); |
| 2144 | return; |
| 2145 | } |
| 2146 | |
| 2147 | ASSERT(!GHOST_STATE(state)); |
| 2148 | if (hdr->b_l1hdr.b_pdata != NULL) { |
| 2149 | (void) refcount_remove_many(&state->arcs_esize[type], |
| 2150 | arc_hdr_size(hdr), hdr); |
| 2151 | } |
| 2152 | for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; |
| 2153 | buf = buf->b_next) { |
| 2154 | if (arc_buf_is_shared(buf)) { |
| 2155 | ASSERT(ARC_BUF_LAST(buf)); |
| 2156 | continue; |
| 2157 | } |
| 2158 | (void) refcount_remove_many(&state->arcs_esize[type], |
| 2159 | lsize, buf); |
| 2160 | } |
| 2161 | } |
| 2162 | |
| 2163 | /* |
| 2164 | * Add a reference to this hdr indicating that someone is actively |
| 2165 | * referencing that memory. When the refcount transitions from 0 to 1, |
| 2166 | * we remove it from the respective arc_state_t list to indicate that |
| 2167 | * it is not evictable. |
| 2168 | */ |
| 2169 | static void |
| 2170 | add_reference(arc_buf_hdr_t *hdr, void *tag) |
| 2171 | { |
| 2172 | ASSERT(HDR_HAS_L1HDR(hdr)); |
| 2173 | if (!MUTEX_HELD(HDR_LOCK(hdr))) { |
| 2174 | ASSERT(hdr->b_l1hdr.b_state == arc_anon); |
| 2175 | ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); |
| 2176 | ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); |
| 2177 | } |
| 2178 | |
| 2179 | arc_state_t *state = hdr->b_l1hdr.b_state; |
| 2180 | |
| 2181 | if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) && |
| 2182 | (state != arc_anon)) { |
| 2183 | /* We don't use the L2-only state list. */ |
| 2184 | if (state != arc_l2c_only) { |
| 2185 | multilist_remove(&state->arcs_list[arc_buf_type(hdr)], |
| 2186 | hdr); |
| 2187 | arc_evitable_space_decrement(hdr, state); |
| 2188 | } |
| 2189 | /* remove the prefetch flag if we get a reference */ |
| 2190 | arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); |
| 2191 | } |
| 2192 | } |
| 2193 | |
| 2194 | /* |
| 2195 | * Remove a reference from this hdr. When the reference transitions from |
| 2196 | * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's |
| 2197 | * list making it eligible for eviction. |
| 2198 | */ |
| 2199 | static int |
| 2200 | remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag) |
| 2201 | { |
| 2202 | int cnt; |
| 2203 | arc_state_t *state = hdr->b_l1hdr.b_state; |
| 2204 | |
| 2205 | ASSERT(HDR_HAS_L1HDR(hdr)); |
| 2206 | ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); |
| 2207 | ASSERT(!GHOST_STATE(state)); |
| 2208 | |
| 2209 | /* |
| 2210 | * arc_l2c_only counts as a ghost state so we don't need to explicitly |
| 2211 | * check to prevent usage of the arc_l2c_only list. |
| 2212 | */ |
| 2213 | if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) && |
| 2214 | (state != arc_anon)) { |
| 2215 | multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr); |
| 2216 | ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); |
| 2217 | arc_evictable_space_increment(hdr, state); |
| 2218 | } |
| 2219 | return (cnt); |
| 2220 | } |
| 2221 | |
| 2222 | /* |
| 2223 | * Move the supplied buffer to the indicated state. The hash lock |
| 2224 | * for the buffer must be held by the caller. |
| 2225 | */ |
| 2226 | static void |
| 2227 | arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr, |
| 2228 | kmutex_t *hash_lock) |
| 2229 | { |
| 2230 | arc_state_t *old_state; |
| 2231 | int64_t refcnt; |
| 2232 | uint32_t bufcnt; |
| 2233 | boolean_t update_old, update_new; |
| 2234 | arc_buf_contents_t buftype = arc_buf_type(hdr); |
| 2235 | |
| 2236 | /* |
| 2237 | * We almost always have an L1 hdr here, since we call arc_hdr_realloc() |
| 2238 | * in arc_read() when bringing a buffer out of the L2ARC. However, the |
| 2239 | * L1 hdr doesn't always exist when we change state to arc_anon before |
| 2240 | * destroying a header, in which case reallocating to add the L1 hdr is |
| 2241 | * pointless. |
| 2242 | */ |
| 2243 | if (HDR_HAS_L1HDR(hdr)) { |
| 2244 | old_state = hdr->b_l1hdr.b_state; |
| 2245 | refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt); |
| 2246 | bufcnt = hdr->b_l1hdr.b_bufcnt; |
| 2247 | update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pdata != NULL); |
| 2248 | } else { |
| 2249 | old_state = arc_l2c_only; |
| 2250 | refcnt = 0; |
| 2251 | bufcnt = 0; |
| 2252 | update_old = B_FALSE; |
| 2253 | } |
| 2254 | update_new = update_old; |
| 2255 | |
| 2256 | ASSERT(MUTEX_HELD(hash_lock)); |
| 2257 | ASSERT3P(new_state, !=, old_state); |
| 2258 | ASSERT(!GHOST_STATE(new_state) || bufcnt == 0); |
| 2259 | ASSERT(old_state != arc_anon || bufcnt <= 1); |
| 2260 | |
| 2261 | /* |
| 2262 | * If this buffer is evictable, transfer it from the |
| 2263 | * old state list to the new state list. |
| 2264 | */ |
| 2265 | if (refcnt == 0) { |
| 2266 | if (old_state != arc_anon && old_state != arc_l2c_only) { |
| 2267 | ASSERT(HDR_HAS_L1HDR(hdr)); |
| 2268 | multilist_remove(&old_state->arcs_list[buftype], hdr); |
| 2269 | |
| 2270 | if (GHOST_STATE(old_state)) { |
| 2271 | ASSERT0(bufcnt); |
| 2272 | ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); |
| 2273 | update_old = B_TRUE; |
| 2274 | } |
| 2275 | arc_evitable_space_decrement(hdr, old_state); |
| 2276 | } |
| 2277 | if (new_state != arc_anon && new_state != arc_l2c_only) { |
| 2278 | |
| 2279 | /* |
| 2280 | * An L1 header always exists here, since if we're |
| 2281 | * moving to some L1-cached state (i.e. not l2c_only or |
| 2282 | * anonymous), we realloc the header to add an L1hdr |
| 2283 | * beforehand. |
| 2284 | */ |
| 2285 | ASSERT(HDR_HAS_L1HDR(hdr)); |
| 2286 | multilist_insert(&new_state->arcs_list[buftype], hdr); |
| 2287 | |
| 2288 | if (GHOST_STATE(new_state)) { |
| 2289 | ASSERT0(bufcnt); |
| 2290 | ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); |
| 2291 | update_new = B_TRUE; |
| 2292 | } |
| 2293 | arc_evictable_space_increment(hdr, new_state); |
| 2294 | } |
| 2295 | } |
| 2296 | |
| 2297 | ASSERT(!HDR_EMPTY(hdr)); |
| 2298 | if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr)) |
| 2299 | buf_hash_remove(hdr); |
| 2300 | |
| 2301 | /* adjust state sizes (ignore arc_l2c_only) */ |
| 2302 | |
| 2303 | if (update_new && new_state != arc_l2c_only) { |
| 2304 | ASSERT(HDR_HAS_L1HDR(hdr)); |
| 2305 | if (GHOST_STATE(new_state)) { |
| 2306 | ASSERT0(bufcnt); |
| 2307 | |
| 2308 | /* |
| 2309 | * When moving a header to a ghost state, we first |
| 2310 | * remove all arc buffers. Thus, we'll have a |
| 2311 | * bufcnt of zero, and no arc buffer to use for |
| 2312 | * the reference. As a result, we use the arc |
| 2313 | * header pointer for the reference. |
| 2314 | */ |
| 2315 | (void) refcount_add_many(&new_state->arcs_size, |
| 2316 | HDR_GET_LSIZE(hdr), hdr); |
| 2317 | ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); |
| 2318 | } else { |
| 2319 | uint32_t buffers = 0; |
| 2320 | |
| 2321 | /* |
| 2322 | * Each individual buffer holds a unique reference, |
| 2323 | * thus we must remove each of these references one |
| 2324 | * at a time. |
| 2325 | */ |
| 2326 | for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; |
| 2327 | buf = buf->b_next) { |
| 2328 | ASSERT3U(bufcnt, !=, 0); |
| 2329 | buffers++; |
| 2330 | |
| 2331 | /* |
| 2332 | * When the arc_buf_t is sharing the data |
| 2333 | * block with the hdr, the owner of the |
| 2334 | * reference belongs to the hdr. Only |
| 2335 | * add to the refcount if the arc_buf_t is |
| 2336 | * not shared. |
| 2337 | */ |
| 2338 | if (arc_buf_is_shared(buf)) { |
| 2339 | ASSERT(ARC_BUF_LAST(buf)); |
| 2340 | continue; |
| 2341 | } |
| 2342 | |
| 2343 | (void) refcount_add_many(&new_state->arcs_size, |
| 2344 | HDR_GET_LSIZE(hdr), buf); |
| 2345 | } |
| 2346 | ASSERT3U(bufcnt, ==, buffers); |
| 2347 | |
| 2348 | if (hdr->b_l1hdr.b_pdata != NULL) { |
| 2349 | (void) refcount_add_many(&new_state->arcs_size, |
| 2350 | arc_hdr_size(hdr), hdr); |
| 2351 | } else { |
| 2352 | ASSERT(GHOST_STATE(old_state)); |
| 2353 | } |
| 2354 | } |
| 2355 | } |
| 2356 | |
| 2357 | if (update_old && old_state != arc_l2c_only) { |
| 2358 | ASSERT(HDR_HAS_L1HDR(hdr)); |
| 2359 | if (GHOST_STATE(old_state)) { |
| 2360 | ASSERT0(bufcnt); |
| 2361 | |
| 2362 | /* |
| 2363 | * When moving a header off of a ghost state, |
| 2364 | * the header will not contain any arc buffers. |
| 2365 | * We use the arc header pointer for the reference |
| 2366 | * which is exactly what we did when we put the |
| 2367 | * header on the ghost state. |
| 2368 | */ |
| 2369 | |
| 2370 | (void) refcount_remove_many(&old_state->arcs_size, |
| 2371 | HDR_GET_LSIZE(hdr), hdr); |
| 2372 | ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); |
| 2373 | } else { |
| 2374 | uint32_t buffers = 0; |
| 2375 | |
| 2376 | /* |
| 2377 | * Each individual buffer holds a unique reference, |
| 2378 | * thus we must remove each of these references one |
| 2379 | * at a time. |
| 2380 | */ |
| 2381 | for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; |
| 2382 | buf = buf->b_next) { |
| 2383 | ASSERT3P(bufcnt, !=, 0); |
| 2384 | buffers++; |
| 2385 | |
| 2386 | /* |
| 2387 | * When the arc_buf_t is sharing the data |
| 2388 | * block with the hdr, the owner of the |
| 2389 | * reference belongs to the hdr. Only |
| 2390 | * add to the refcount if the arc_buf_t is |
| 2391 | * not shared. |
| 2392 | */ |
| 2393 | if (arc_buf_is_shared(buf)) { |
| 2394 | ASSERT(ARC_BUF_LAST(buf)); |
| 2395 | continue; |
| 2396 | } |
| 2397 | |
| 2398 | (void) refcount_remove_many( |
| 2399 | &old_state->arcs_size, HDR_GET_LSIZE(hdr), |
| 2400 | buf); |
| 2401 | } |
| 2402 | ASSERT3U(bufcnt, ==, buffers); |
| 2403 | ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); |
| 2404 | (void) refcount_remove_many( |
| 2405 | &old_state->arcs_size, arc_hdr_size(hdr), hdr); |
| 2406 | } |
| 2407 | } |
| 2408 | |
| 2409 | if (HDR_HAS_L1HDR(hdr)) |
| 2410 | hdr->b_l1hdr.b_state = new_state; |
| 2411 | |
| 2412 | /* |
| 2413 | * L2 headers should never be on the L2 state list since they don't |
| 2414 | * have L1 headers allocated. |
| 2415 | */ |
| 2416 | ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) && |
| 2417 | multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA])); |
| 2418 | } |
| 2419 | |
| 2420 | void |
| 2421 | arc_space_consume(uint64_t space, arc_space_type_t type) |
| 2422 | { |
| 2423 | ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); |
| 2424 | |
| 2425 | switch (type) { |
| 2426 | case ARC_SPACE_DATA: |
| 2427 | ARCSTAT_INCR(arcstat_data_size, space); |
| 2428 | break; |
| 2429 | case ARC_SPACE_META: |
| 2430 | ARCSTAT_INCR(arcstat_metadata_size, space); |
| 2431 | break; |
| 2432 | case ARC_SPACE_OTHER: |
| 2433 | ARCSTAT_INCR(arcstat_other_size, space); |
| 2434 | break; |
| 2435 | case ARC_SPACE_HDRS: |
| 2436 | ARCSTAT_INCR(arcstat_hdr_size, space); |
| 2437 | break; |
| 2438 | case ARC_SPACE_L2HDRS: |
| 2439 | ARCSTAT_INCR(arcstat_l2_hdr_size, space); |
| 2440 | break; |
| 2441 | } |
| 2442 | |
| 2443 | if (type != ARC_SPACE_DATA) |
| 2444 | ARCSTAT_INCR(arcstat_meta_used, space); |
| 2445 | |
| 2446 | atomic_add_64(&arc_size, space); |
| 2447 | } |
| 2448 | |
| 2449 | void |
| 2450 | arc_space_return(uint64_t space, arc_space_type_t type) |
| 2451 | { |
| 2452 | ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); |
| 2453 | |
| 2454 | switch (type) { |
| 2455 | case ARC_SPACE_DATA: |
| 2456 | ARCSTAT_INCR(arcstat_data_size, -space); |
| 2457 | break; |
| 2458 | case ARC_SPACE_META: |
| 2459 | ARCSTAT_INCR(arcstat_metadata_size, -space); |
| 2460 | break; |
| 2461 | case ARC_SPACE_OTHER: |
| 2462 | ARCSTAT_INCR(arcstat_other_size, -space); |
| 2463 | break; |
| 2464 | case ARC_SPACE_HDRS: |
| 2465 | ARCSTAT_INCR(arcstat_hdr_size, -space); |
| 2466 | break; |
| 2467 | case ARC_SPACE_L2HDRS: |
| 2468 | ARCSTAT_INCR(arcstat_l2_hdr_size, -space); |
| 2469 | break; |
| 2470 | } |
| 2471 | |
| 2472 | if (type != ARC_SPACE_DATA) { |
| 2473 | ASSERT(arc_meta_used >= space); |
| 2474 | if (arc_meta_max < arc_meta_used) |
| 2475 | arc_meta_max = arc_meta_used; |
| 2476 | ARCSTAT_INCR(arcstat_meta_used, -space); |
| 2477 | } |
| 2478 | |
| 2479 | ASSERT(arc_size >= space); |
| 2480 | atomic_add_64(&arc_size, -space); |
| 2481 | } |
| 2482 | |
| 2483 | /* |
| 2484 | * Allocate an initial buffer for this hdr, subsequent buffers will |
| 2485 | * use arc_buf_clone(). |
| 2486 | */ |
| 2487 | static arc_buf_t * |
| 2488 | arc_buf_alloc_impl(arc_buf_hdr_t *hdr, void *tag) |
| 2489 | { |
| 2490 | arc_buf_t *buf; |
| 2491 | |
| 2492 | ASSERT(HDR_HAS_L1HDR(hdr)); |
| 2493 | ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); |
| 2494 | VERIFY(hdr->b_type == ARC_BUFC_DATA || |
| 2495 | hdr->b_type == ARC_BUFC_METADATA); |
| 2496 | |
| 2497 | ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); |
| 2498 | ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); |
| 2499 | ASSERT0(hdr->b_l1hdr.b_bufcnt); |
| 2500 | |
| 2501 | buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); |
| 2502 | buf->b_hdr = hdr; |
| 2503 | buf->b_data = NULL; |
| 2504 | buf->b_next = NULL; |
| 2505 | |
| 2506 | add_reference(hdr, tag); |
| 2507 | |
| 2508 | /* |
| 2509 | * We're about to change the hdr's b_flags. We must either |
| 2510 | * hold the hash_lock or be undiscoverable. |
| 2511 | */ |
| 2512 | ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); |
| 2513 | |
| 2514 | /* |
| 2515 | * If the hdr's data can be shared (no byteswapping, hdr is |
| 2516 | * uncompressed, hdr's data is not currently being written to the |
| 2517 | * L2ARC write) then we share the data buffer and set the appropriate |
| 2518 | * bit in the hdr's b_flags to indicate the hdr is sharing it's |
| 2519 | * b_pdata with the arc_buf_t. Otherwise, we allocate a new buffer to |
| 2520 | * store the buf's data. |
| 2521 | */ |
| 2522 | if (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS && |
| 2523 | HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF && !HDR_L2_WRITING(hdr)) { |
| 2524 | buf->b_data = hdr->b_l1hdr.b_pdata; |
| 2525 | arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); |
| 2526 | } else { |
| 2527 | buf->b_data = arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); |
| 2528 | ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); |
| 2529 | arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); |
| 2530 | } |
| 2531 | VERIFY3P(buf->b_data, !=, NULL); |
| 2532 | |
| 2533 | hdr->b_l1hdr.b_buf = buf; |
| 2534 | hdr->b_l1hdr.b_bufcnt += 1; |
| 2535 | |
| 2536 | return (buf); |
| 2537 | } |
| 2538 | |
| 2539 | /* |
| 2540 | * Used when allocating additional buffers. |
| 2541 | */ |
| 2542 | static arc_buf_t * |
| 2543 | arc_buf_clone(arc_buf_t *from) |
| 2544 | { |
| 2545 | arc_buf_t *buf; |
| 2546 | arc_buf_hdr_t *hdr = from->b_hdr; |
| 2547 | uint64_t size = HDR_GET_LSIZE(hdr); |
| 2548 | |
| 2549 | ASSERT(HDR_HAS_L1HDR(hdr)); |
| 2550 | ASSERT(hdr->b_l1hdr.b_state != arc_anon); |
| 2551 | |
| 2552 | buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); |
| 2553 | buf->b_hdr = hdr; |
| 2554 | buf->b_data = NULL; |
| 2555 | buf->b_next = hdr->b_l1hdr.b_buf; |
| 2556 | hdr->b_l1hdr.b_buf = buf; |
| 2557 | buf->b_data = arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); |
| 2558 | bcopy(from->b_data, buf->b_data, size); |
| 2559 | hdr->b_l1hdr.b_bufcnt += 1; |
| 2560 | |
| 2561 | ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); |
| 2562 | return (buf); |
| 2563 | } |
| 2564 | |
| 2565 | static char *arc_onloan_tag = "onloan" ; |
| 2566 | |
| 2567 | /* |
| 2568 | * Loan out an anonymous arc buffer. Loaned buffers are not counted as in |
| 2569 | * flight data by arc_tempreserve_space() until they are "returned". Loaned |
| 2570 | * buffers must be returned to the arc before they can be used by the DMU or |
| 2571 | * freed. |
| 2572 | */ |
| 2573 | arc_buf_t * |
| 2574 | arc_loan_buf(spa_t *spa, int size) |
| 2575 | { |
| 2576 | arc_buf_t *buf; |
| 2577 | |
| 2578 | buf = arc_alloc_buf(spa, size, arc_onloan_tag, ARC_BUFC_DATA); |
| 2579 | |
| 2580 | atomic_add_64(&arc_loaned_bytes, size); |
| 2581 | return (buf); |
| 2582 | } |
| 2583 | |
| 2584 | /* |
| 2585 | * Return a loaned arc buffer to the arc. |
| 2586 | */ |
| 2587 | void |
| 2588 | arc_return_buf(arc_buf_t *buf, void *tag) |
| 2589 | { |
| 2590 | arc_buf_hdr_t *hdr = buf->b_hdr; |
| 2591 | |
| 2592 | ASSERT3P(buf->b_data, !=, NULL); |
| 2593 | ASSERT(HDR_HAS_L1HDR(hdr)); |
| 2594 | (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag); |
| 2595 | (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); |
| 2596 | |
| 2597 | atomic_add_64(&arc_loaned_bytes, -HDR_GET_LSIZE(hdr)); |
| 2598 | } |
| 2599 | |
| 2600 | /* Detach an arc_buf from a dbuf (tag) */ |
| 2601 | void |
| 2602 | arc_loan_inuse_buf(arc_buf_t *buf, void *tag) |
| 2603 | { |
| 2604 | arc_buf_hdr_t *hdr = buf->b_hdr; |
| 2605 | |
| 2606 | ASSERT3P(buf->b_data, !=, NULL); |
| 2607 | ASSERT(HDR_HAS_L1HDR(hdr)); |
| 2608 | (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); |
| 2609 | (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag); |
| 2610 | |
| 2611 | atomic_add_64(&arc_loaned_bytes, HDR_GET_LSIZE(hdr)); |
| 2612 | } |
| 2613 | |
| 2614 | static void |
| 2615 | l2arc_free_data_on_write(void *data, size_t size, arc_buf_contents_t type) |
| 2616 | { |
| 2617 | l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP); |
| 2618 | |
| 2619 | df->l2df_data = data; |
| 2620 | df->l2df_size = size; |
| 2621 | df->l2df_type = type; |
| 2622 | mutex_enter(&l2arc_free_on_write_mtx); |
| 2623 | list_insert_head(l2arc_free_on_write, df); |
| 2624 | mutex_exit(&l2arc_free_on_write_mtx); |
| 2625 | } |
| 2626 | |
| 2627 | static void |
| 2628 | arc_hdr_free_on_write(arc_buf_hdr_t *hdr) |
| 2629 | { |
| 2630 | arc_state_t *state = hdr->b_l1hdr.b_state; |
| 2631 | arc_buf_contents_t type = arc_buf_type(hdr); |
| 2632 | uint64_t size = arc_hdr_size(hdr); |
| 2633 | |
| 2634 | /* protected by hash lock, if in the hash table */ |
| 2635 | if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { |
| 2636 | ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); |
| 2637 | ASSERT(state != arc_anon && state != arc_l2c_only); |
| 2638 | |
| 2639 | (void) refcount_remove_many(&state->arcs_esize[type], |
| 2640 | size, hdr); |
| 2641 | } |
| 2642 | (void) refcount_remove_many(&state->arcs_size, size, hdr); |
| 2643 | if (type == ARC_BUFC_METADATA) { |
| 2644 | arc_space_return(size, ARC_SPACE_META); |
| 2645 | } else { |
| 2646 | ASSERT(type == ARC_BUFC_DATA); |
| 2647 | arc_space_return(size, ARC_SPACE_DATA); |
| 2648 | } |
| 2649 | |
| 2650 | l2arc_free_data_on_write(hdr->b_l1hdr.b_pdata, size, type); |
| 2651 | } |
| 2652 | |
| 2653 | /* |
| 2654 | * Share the arc_buf_t's data with the hdr. Whenever we are sharing the |
| 2655 | * data buffer, we transfer the refcount ownership to the hdr and update |
| 2656 | * the appropriate kstats. |
| 2657 | */ |
| 2658 | static void |
| 2659 | arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) |
| 2660 | { |
| 2661 | arc_state_t *state = hdr->b_l1hdr.b_state; |
| 2662 | |
| 2663 | ASSERT(!HDR_SHARED_DATA(hdr)); |
| 2664 | ASSERT(!arc_buf_is_shared(buf)); |
| 2665 | ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); |
| 2666 | ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); |
| 2667 | |
| 2668 | /* |
| 2669 | * Start sharing the data buffer. We transfer the |
| 2670 | * refcount ownership to the hdr since it always owns |
| 2671 | * the refcount whenever an arc_buf_t is shared. |
| 2672 | */ |
| 2673 | refcount_transfer_ownership(&state->arcs_size, buf, hdr); |
| 2674 | hdr->b_l1hdr.b_pdata = buf->b_data; |
| 2675 | arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); |
| 2676 | |
| 2677 | /* |
| 2678 | * Since we've transferred ownership to the hdr we need |
| 2679 | * to increment its compressed and uncompressed kstats and |
| 2680 | * decrement the overhead size. |
| 2681 | */ |
| 2682 | ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); |
| 2683 | ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); |
| 2684 | ARCSTAT_INCR(arcstat_overhead_size, -HDR_GET_LSIZE(hdr)); |
| 2685 | } |
| 2686 | |
| 2687 | static void |
| 2688 | arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) |
| 2689 | { |
| 2690 | arc_state_t *state = hdr->b_l1hdr.b_state; |
| 2691 | |
| 2692 | ASSERT(HDR_SHARED_DATA(hdr)); |
| 2693 | ASSERT(arc_buf_is_shared(buf)); |
| 2694 | ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); |
| 2695 | ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); |
| 2696 | |
| 2697 | /* |
| 2698 | * We are no longer sharing this buffer so we need |
| 2699 | * to transfer its ownership to the rightful owner. |
| 2700 | */ |
| 2701 | refcount_transfer_ownership(&state->arcs_size, hdr, buf); |
| 2702 | arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); |
| 2703 | hdr->b_l1hdr.b_pdata = NULL; |
| 2704 | |
| 2705 | /* |
| 2706 | * Since the buffer is no longer shared between |
| 2707 | * the arc buf and the hdr, count it as overhead. |
| 2708 | */ |
| 2709 | ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); |
| 2710 | ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); |
| 2711 | ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); |
| 2712 | } |
| 2713 | |
| 2714 | /* |
| 2715 | * Free up buf->b_data and if 'remove' is set, then pull the |
| 2716 | * arc_buf_t off of the the arc_buf_hdr_t's list and free it. |
| 2717 | */ |
| 2718 | static void |
| 2719 | arc_buf_destroy_impl(arc_buf_t *buf, boolean_t remove) |
| 2720 | { |
| 2721 | arc_buf_t **bufp; |
| 2722 | arc_buf_hdr_t *hdr = buf->b_hdr; |
| 2723 | uint64_t size = HDR_GET_LSIZE(hdr); |
| 2724 | boolean_t destroyed_buf_is_shared = arc_buf_is_shared(buf); |
| 2725 | |
| 2726 | /* |
| 2727 | * Free up the data associated with the buf but only |
| 2728 | * if we're not sharing this with the hdr. If we are sharing |
| 2729 | * it with the hdr, then hdr will have performed the allocation |
| 2730 | * so allow it to do the free. |
| 2731 | */ |
| 2732 | if (buf->b_data != NULL) { |
| 2733 | /* |
| 2734 | * We're about to change the hdr's b_flags. We must either |
| 2735 | * hold the hash_lock or be undiscoverable. |
| 2736 | */ |
| 2737 | ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr)); |
| 2738 | |
| 2739 | arc_cksum_verify(buf); |
| 2740 | #ifdef illumos |
| 2741 | arc_buf_unwatch(buf); |
| 2742 | #endif |
| 2743 | |
| 2744 | if (destroyed_buf_is_shared) { |
| 2745 | ASSERT(ARC_BUF_LAST(buf)); |
| 2746 | ASSERT(HDR_SHARED_DATA(hdr)); |
| 2747 | arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); |
| 2748 | } else { |
| 2749 | arc_free_data_buf(hdr, buf->b_data, size, buf); |
| 2750 | ARCSTAT_INCR(arcstat_overhead_size, -size); |
| 2751 | } |
| 2752 | buf->b_data = NULL; |
| 2753 | |
| 2754 | ASSERT(hdr->b_l1hdr.b_bufcnt > 0); |
| 2755 | hdr->b_l1hdr.b_bufcnt -= 1; |
| 2756 | } |
| 2757 | |
| 2758 | /* only remove the buf if requested */ |
| 2759 | if (!remove) |
| 2760 | return; |
| 2761 | |
| 2762 | /* remove the buf from the hdr list */ |
| 2763 | arc_buf_t *lastbuf = NULL; |
| 2764 | bufp = &hdr->b_l1hdr.b_buf; |
| 2765 | while (*bufp != NULL) { |
| 2766 | if (*bufp == buf) |
| 2767 | *bufp = buf->b_next; |
| 2768 | |
| 2769 | /* |
| 2770 | * If we've removed a buffer in the middle of |
| 2771 | * the list then update the lastbuf and update |
| 2772 | * bufp. |
| 2773 | */ |
| 2774 | if (*bufp != NULL) { |
| 2775 | lastbuf = *bufp; |
| 2776 | bufp = &(*bufp)->b_next; |
| 2777 | } |
| 2778 | } |
| 2779 | buf->b_next = NULL; |
| 2780 | ASSERT3P(lastbuf, !=, buf); |
| 2781 | |
| 2782 | /* |
| 2783 | * If the current arc_buf_t is sharing its data |
| 2784 | * buffer with the hdr, then reassign the hdr's |
| 2785 | * b_pdata to share it with the new buffer at the end |
| 2786 | * of the list. The shared buffer is always the last one |
| 2787 | * on the hdr's buffer list. |
| 2788 | */ |
| 2789 | if (destroyed_buf_is_shared && lastbuf != NULL) { |
| 2790 | ASSERT(ARC_BUF_LAST(buf)); |
| 2791 | ASSERT(ARC_BUF_LAST(lastbuf)); |
| 2792 | VERIFY(!arc_buf_is_shared(lastbuf)); |
| 2793 | |
| 2794 | ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); |
| 2795 | arc_hdr_free_pdata(hdr); |
| 2796 | |
| 2797 | /* |
| 2798 | * We must setup a new shared block between the |
| 2799 | * last buffer and the hdr. The data would have |
| 2800 | * been allocated by the arc buf so we need to transfer |
| 2801 | * ownership to the hdr since it's now being shared. |
| 2802 | */ |
| 2803 | arc_share_buf(hdr, lastbuf); |
| 2804 | } else if (HDR_SHARED_DATA(hdr)) { |
| 2805 | ASSERT(arc_buf_is_shared(lastbuf)); |
| 2806 | } |
| 2807 | |
| 2808 | if (hdr->b_l1hdr.b_bufcnt == 0) |
| 2809 | arc_cksum_free(hdr); |
| 2810 | |
| 2811 | /* clean up the buf */ |
| 2812 | buf->b_hdr = NULL; |
| 2813 | kmem_cache_free(buf_cache, buf); |
| 2814 | } |
| 2815 | |
| 2816 | static void |
| 2817 | arc_hdr_alloc_pdata(arc_buf_hdr_t *hdr) |
| 2818 | { |
| 2819 | ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); |
| 2820 | ASSERT(HDR_HAS_L1HDR(hdr)); |
| 2821 | ASSERT(!HDR_SHARED_DATA(hdr)); |
| 2822 | |
| 2823 | ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); |
| 2824 | hdr->b_l1hdr.b_pdata = arc_get_data_buf(hdr, arc_hdr_size(hdr), hdr); |
| 2825 | hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; |
| 2826 | ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); |
| 2827 | |
| 2828 | ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); |
| 2829 | ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); |
| 2830 | } |
| 2831 | |
| 2832 | static void |
| 2833 | arc_hdr_free_pdata(arc_buf_hdr_t *hdr) |
| 2834 | { |
| 2835 | ASSERT(HDR_HAS_L1HDR(hdr)); |
| 2836 | ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); |
| 2837 | |
| 2838 | /* |
| 2839 | * If the hdr is currently being written to the l2arc then |
| 2840 | * we defer freeing the data by adding it to the l2arc_free_on_write |
| 2841 | * list. The l2arc will free the data once it's finished |
| 2842 | * writing it to the l2arc device. |
| 2843 | */ |
| 2844 | if (HDR_L2_WRITING(hdr)) { |
| 2845 | arc_hdr_free_on_write(hdr); |
| 2846 | ARCSTAT_BUMP(arcstat_l2_free_on_write); |
| 2847 | } else { |
| 2848 | arc_free_data_buf(hdr, hdr->b_l1hdr.b_pdata, |
| 2849 | arc_hdr_size(hdr), hdr); |
| 2850 | } |
| 2851 | hdr->b_l1hdr.b_pdata = NULL; |
| 2852 | hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; |
| 2853 | |
| 2854 | ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); |
| 2855 | ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); |
| 2856 | } |
| 2857 | |
| 2858 | static arc_buf_hdr_t * |
| 2859 | arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize, |
| 2860 | enum zio_compress compress, arc_buf_contents_t type) |
| 2861 | { |
| 2862 | arc_buf_hdr_t *hdr; |
| 2863 | |
| 2864 | ASSERT3U(lsize, >, 0); |
| 2865 | VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA); |
| 2866 | |
| 2867 | hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); |
| 2868 | ASSERT(HDR_EMPTY(hdr)); |
| 2869 | ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); |
| 2870 | ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL); |
| 2871 | HDR_SET_PSIZE(hdr, psize); |
| 2872 | HDR_SET_LSIZE(hdr, lsize); |
| 2873 | hdr->b_spa = spa; |
| 2874 | hdr->b_type = type; |
| 2875 | hdr->b_flags = 0; |
| 2876 | arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR); |
| 2877 | arc_hdr_set_compress(hdr, compress); |
| 2878 | |
| 2879 | hdr->b_l1hdr.b_state = arc_anon; |
| 2880 | hdr->b_l1hdr.b_arc_access = 0; |
| 2881 | hdr->b_l1hdr.b_bufcnt = 0; |
| 2882 | hdr->b_l1hdr.b_buf = NULL; |
| 2883 | |
| 2884 | /* |
| 2885 | * Allocate the hdr's buffer. This will contain either |
| 2886 | * the compressed or uncompressed data depending on the block |
| 2887 | * it references and compressed arc enablement. |
| 2888 | */ |
| 2889 | arc_hdr_alloc_pdata(hdr); |
| 2890 | ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); |
| 2891 | |
| 2892 | return (hdr); |
| 2893 | } |
| 2894 | |
| 2895 | /* |
| 2896 | * Transition between the two allocation states for the arc_buf_hdr struct. |
| 2897 | * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without |
| 2898 | * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller |
| 2899 | * version is used when a cache buffer is only in the L2ARC in order to reduce |
| 2900 | * memory usage. |
| 2901 | */ |
| 2902 | static arc_buf_hdr_t * |
| 2903 | arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new) |
| 2904 | { |
| 2905 | ASSERT(HDR_HAS_L2HDR(hdr)); |
| 2906 | |
| 2907 | arc_buf_hdr_t *nhdr; |
| 2908 | l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; |
| 2909 | |
| 2910 | ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) || |
| 2911 | (old == hdr_l2only_cache && new == hdr_full_cache)); |
| 2912 | |
| 2913 | nhdr = kmem_cache_alloc(new, KM_PUSHPAGE); |
| 2914 | |
| 2915 | ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); |
| 2916 | buf_hash_remove(hdr); |
| 2917 | |
| 2918 | bcopy(hdr, nhdr, HDR_L2ONLY_SIZE); |
| 2919 | |
| 2920 | if (new == hdr_full_cache) { |
| 2921 | arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR); |
| 2922 | /* |
| 2923 | * arc_access and arc_change_state need to be aware that a |
| 2924 | * header has just come out of L2ARC, so we set its state to |
| 2925 | * l2c_only even though it's about to change. |
| 2926 | */ |
| 2927 | nhdr->b_l1hdr.b_state = arc_l2c_only; |
| 2928 | |
| 2929 | /* Verify previous threads set to NULL before freeing */ |
| 2930 | ASSERT3P(nhdr->b_l1hdr.b_pdata, ==, NULL); |
| 2931 | } else { |
| 2932 | ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); |
| 2933 | ASSERT0(hdr->b_l1hdr.b_bufcnt); |
| 2934 | ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); |
| 2935 | |
| 2936 | /* |
| 2937 | * If we've reached here, We must have been called from |
| 2938 | * arc_evict_hdr(), as such we should have already been |
| 2939 | * removed from any ghost list we were previously on |
| 2940 | * (which protects us from racing with arc_evict_state), |
| 2941 | * thus no locking is needed during this check. |
| 2942 | */ |
| 2943 | ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); |
| 2944 | |
| 2945 | /* |
| 2946 | * A buffer must not be moved into the arc_l2c_only |
| 2947 | * state if it's not finished being written out to the |
| 2948 | * l2arc device. Otherwise, the b_l1hdr.b_pdata field |
| 2949 | * might try to be accessed, even though it was removed. |
| 2950 | */ |
| 2951 | VERIFY(!HDR_L2_WRITING(hdr)); |
| 2952 | VERIFY3P(hdr->b_l1hdr.b_pdata, ==, NULL); |
| 2953 | |
| 2954 | #ifdef ZFS_DEBUG |
| 2955 | if (hdr->b_l1hdr.b_thawed != NULL) { |
| 2956 | kmem_free(hdr->b_l1hdr.b_thawed, 1); |
| 2957 | hdr->b_l1hdr.b_thawed = NULL; |
| 2958 | } |
| 2959 | #endif |
| 2960 | |
| 2961 | arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR); |
| 2962 | } |
| 2963 | /* |
| 2964 | * The header has been reallocated so we need to re-insert it into any |
| 2965 | * lists it was on. |
| 2966 | */ |
| 2967 | (void) buf_hash_insert(nhdr, NULL); |
| 2968 | |
| 2969 | ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node)); |
| 2970 | |
| 2971 | mutex_enter(&dev->l2ad_mtx); |
| 2972 | |
| 2973 | /* |
| 2974 | * We must place the realloc'ed header back into the list at |
| 2975 | * the same spot. Otherwise, if it's placed earlier in the list, |
| 2976 | * l2arc_write_buffers() could find it during the function's |
| 2977 | * write phase, and try to write it out to the l2arc. |
| 2978 | */ |
| 2979 | list_insert_after(&dev->l2ad_buflist, hdr, nhdr); |
| 2980 | list_remove(&dev->l2ad_buflist, hdr); |
| 2981 | |
| 2982 | mutex_exit(&dev->l2ad_mtx); |
| 2983 | |
| 2984 | /* |
| 2985 | * Since we're using the pointer address as the tag when |
| 2986 | * incrementing and decrementing the l2ad_alloc refcount, we |
| 2987 | * must remove the old pointer (that we're about to destroy) and |
| 2988 | * add the new pointer to the refcount. Otherwise we'd remove |
| 2989 | * the wrong pointer address when calling arc_hdr_destroy() later. |
| 2990 | */ |
| 2991 | |
| 2992 | (void) refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr); |
| 2993 | (void) refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), nhdr); |
| 2994 | |
| 2995 | buf_discard_identity(hdr); |
| 2996 | kmem_cache_free(old, hdr); |
| 2997 | |
| 2998 | return (nhdr); |
| 2999 | } |
| 3000 | |
| 3001 | /* |
| 3002 | * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller. |
| 3003 | * The buf is returned thawed since we expect the consumer to modify it. |
| 3004 | */ |
| 3005 | arc_buf_t * |
| 3006 | arc_alloc_buf(spa_t *spa, int32_t size, void *tag, arc_buf_contents_t type) |
| 3007 | { |
| 3008 | arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size, |
| 3009 | ZIO_COMPRESS_OFF, type); |
| 3010 | ASSERT(!MUTEX_HELD(HDR_LOCK(hdr))); |
| 3011 | arc_buf_t *buf = arc_buf_alloc_impl(hdr, tag); |
| 3012 | arc_buf_thaw(buf); |
| 3013 | return (buf); |
| 3014 | } |
| 3015 | |
| 3016 | static void |
| 3017 | arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr) |
| 3018 | { |
| 3019 | l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; |
| 3020 | l2arc_dev_t *dev = l2hdr->b_dev; |
| 3021 | uint64_t asize = arc_hdr_size(hdr); |
| 3022 | |
| 3023 | ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); |
| 3024 | ASSERT(HDR_HAS_L2HDR(hdr)); |
| 3025 | |
| 3026 | list_remove(&dev->l2ad_buflist, hdr); |
| 3027 | |
| 3028 | ARCSTAT_INCR(arcstat_l2_asize, -asize); |
| 3029 | ARCSTAT_INCR(arcstat_l2_size, -HDR_GET_LSIZE(hdr)); |
| 3030 | |
| 3031 | vdev_space_update(dev->l2ad_vdev, -asize, 0, 0); |
| 3032 | |
| 3033 | (void) refcount_remove_many(&dev->l2ad_alloc, asize, hdr); |
| 3034 | arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); |
| 3035 | } |
| 3036 | |
| 3037 | static void |
| 3038 | arc_hdr_destroy(arc_buf_hdr_t *hdr) |
| 3039 | { |
| 3040 | if (HDR_HAS_L1HDR(hdr)) { |
| 3041 | ASSERT(hdr->b_l1hdr.b_buf == NULL || |
| 3042 | hdr->b_l1hdr.b_bufcnt > 0); |
| 3043 | ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); |
| 3044 | ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); |
| 3045 | } |
| 3046 | ASSERT(!HDR_IO_IN_PROGRESS(hdr)); |
| 3047 | ASSERT(!HDR_IN_HASH_TABLE(hdr)); |
| 3048 | |
| 3049 | if (!HDR_EMPTY(hdr)) |
| 3050 | buf_discard_identity(hdr); |
| 3051 | |
| 3052 | if (HDR_HAS_L2HDR(hdr)) { |
| 3053 | l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; |
| 3054 | boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx); |
| 3055 | |
| 3056 | if (!buflist_held) |
| 3057 | mutex_enter(&dev->l2ad_mtx); |
| 3058 | |
| 3059 | /* |
| 3060 | * Even though we checked this conditional above, we |
| 3061 | * need to check this again now that we have the |
| 3062 | * l2ad_mtx. This is because we could be racing with |
| 3063 | * another thread calling l2arc_evict() which might have |
| 3064 | * destroyed this header's L2 portion as we were waiting |
| 3065 | * to acquire the l2ad_mtx. If that happens, we don't |
| 3066 | * want to re-destroy the header's L2 portion. |
| 3067 | */ |
| 3068 | if (HDR_HAS_L2HDR(hdr)) { |
| 3069 | l2arc_trim(hdr); |
| 3070 | arc_hdr_l2hdr_destroy(hdr); |
| 3071 | } |
| 3072 | |
| 3073 | if (!buflist_held) |
| 3074 | mutex_exit(&dev->l2ad_mtx); |
| 3075 | } |
| 3076 | |
| 3077 | if (HDR_HAS_L1HDR(hdr)) { |
| 3078 | arc_cksum_free(hdr); |
| 3079 | |
| 3080 | while (hdr->b_l1hdr.b_buf != NULL) |
| 3081 | arc_buf_destroy_impl(hdr->b_l1hdr.b_buf, B_TRUE); |
| 3082 | |
| 3083 | #ifdef ZFS_DEBUG |
| 3084 | if (hdr->b_l1hdr.b_thawed != NULL) { |
| 3085 | kmem_free(hdr->b_l1hdr.b_thawed, 1); |
| 3086 | hdr->b_l1hdr.b_thawed = NULL; |
| 3087 | } |
| 3088 | #endif |
| 3089 | |
| 3090 | if (hdr->b_l1hdr.b_pdata != NULL) { |
| 3091 | arc_hdr_free_pdata(hdr); |
| 3092 | } |
| 3093 | } |
| 3094 | |
| 3095 | ASSERT3P(hdr->b_hash_next, ==, NULL); |
| 3096 | if (HDR_HAS_L1HDR(hdr)) { |
| 3097 | ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); |
| 3098 | ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); |
| 3099 | kmem_cache_free(hdr_full_cache, hdr); |
| 3100 | } else { |
| 3101 | kmem_cache_free(hdr_l2only_cache, hdr); |
| 3102 | } |
| 3103 | } |
| 3104 | |
| 3105 | void |
| 3106 | arc_buf_destroy(arc_buf_t *buf, void* tag) |
| 3107 | { |
| 3108 | arc_buf_hdr_t *hdr = buf->b_hdr; |
| 3109 | kmutex_t *hash_lock = HDR_LOCK(hdr); |
| 3110 | |
| 3111 | if (hdr->b_l1hdr.b_state == arc_anon) { |
| 3112 | ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); |
| 3113 | ASSERT(!HDR_IO_IN_PROGRESS(hdr)); |
| 3114 | VERIFY0(remove_reference(hdr, NULL, tag)); |
| 3115 | arc_hdr_destroy(hdr); |
| 3116 | return; |
| 3117 | } |
| 3118 | |
| 3119 | mutex_enter(hash_lock); |
| 3120 | ASSERT3P(hdr, ==, buf->b_hdr); |
| 3121 | ASSERT(hdr->b_l1hdr.b_bufcnt > 0); |
| 3122 | ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); |
| 3123 | ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon); |
| 3124 | ASSERT3P(buf->b_data, !=, NULL); |
| 3125 | |
| 3126 | (void) remove_reference(hdr, hash_lock, tag); |
| 3127 | arc_buf_destroy_impl(buf, B_TRUE); |
| 3128 | mutex_exit(hash_lock); |
| 3129 | } |
| 3130 | |
| 3131 | int32_t |
| 3132 | arc_buf_size(arc_buf_t *buf) |
| 3133 | { |
| 3134 | return (HDR_GET_LSIZE(buf->b_hdr)); |
| 3135 | } |
| 3136 | |
| 3137 | /* |
| 3138 | * Evict the arc_buf_hdr that is provided as a parameter. The resultant |
| 3139 | * state of the header is dependent on its state prior to entering this |
| 3140 | * function. The following transitions are possible: |
| 3141 | * |
| 3142 | * - arc_mru -> arc_mru_ghost |
| 3143 | * - arc_mfu -> arc_mfu_ghost |
| 3144 | * - arc_mru_ghost -> arc_l2c_only |
| 3145 | * - arc_mru_ghost -> deleted |
| 3146 | * - arc_mfu_ghost -> arc_l2c_only |
| 3147 | * - arc_mfu_ghost -> deleted |
| 3148 | */ |
| 3149 | static int64_t |
| 3150 | arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) |
| 3151 | { |
| 3152 | arc_state_t *evicted_state, *state; |
| 3153 | int64_t bytes_evicted = 0; |
| 3154 | |
| 3155 | ASSERT(MUTEX_HELD(hash_lock)); |
| 3156 | ASSERT(HDR_HAS_L1HDR(hdr)); |
| 3157 | |
| 3158 | state = hdr->b_l1hdr.b_state; |
| 3159 | if (GHOST_STATE(state)) { |
| 3160 | ASSERT(!HDR_IO_IN_PROGRESS(hdr)); |
| 3161 | ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); |
| 3162 | |
| 3163 | /* |
| 3164 | * l2arc_write_buffers() relies on a header's L1 portion |
| 3165 | * (i.e. its b_pdata field) during its write phase. |
| 3166 | * Thus, we cannot push a header onto the arc_l2c_only |
| 3167 | * state (removing it's L1 piece) until the header is |
| 3168 | * done being written to the l2arc. |
| 3169 | */ |
| 3170 | if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) { |
| 3171 | ARCSTAT_BUMP(arcstat_evict_l2_skip); |
| 3172 | return (bytes_evicted); |
| 3173 | } |
| 3174 | |
| 3175 | ARCSTAT_BUMP(arcstat_deleted); |
| 3176 | bytes_evicted += HDR_GET_LSIZE(hdr); |
| 3177 | |
| 3178 | DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr); |
| 3179 | |
| 3180 | ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); |
| 3181 | if (HDR_HAS_L2HDR(hdr)) { |
| 3182 | ASSERT(hdr->b_l1hdr.b_pdata == NULL); |
| 3183 | /* |
| 3184 | * This buffer is cached on the 2nd Level ARC; |
| 3185 | * don't destroy the header. |
| 3186 | */ |
| 3187 | arc_change_state(arc_l2c_only, hdr, hash_lock); |
| 3188 | /* |
| 3189 | * dropping from L1+L2 cached to L2-only, |
| 3190 | * realloc to remove the L1 header. |
| 3191 | */ |
| 3192 | hdr = arc_hdr_realloc(hdr, hdr_full_cache, |
| 3193 | hdr_l2only_cache); |
| 3194 | } else { |
| 3195 | ASSERT(hdr->b_l1hdr.b_pdata == NULL); |
| 3196 | arc_change_state(arc_anon, hdr, hash_lock); |
| 3197 | arc_hdr_destroy(hdr); |
| 3198 | } |
| 3199 | return (bytes_evicted); |
| 3200 | } |
| 3201 | |
| 3202 | ASSERT(state == arc_mru || state == arc_mfu); |
| 3203 | evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; |
| 3204 | |
| 3205 | /* prefetch buffers have a minimum lifespan */ |
| 3206 | if (HDR_IO_IN_PROGRESS(hdr) || |
| 3207 | ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) && |
| 3208 | ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < |
| 3209 | arc_min_prefetch_lifespan)) { |
| 3210 | ARCSTAT_BUMP(arcstat_evict_skip); |
| 3211 | return (bytes_evicted); |
| 3212 | } |
| 3213 | |
| 3214 | ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt)); |
| 3215 | while (hdr->b_l1hdr.b_buf) { |
| 3216 | arc_buf_t *buf = hdr->b_l1hdr.b_buf; |
| 3217 | if (!mutex_tryenter(&buf->b_evict_lock)) { |
| 3218 | ARCSTAT_BUMP(arcstat_mutex_miss); |
| 3219 | break; |
| 3220 | } |
| 3221 | if (buf->b_data != NULL) |
| 3222 | bytes_evicted += HDR_GET_LSIZE(hdr); |
| 3223 | mutex_exit(&buf->b_evict_lock); |
| 3224 | arc_buf_destroy_impl(buf, B_TRUE); |
| 3225 | } |
| 3226 | |
| 3227 | if (HDR_HAS_L2HDR(hdr)) { |
| 3228 | ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr)); |
| 3229 | } else { |
| 3230 | if (l2arc_write_eligible(hdr->b_spa, hdr)) { |
| 3231 | ARCSTAT_INCR(arcstat_evict_l2_eligible, |
| 3232 | HDR_GET_LSIZE(hdr)); |
| 3233 | } else { |
| 3234 | ARCSTAT_INCR(arcstat_evict_l2_ineligible, |
| 3235 | HDR_GET_LSIZE(hdr)); |
| 3236 | } |
| 3237 | } |
| 3238 | |
| 3239 | if (hdr->b_l1hdr.b_bufcnt == 0) { |
| 3240 | arc_cksum_free(hdr); |
| 3241 | |
| 3242 | bytes_evicted += arc_hdr_size(hdr); |
| 3243 | |
| 3244 | /* |
| 3245 | * If this hdr is being evicted and has a compressed |
| 3246 | * buffer then we discard it here before we change states. |
| 3247 | * This ensures that the accounting is updated correctly |
| 3248 | * in arc_free_data_buf(). |
| 3249 | */ |
| 3250 | arc_hdr_free_pdata(hdr); |
| 3251 | |
| 3252 | arc_change_state(evicted_state, hdr, hash_lock); |
| 3253 | ASSERT(HDR_IN_HASH_TABLE(hdr)); |
| 3254 | arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); |
| 3255 | DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr); |
| 3256 | } |
| 3257 | |
| 3258 | return (bytes_evicted); |
| 3259 | } |
| 3260 | |
| 3261 | static uint64_t |
| 3262 | arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker, |
| 3263 | uint64_t spa, int64_t bytes) |
| 3264 | { |
| 3265 | multilist_sublist_t *mls; |
| 3266 | uint64_t bytes_evicted = 0; |
| 3267 | arc_buf_hdr_t *hdr; |
| 3268 | kmutex_t *hash_lock; |
| 3269 | int evict_count = 0; |
| 3270 | |
| 3271 | ASSERT3P(marker, !=, NULL); |
| 3272 | IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); |
| 3273 | |
| 3274 | mls = multilist_sublist_lock(ml, idx); |
| 3275 | |
| 3276 | for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL; |
| 3277 | hdr = multilist_sublist_prev(mls, marker)) { |
| 3278 | if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) || |
| 3279 | (evict_count >= zfs_arc_evict_batch_limit)) |
| 3280 | break; |
| 3281 | |
| 3282 | /* |
| 3283 | * To keep our iteration location, move the marker |
| 3284 | * forward. Since we're not holding hdr's hash lock, we |
| 3285 | * must be very careful and not remove 'hdr' from the |
| 3286 | * sublist. Otherwise, other consumers might mistake the |
| 3287 | * 'hdr' as not being on a sublist when they call the |
| 3288 | * multilist_link_active() function (they all rely on |
| 3289 | * the hash lock protecting concurrent insertions and |
| 3290 | * removals). multilist_sublist_move_forward() was |
| 3291 | * specifically implemented to ensure this is the case |
| 3292 | * (only 'marker' will be removed and re-inserted). |
| 3293 | */ |
| 3294 | multilist_sublist_move_forward(mls, marker); |
| 3295 | |
| 3296 | /* |
| 3297 | * The only case where the b_spa field should ever be |
| 3298 | * zero, is the marker headers inserted by |
| 3299 | * arc_evict_state(). It's possible for multiple threads |
| 3300 | * to be calling arc_evict_state() concurrently (e.g. |
| 3301 | * dsl_pool_close() and zio_inject_fault()), so we must |
| 3302 | * skip any markers we see from these other threads. |
| 3303 | */ |
| 3304 | if (hdr->b_spa == 0) |
| 3305 | continue; |
| 3306 | |
| 3307 | /* we're only interested in evicting buffers of a certain spa */ |
| 3308 | if (spa != 0 && hdr->b_spa != spa) { |
| 3309 | ARCSTAT_BUMP(arcstat_evict_skip); |
| 3310 | continue; |
| 3311 | } |
| 3312 | |
| 3313 | hash_lock = HDR_LOCK(hdr); |
| 3314 | |
| 3315 | /* |
| 3316 | * We aren't calling this function from any code path |
| 3317 | * that would already be holding a hash lock, so we're |
| 3318 | * asserting on this assumption to be defensive in case |
| 3319 | * this ever changes. Without this check, it would be |
| 3320 | * possible to incorrectly increment arcstat_mutex_miss |
| 3321 | * below (e.g. if the code changed such that we called |
| 3322 | * this function with a hash lock held). |
| 3323 | */ |
| 3324 | ASSERT(!MUTEX_HELD(hash_lock)); |
| 3325 | |
| 3326 | if (mutex_tryenter(hash_lock)) { |
| 3327 | uint64_t evicted = arc_evict_hdr(hdr, hash_lock); |
| 3328 | mutex_exit(hash_lock); |
| 3329 | |
| 3330 | bytes_evicted += evicted; |
| 3331 | |
| 3332 | /* |
| 3333 | * If evicted is zero, arc_evict_hdr() must have |
| 3334 | * decided to skip this header, don't increment |
| 3335 | * evict_count in this case. |
| 3336 | */ |
| 3337 | if (evicted != 0) |
| 3338 | evict_count++; |
| 3339 | |
| 3340 | /* |
| 3341 | * If arc_size isn't overflowing, signal any |
| 3342 | * threads that might happen to be waiting. |
| 3343 | * |
| 3344 | * For each header evicted, we wake up a single |
| 3345 | * thread. If we used cv_broadcast, we could |
| 3346 | * wake up "too many" threads causing arc_size |
| 3347 | * to significantly overflow arc_c; since |
| 3348 | * arc_get_data_buf() doesn't check for overflow |
| 3349 | * when it's woken up (it doesn't because it's |
| 3350 | * possible for the ARC to be overflowing while |
| 3351 | * full of un-evictable buffers, and the |
| 3352 | * function should proceed in this case). |
| 3353 | * |
| 3354 | * If threads are left sleeping, due to not |
| 3355 | * using cv_broadcast, they will be woken up |
| 3356 | * just before arc_reclaim_thread() sleeps. |
| 3357 | */ |
| 3358 | mutex_enter(&arc_reclaim_lock); |
| 3359 | if (!arc_is_overflowing()) |
| 3360 | cv_signal(&arc_reclaim_waiters_cv); |
| 3361 | mutex_exit(&arc_reclaim_lock); |
| 3362 | } else { |
| 3363 | ARCSTAT_BUMP(arcstat_mutex_miss); |
| 3364 | } |
| 3365 | } |
| 3366 | |
| 3367 | multilist_sublist_unlock(mls); |
| 3368 | |
| 3369 | return (bytes_evicted); |
| 3370 | } |
| 3371 | |
| 3372 | /* |
| 3373 | * Evict buffers from the given arc state, until we've removed the |
| 3374 | * specified number of bytes. Move the removed buffers to the |
| 3375 | * appropriate evict state. |
| 3376 | * |
| 3377 | * This function makes a "best effort". It skips over any buffers |
| 3378 | * it can't get a hash_lock on, and so, may not catch all candidates. |
| 3379 | * It may also return without evicting as much space as requested. |
| 3380 | * |
| 3381 | * If bytes is specified using the special value ARC_EVICT_ALL, this |
| 3382 | * will evict all available (i.e. unlocked and evictable) buffers from |
| 3383 | * the given arc state; which is used by arc_flush(). |
| 3384 | */ |
| 3385 | static uint64_t |
| 3386 | arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes, |
| 3387 | arc_buf_contents_t type) |
| 3388 | { |
| 3389 | uint64_t total_evicted = 0; |
| 3390 | multilist_t *ml = &state->arcs_list[type]; |
| 3391 | int num_sublists; |
| 3392 | arc_buf_hdr_t **markers; |
| 3393 | |
| 3394 | IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); |
| 3395 | |
| 3396 | num_sublists = multilist_get_num_sublists(ml); |
| 3397 | |
| 3398 | /* |
| 3399 | * If we've tried to evict from each sublist, made some |
| 3400 | * progress, but still have not hit the target number of bytes |
| 3401 | * to evict, we want to keep trying. The markers allow us to |
| 3402 | * pick up where we left off for each individual sublist, rather |
| 3403 | * than starting from the tail each time. |
| 3404 | */ |
| 3405 | markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP); |
| 3406 | for (int i = 0; i < num_sublists; i++) { |
| 3407 | markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP); |
| 3408 | |
| 3409 | /* |
| 3410 | * A b_spa of 0 is used to indicate that this header is |
| 3411 | * a marker. This fact is used in arc_adjust_type() and |
| 3412 | * arc_evict_state_impl(). |
| 3413 | */ |
| 3414 | markers[i]->b_spa = 0; |
| 3415 | |
| 3416 | multilist_sublist_t *mls = multilist_sublist_lock(ml, i); |
| 3417 | multilist_sublist_insert_tail(mls, markers[i]); |
| 3418 | multilist_sublist_unlock(mls); |
| 3419 | } |
| 3420 | |
| 3421 | /* |
| 3422 | * While we haven't hit our target number of bytes to evict, or |
| 3423 | * we're evicting all available buffers. |
| 3424 | */ |
| 3425 | while (total_evicted < bytes || bytes == ARC_EVICT_ALL) { |
| 3426 | /* |
| 3427 | * Start eviction using a randomly selected sublist, |
| 3428 | * this is to try and evenly balance eviction across all |
| 3429 | * sublists. Always starting at the same sublist |
| 3430 | * (e.g. index 0) would cause evictions to favor certain |
| 3431 | * sublists over others. |
| 3432 | */ |
| 3433 | int sublist_idx = multilist_get_random_index(ml); |
| 3434 | uint64_t scan_evicted = 0; |
| 3435 | |
| 3436 | for (int i = 0; i < num_sublists; i++) { |
| 3437 | uint64_t bytes_remaining; |
| 3438 | uint64_t bytes_evicted; |
| 3439 | |
| 3440 | if (bytes == ARC_EVICT_ALL) |
| 3441 | bytes_remaining = ARC_EVICT_ALL; |
| 3442 | else if (total_evicted < bytes) |
| 3443 | bytes_remaining = bytes - total_evicted; |
| 3444 | else |
| 3445 | break; |
| 3446 | |
| 3447 | bytes_evicted = arc_evict_state_impl(ml, sublist_idx, |
| 3448 | markers[sublist_idx], spa, bytes_remaining); |
| 3449 | |
| 3450 | scan_evicted += bytes_evicted; |
| 3451 | total_evicted += bytes_evicted; |
| 3452 | |
| 3453 | /* we've reached the end, wrap to the beginning */ |
| 3454 | if (++sublist_idx >= num_sublists) |
| 3455 | sublist_idx = 0; |
| 3456 | } |
| 3457 | |
| 3458 | /* |
| 3459 | * If we didn't evict anything during this scan, we have |
| 3460 | * no reason to believe we'll evict more during another |
| 3461 | * scan, so break the loop. |
| 3462 | */ |
| 3463 | if (scan_evicted == 0) { |
| 3464 | /* This isn't possible, let's make that obvious */ |
| 3465 | ASSERT3S(bytes, !=, 0); |
| 3466 | |
| 3467 | /* |
| 3468 | * When bytes is ARC_EVICT_ALL, the only way to |
| 3469 | * break the loop is when scan_evicted is zero. |
| 3470 | * In that case, we actually have evicted enough, |
| 3471 | * so we don't want to increment the kstat. |
| 3472 | */ |
| 3473 | if (bytes != ARC_EVICT_ALL) { |
| 3474 | ASSERT3S(total_evicted, <, bytes); |
| 3475 | ARCSTAT_BUMP(arcstat_evict_not_enough); |
| 3476 | } |
| 3477 | |
| 3478 | break; |
| 3479 | } |
| 3480 | } |
| 3481 | |
| 3482 | for (int i = 0; i < num_sublists; i++) { |
| 3483 | multilist_sublist_t *mls = multilist_sublist_lock(ml, i); |
| 3484 | multilist_sublist_remove(mls, markers[i]); |
| 3485 | multilist_sublist_unlock(mls); |
| 3486 | |
| 3487 | kmem_cache_free(hdr_full_cache, markers[i]); |
| 3488 | } |
| 3489 | kmem_free(markers, sizeof (*markers) * num_sublists); |
| 3490 | |
| 3491 | return (total_evicted); |
| 3492 | } |
| 3493 | |
| 3494 | /* |
| 3495 | * Flush all "evictable" data of the given type from the arc state |
| 3496 | * specified. This will not evict any "active" buffers (i.e. referenced). |
| 3497 | * |
| 3498 | * When 'retry' is set to B_FALSE, the function will make a single pass |
| 3499 | * over the state and evict any buffers that it can. Since it doesn't |
| 3500 | * continually retry the eviction, it might end up leaving some buffers |
| 3501 | * in the ARC due to lock misses. |
| 3502 | * |
| 3503 | * When 'retry' is set to B_TRUE, the function will continually retry the |
| 3504 | * eviction until *all* evictable buffers have been removed from the |
| 3505 | * state. As a result, if concurrent insertions into the state are |
| 3506 | * allowed (e.g. if the ARC isn't shutting down), this function might |
| 3507 | * wind up in an infinite loop, continually trying to evict buffers. |
| 3508 | */ |
| 3509 | static uint64_t |
| 3510 | arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type, |
| 3511 | boolean_t retry) |
| 3512 | { |
| 3513 | uint64_t evicted = 0; |
| 3514 | |
| 3515 | while (refcount_count(&state->arcs_esize[type]) != 0) { |
| 3516 | evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type); |
| 3517 | |
| 3518 | if (!retry) |
| 3519 | break; |
| 3520 | } |
| 3521 | |
| 3522 | return (evicted); |
| 3523 | } |
| 3524 | |
| 3525 | /* |
| 3526 | * Evict the specified number of bytes from the state specified, |
| 3527 | * restricting eviction to the spa and type given. This function |
| 3528 | * prevents us from trying to evict more from a state's list than |
| 3529 | * is "evictable", and to skip evicting altogether when passed a |
| 3530 | * negative value for "bytes". In contrast, arc_evict_state() will |
| 3531 | * evict everything it can, when passed a negative value for "bytes". |
| 3532 | */ |
| 3533 | static uint64_t |
| 3534 | arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes, |
| 3535 | arc_buf_contents_t type) |
| 3536 | { |
| 3537 | int64_t delta; |
| 3538 | |
| 3539 | if (bytes > 0 && refcount_count(&state->arcs_esize[type]) > 0) { |
| 3540 | delta = MIN(refcount_count(&state->arcs_esize[type]), bytes); |
| 3541 | return (arc_evict_state(state, spa, delta, type)); |
| 3542 | } |
| 3543 | |
| 3544 | return (0); |
| 3545 | } |
| 3546 | |
| 3547 | /* |
| 3548 | * Evict metadata buffers from the cache, such that arc_meta_used is |
| 3549 | * capped by the arc_meta_limit tunable. |
| 3550 | */ |
| 3551 | static uint64_t |
| 3552 | arc_adjust_meta(void) |
| 3553 | { |
| 3554 | uint64_t total_evicted = 0; |
| 3555 | int64_t target; |
| 3556 | |
| 3557 | /* |
| 3558 | * If we're over the meta limit, we want to evict enough |
| 3559 | * metadata to get back under the meta limit. We don't want to |
| 3560 | * evict so much that we drop the MRU below arc_p, though. If |
| 3561 | * we're over the meta limit more than we're over arc_p, we |
| 3562 | * evict some from the MRU here, and some from the MFU below. |
| 3563 | */ |
| 3564 | target = MIN((int64_t)(arc_meta_used - arc_meta_limit), |
| 3565 | (int64_t)(refcount_count(&arc_anon->arcs_size) + |
| 3566 | refcount_count(&arc_mru->arcs_size) - arc_p)); |
| 3567 | |
| 3568 | total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); |
| 3569 | |
| 3570 | /* |
| 3571 | * Similar to the above, we want to evict enough bytes to get us |
| 3572 | * below the meta limit, but not so much as to drop us below the |
| 3573 | * space alloted to the MFU (which is defined as arc_c - arc_p). |
| 3574 | */ |
| 3575 | target = MIN((int64_t)(arc_meta_used - arc_meta_limit), |
| 3576 | (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p))); |
| 3577 | |
| 3578 | total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); |
| 3579 | |
| 3580 | return (total_evicted); |
| 3581 | } |
| 3582 | |
| 3583 | /* |
| 3584 | * Return the type of the oldest buffer in the given arc state |
| 3585 | * |
| 3586 | * This function will select a random sublist of type ARC_BUFC_DATA and |
| 3587 | * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist |
| 3588 | * is compared, and the type which contains the "older" buffer will be |
| 3589 | * returned. |
| 3590 | */ |
| 3591 | static arc_buf_contents_t |
| 3592 | arc_adjust_type(arc_state_t *state) |
| 3593 | { |
| 3594 | multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA]; |
| 3595 | multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA]; |
| 3596 | int data_idx = multilist_get_random_index(data_ml); |
| 3597 | int meta_idx = multilist_get_random_index(meta_ml); |
| 3598 | multilist_sublist_t *data_mls; |
| 3599 | multilist_sublist_t *meta_mls; |
| 3600 | arc_buf_contents_t type; |
| 3601 | arc_buf_hdr_t *data_hdr; |
| 3602 | arc_buf_hdr_t *meta_hdr; |
| 3603 | |
| 3604 | /* |
| 3605 | * We keep the sublist lock until we're finished, to prevent |
| 3606 | * the headers from being destroyed via arc_evict_state(). |
| 3607 | */ |
| 3608 | data_mls = multilist_sublist_lock(data_ml, data_idx); |
| 3609 | meta_mls = multilist_sublist_lock(meta_ml, meta_idx); |
| 3610 | |
| 3611 | /* |
| 3612 | * These two loops are to ensure we skip any markers that |
| 3613 | * might be at the tail of the lists due to arc_evict_state(). |
| 3614 | */ |
| 3615 | |
| 3616 | for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL; |
| 3617 | data_hdr = multilist_sublist_prev(data_mls, data_hdr)) { |
| 3618 | if (data_hdr->b_spa != 0) |
| 3619 | break; |
| 3620 | } |
| 3621 | |
| 3622 | for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL; |
| 3623 | meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) { |
| 3624 | if (meta_hdr->b_spa != 0) |
| 3625 | break; |
| 3626 | } |
| 3627 | |
| 3628 | if (data_hdr == NULL && meta_hdr == NULL) { |
| 3629 | type = ARC_BUFC_DATA; |
| 3630 | } else if (data_hdr == NULL) { |
| 3631 | ASSERT3P(meta_hdr, !=, NULL); |
| 3632 | type = ARC_BUFC_METADATA; |
| 3633 | } else if (meta_hdr == NULL) { |
| 3634 | ASSERT3P(data_hdr, !=, NULL); |
| 3635 | type = ARC_BUFC_DATA; |
| 3636 | } else { |
| 3637 | ASSERT3P(data_hdr, !=, NULL); |
| 3638 | ASSERT3P(meta_hdr, !=, NULL); |
| 3639 | |
| 3640 | /* The headers can't be on the sublist without an L1 header */ |
| 3641 | ASSERT(HDR_HAS_L1HDR(data_hdr)); |
| 3642 | ASSERT(HDR_HAS_L1HDR(meta_hdr)); |
| 3643 | |
| 3644 | if (data_hdr->b_l1hdr.b_arc_access < |
| 3645 | meta_hdr->b_l1hdr.b_arc_access) { |
| 3646 | type = ARC_BUFC_DATA; |
| 3647 | } else { |
| 3648 | type = ARC_BUFC_METADATA; |
| 3649 | } |
| 3650 | } |
| 3651 | |
| 3652 | multilist_sublist_unlock(meta_mls); |
| 3653 | multilist_sublist_unlock(data_mls); |
| 3654 | |
| 3655 | return (type); |
| 3656 | } |
| 3657 | |
| 3658 | /* |
| 3659 | * Evict buffers from the cache, such that arc_size is capped by arc_c. |
| 3660 | */ |
| 3661 | static uint64_t |
| 3662 | arc_adjust(void) |
| 3663 | { |
| 3664 | uint64_t total_evicted = 0; |
| 3665 | uint64_t bytes; |
| 3666 | int64_t target; |
| 3667 | |
| 3668 | /* |
| 3669 | * If we're over arc_meta_limit, we want to correct that before |
| 3670 | * potentially evicting data buffers below. |
| 3671 | */ |
| 3672 | total_evicted += arc_adjust_meta(); |
| 3673 | |
| 3674 | /* |
| 3675 | * Adjust MRU size |
| 3676 | * |
| 3677 | * If we're over the target cache size, we want to evict enough |
| 3678 | * from the list to get back to our target size. We don't want |
| 3679 | * to evict too much from the MRU, such that it drops below |
| 3680 | * arc_p. So, if we're over our target cache size more than |
| 3681 | * the MRU is over arc_p, we'll evict enough to get back to |
| 3682 | * arc_p here, and then evict more from the MFU below. |
| 3683 | */ |
| 3684 | target = MIN((int64_t)(arc_size - arc_c), |
| 3685 | (int64_t)(refcount_count(&arc_anon->arcs_size) + |
| 3686 | refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p)); |
| 3687 | |
| 3688 | /* |
| 3689 | * If we're below arc_meta_min, always prefer to evict data. |
| 3690 | * Otherwise, try to satisfy the requested number of bytes to |
| 3691 | * evict from the type which contains older buffers; in an |
| 3692 | * effort to keep newer buffers in the cache regardless of their |
| 3693 | * type. If we cannot satisfy the number of bytes from this |
| 3694 | * type, spill over into the next type. |
| 3695 | */ |
| 3696 | if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA && |
| 3697 | arc_meta_used > arc_meta_min) { |
| 3698 | bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); |
| 3699 | total_evicted += bytes; |
| 3700 | |
| 3701 | /* |
| 3702 | * If we couldn't evict our target number of bytes from |
| 3703 | * metadata, we try to get the rest from data. |
| 3704 | */ |
| 3705 | target -= bytes; |
| 3706 | |
| 3707 | total_evicted += |
| 3708 | arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA); |
| 3709 | } else { |
| 3710 | bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA); |
| 3711 | total_evicted += bytes; |
| 3712 | |
| 3713 | /* |
| 3714 | * If we couldn't evict our target number of bytes from |
| 3715 | * data, we try to get the rest from metadata. |
| 3716 | */ |
| 3717 | target -= bytes; |
| 3718 | |
| 3719 | total_evicted += |
| 3720 | arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA); |
| 3721 | } |
| 3722 | |
| 3723 | /* |
| 3724 | * Adjust MFU size |
| 3725 | * |
| 3726 | * Now that we've tried to evict enough from the MRU to get its |
| 3727 | * size back to arc_p, if we're still above the target cache |
| 3728 | * size, we evict the rest from the MFU. |
| 3729 | */ |
| 3730 | target = arc_size - arc_c; |
| 3731 | |
| 3732 | if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA && |
| 3733 | arc_meta_used > arc_meta_min) { |
| 3734 | bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); |
| 3735 | total_evicted += bytes; |
| 3736 | |
| 3737 | /* |
| 3738 | * If we couldn't evict our target number of bytes from |
| 3739 | * metadata, we try to get the rest from data. |
| 3740 | */ |
| 3741 | target -= bytes; |
| 3742 | |
| 3743 | total_evicted += |
| 3744 | arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA); |
| 3745 | } else { |
| 3746 | bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA); |
| 3747 | total_evicted += bytes; |
| 3748 | |
| 3749 | /* |
| 3750 | * If we couldn't evict our target number of bytes from |
| 3751 | * data, we try to get the rest from data. |
| 3752 | */ |
| 3753 | target -= bytes; |
| 3754 | |
| 3755 | total_evicted += |
| 3756 | arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); |
| 3757 | } |
| 3758 | |
| 3759 | /* |
| 3760 | * Adjust ghost lists |
| 3761 | * |
| 3762 | * In addition to the above, the ARC also defines target values |
| 3763 | * for the ghost lists. The sum of the mru list and mru ghost |
| 3764 | * list should never exceed the target size of the cache, and |
| 3765 | * the sum of the mru list, mfu list, mru ghost list, and mfu |
| 3766 | * ghost list should never exceed twice the target size of the |
| 3767 | * cache. The following logic enforces these limits on the ghost |
| 3768 | * caches, and evicts from them as needed. |
| 3769 | */ |
| 3770 | target = refcount_count(&arc_mru->arcs_size) + |
| 3771 | refcount_count(&arc_mru_ghost->arcs_size) - arc_c; |
| 3772 | |
| 3773 | bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA); |
| 3774 | total_evicted += bytes; |
| 3775 | |
| 3776 | target -= bytes; |
| 3777 | |
| 3778 | total_evicted += |
| 3779 | arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA); |
| 3780 | |
| 3781 | /* |
| 3782 | * We assume the sum of the mru list and mfu list is less than |
| 3783 | * or equal to arc_c (we enforced this above), which means we |
| 3784 | * can use the simpler of the two equations below: |
| 3785 | * |
| 3786 | * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c |
| 3787 | * mru ghost + mfu ghost <= arc_c |
| 3788 | */ |
| 3789 | target = refcount_count(&arc_mru_ghost->arcs_size) + |
| 3790 | refcount_count(&arc_mfu_ghost->arcs_size) - arc_c; |
| 3791 | |
| 3792 | bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA); |
| 3793 | total_evicted += bytes; |
| 3794 | |
| 3795 | target -= bytes; |
| 3796 | |
| 3797 | total_evicted += |
| 3798 | arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA); |
| 3799 | |
| 3800 | return (total_evicted); |
| 3801 | } |
| 3802 | |
| 3803 | void |
| 3804 | arc_flush(spa_t *spa, boolean_t retry) |
| 3805 | { |
| 3806 | uint64_t guid = 0; |
| 3807 | |
| 3808 | /* |
| 3809 | * If retry is B_TRUE, a spa must not be specified since we have |
| 3810 | * no good way to determine if all of a spa's buffers have been |
| 3811 | * evicted from an arc state. |
| 3812 | */ |
| 3813 | ASSERT(!retry || spa == 0); |
| 3814 | |
| 3815 | if (spa != NULL) |
| 3816 | guid = spa_load_guid(spa); |
| 3817 | |
| 3818 | (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry); |
| 3819 | (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry); |
| 3820 | |
| 3821 | (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry); |
| 3822 | (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry); |
| 3823 | |
| 3824 | (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry); |
| 3825 | (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry); |
| 3826 | |
| 3827 | (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry); |
| 3828 | (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry); |
| 3829 | } |
| 3830 | |
| 3831 | void |
| 3832 | arc_shrink(int64_t to_free) |
| 3833 | { |
| 3834 | if (arc_c > arc_c_min) { |
| 3835 | DTRACE_PROBE4(arc__shrink, uint64_t, arc_c, uint64_t, |
| 3836 | arc_c_min, uint64_t, arc_p, uint64_t, to_free); |
| 3837 | if (arc_c > arc_c_min + to_free) |
| 3838 | atomic_add_64(&arc_c, -to_free); |
| 3839 | else |
| 3840 | arc_c = arc_c_min; |
| 3841 | |
| 3842 | atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); |
| 3843 | if (arc_c > arc_size) |
| 3844 | arc_c = MAX(arc_size, arc_c_min); |
| 3845 | if (arc_p > arc_c) |
| 3846 | arc_p = (arc_c >> 1); |
| 3847 | |
| 3848 | DTRACE_PROBE2(arc__shrunk, uint64_t, arc_c, uint64_t, |
| 3849 | arc_p); |
| 3850 | |
| 3851 | ASSERT(arc_c >= arc_c_min); |
| 3852 | ASSERT((int64_t)arc_p >= 0); |
| 3853 | } |
| 3854 | |
| 3855 | if (arc_size > arc_c) { |
| 3856 | DTRACE_PROBE2(arc__shrink_adjust, uint64_t, arc_size, |
| 3857 | uint64_t, arc_c); |
| 3858 | (void) arc_adjust(); |
| 3859 | } |
| 3860 | } |
| 3861 | |
| 3862 | static long needfree = 0; |
| 3863 | |
| 3864 | typedef enum free_memory_reason_t { |
| 3865 | FMR_UNKNOWN, |
| 3866 | FMR_NEEDFREE, |
| 3867 | FMR_LOTSFREE, |
| 3868 | FMR_SWAPFS_MINFREE, |
| 3869 | FMR_PAGES_PP_MAXIMUM, |
| 3870 | FMR_HEAP_ARENA, |
| 3871 | FMR_ZIO_ARENA, |
| 3872 | FMR_ZIO_FRAG, |
| 3873 | } free_memory_reason_t; |
| 3874 | |
| 3875 | int64_t last_free_memory; |
| 3876 | free_memory_reason_t last_free_reason; |
| 3877 | |
| 3878 | /* |
| 3879 | * Additional reserve of pages for pp_reserve. |
| 3880 | */ |
| 3881 | int64_t arc_pages_pp_reserve = 64; |
| 3882 | |
| 3883 | /* |
| 3884 | * Additional reserve of pages for swapfs. |
| 3885 | */ |
| 3886 | int64_t arc_swapfs_reserve = 64; |
| 3887 | |
| 3888 | /* |
| 3889 | * Return the amount of memory that can be consumed before reclaim will be |
| 3890 | * needed. Positive if there is sufficient free memory, negative indicates |
| 3891 | * the amount of memory that needs to be freed up. |
| 3892 | */ |
| 3893 | static int64_t |
| 3894 | arc_available_memory(void) |
| 3895 | { |
| 3896 | int64_t lowest = INT64_MAX; |
| 3897 | int64_t n; |
| 3898 | free_memory_reason_t r = FMR_UNKNOWN; |
| 3899 | |
| 3900 | #ifdef _KERNEL |
| 3901 | if (needfree > 0) { |
| 3902 | n = PAGESIZE * (-needfree); |
| 3903 | if (n < lowest) { |
| 3904 | lowest = n; |
| 3905 | r = FMR_NEEDFREE; |
| 3906 | } |
| 3907 | } |
| 3908 | |
| 3909 | /* |
| 3910 | * Cooperate with pagedaemon when it's time for it to scan |
| 3911 | * and reclaim some pages. |
| 3912 | */ |
| 3913 | n = PAGESIZE * ((int64_t)freemem - zfs_arc_free_target); |
| 3914 | if (n < lowest) { |
| 3915 | lowest = n; |
| 3916 | r = FMR_LOTSFREE; |
| 3917 | } |
| 3918 | |
| 3919 | #ifdef illumos |
| 3920 | /* |
| 3921 | * check that we're out of range of the pageout scanner. It starts to |
| 3922 | * schedule paging if freemem is less than lotsfree and needfree. |
| 3923 | * lotsfree is the high-water mark for pageout, and needfree is the |
| 3924 | * number of needed free pages. We add extra pages here to make sure |
| 3925 | * the scanner doesn't start up while we're freeing memory. |
| 3926 | */ |
| 3927 | n = PAGESIZE * (freemem - lotsfree - needfree - desfree); |
| 3928 | if (n < lowest) { |
| 3929 | lowest = n; |
| 3930 | r = FMR_LOTSFREE; |
| 3931 | } |
| 3932 | |
| 3933 | /* |
| 3934 | * check to make sure that swapfs has enough space so that anon |
| 3935 | * reservations can still succeed. anon_resvmem() checks that the |
| 3936 | * availrmem is greater than swapfs_minfree, and the number of reserved |
| 3937 | * swap pages. We also add a bit of extra here just to prevent |
| 3938 | * circumstances from getting really dire. |
| 3939 | */ |
| 3940 | n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve - |
| 3941 | desfree - arc_swapfs_reserve); |
| 3942 | if (n < lowest) { |
| 3943 | lowest = n; |
| 3944 | r = FMR_SWAPFS_MINFREE; |
| 3945 | } |
| 3946 | |
| 3947 | |
| 3948 | /* |
| 3949 | * Check that we have enough availrmem that memory locking (e.g., via |
| 3950 | * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum |
| 3951 | * stores the number of pages that cannot be locked; when availrmem |
| 3952 | * drops below pages_pp_maximum, page locking mechanisms such as |
| 3953 | * page_pp_lock() will fail.) |
| 3954 | */ |
| 3955 | n = PAGESIZE * (availrmem - pages_pp_maximum - |
| 3956 | arc_pages_pp_reserve); |
| 3957 | if (n < lowest) { |
| 3958 | lowest = n; |
| 3959 | r = FMR_PAGES_PP_MAXIMUM; |
| 3960 | } |
| 3961 | |
| 3962 | #endif /* illumos */ |
| 3963 | #if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC) |
| 3964 | /* |
| 3965 | * If we're on an i386 platform, it's possible that we'll exhaust the |
| 3966 | * kernel heap space before we ever run out of available physical |
| 3967 | * memory. Most checks of the size of the heap_area compare against |
| 3968 | * tune.t_minarmem, which is the minimum available real memory that we |
| 3969 | * can have in the system. However, this is generally fixed at 25 pages |
| 3970 | * which is so low that it's useless. In this comparison, we seek to |
| 3971 | * calculate the total heap-size, and reclaim if more than 3/4ths of the |
| 3972 | * heap is allocated. (Or, in the calculation, if less than 1/4th is |
| 3973 | * free) |
| 3974 | */ |
| 3975 | n = (int64_t)vmem_size(heap_arena, VMEM_FREE) - |
| 3976 | (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2); |
| 3977 | if (n < lowest) { |
| 3978 | lowest = n; |
| 3979 | r = FMR_HEAP_ARENA; |
| 3980 | } |
| 3981 | #define zio_arena NULL |
| 3982 | #else |
| 3983 | #define zio_arena heap_arena |
| 3984 | #endif |
| 3985 | |
| 3986 | /* |
| 3987 | * If zio data pages are being allocated out of a separate heap segment, |
| 3988 | * then enforce that the size of available vmem for this arena remains |
| 3989 | * above about 1/16th free. |
| 3990 | * |
| 3991 | * Note: The 1/16th arena free requirement was put in place |
| 3992 | * to aggressively evict memory from the arc in order to avoid |
| 3993 | * memory fragmentation issues. |
| 3994 | */ |
| 3995 | if (zio_arena != NULL) { |
| 3996 | n = (int64_t)vmem_size(zio_arena, VMEM_FREE) - |
| 3997 | (vmem_size(zio_arena, VMEM_ALLOC) >> 4); |
| 3998 | if (n < lowest) { |
| 3999 | lowest = n; |
| 4000 | r = FMR_ZIO_ARENA; |
| 4001 | } |
| 4002 | } |
| 4003 | |
| 4004 | #if __FreeBSD__ |
| 4005 | /* |
| 4006 | * Above limits know nothing about real level of KVA fragmentation. |
| 4007 | * Start aggressive reclamation if too little sequential KVA left. |
| 4008 | */ |
| 4009 | if (lowest > 0) { |
| 4010 | n = (vmem_size(heap_arena, VMEM_MAXFREE) < SPA_MAXBLOCKSIZE) ? |
| 4011 | -((int64_t)vmem_size(heap_arena, VMEM_ALLOC) >> 4) : |
| 4012 | INT64_MAX; |
| 4013 | if (n < lowest) { |
| 4014 | lowest = n; |
| 4015 | r = FMR_ZIO_FRAG; |
| 4016 | } |
| 4017 | } |
| 4018 | #endif |
| 4019 | |
| 4020 | #else /* _KERNEL */ |
| 4021 | /* Every 100 calls, free a small amount */ |
| 4022 | if (spa_get_random(100) == 0) |
| 4023 | lowest = -1024; |
| 4024 | #endif /* _KERNEL */ |
| 4025 | |
| 4026 | last_free_memory = lowest; |
| 4027 | last_free_reason = r; |
| 4028 | DTRACE_PROBE2(arc__available_memory, int64_t, lowest, int, r); |
| 4029 | return (lowest); |
| 4030 | } |
| 4031 | |
| 4032 | |
| 4033 | /* |
| 4034 | * Determine if the system is under memory pressure and is asking |
| 4035 | * to reclaim memory. A return value of B_TRUE indicates that the system |
| 4036 | * is under memory pressure and that the arc should adjust accordingly. |
| 4037 | */ |
| 4038 | static boolean_t |
| 4039 | arc_reclaim_needed(void) |
| 4040 | { |
| 4041 | return (arc_available_memory() < 0); |
| 4042 | } |
| 4043 | |
| 4044 | extern kmem_cache_t *zio_buf_cache[]; |
| 4045 | extern kmem_cache_t *zio_data_buf_cache[]; |
| 4046 | extern kmem_cache_t *range_seg_cache; |
| 4047 | |
| 4048 | static __noinline void |
| 4049 | arc_kmem_reap_now(void) |
| 4050 | { |
| 4051 | size_t i; |
| 4052 | kmem_cache_t *prev_cache = NULL; |
| 4053 | kmem_cache_t *prev_data_cache = NULL; |
| 4054 | |
| 4055 | DTRACE_PROBE(arc__kmem_reap_start); |
| 4056 | #ifdef _KERNEL |
| 4057 | if (arc_meta_used >= arc_meta_limit) { |
| 4058 | /* |
| 4059 | * We are exceeding our meta-data cache limit. |
| 4060 | * Purge some DNLC entries to release holds on meta-data. |
| 4061 | */ |
| 4062 | dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); |
| 4063 | } |
| 4064 | #if defined(__i386) |
| 4065 | /* |
| 4066 | * Reclaim unused memory from all kmem caches. |
| 4067 | */ |
| 4068 | kmem_reap(); |
| 4069 | #endif |
| 4070 | #endif |
| 4071 | |
| 4072 | for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { |
| 4073 | if (zio_buf_cache[i] != prev_cache) { |
| 4074 | prev_cache = zio_buf_cache[i]; |
| 4075 | kmem_cache_reap_now(zio_buf_cache[i]); |
| 4076 | } |
| 4077 | if (zio_data_buf_cache[i] != prev_data_cache) { |
| 4078 | prev_data_cache = zio_data_buf_cache[i]; |
| 4079 | kmem_cache_reap_now(zio_data_buf_cache[i]); |
| 4080 | } |
| 4081 | } |
| 4082 | kmem_cache_reap_now(buf_cache); |
| 4083 | kmem_cache_reap_now(hdr_full_cache); |
| 4084 | kmem_cache_reap_now(hdr_l2only_cache); |
| 4085 | kmem_cache_reap_now(range_seg_cache); |
| 4086 | |
| 4087 | #ifdef illumos |
| 4088 | if (zio_arena != NULL) { |
| 4089 | /* |
| 4090 | * Ask the vmem arena to reclaim unused memory from its |
| 4091 | * quantum caches. |
| 4092 | */ |
| 4093 | vmem_qcache_reap(zio_arena); |
| 4094 | } |
| 4095 | #endif |
| 4096 | DTRACE_PROBE(arc__kmem_reap_end); |
| 4097 | } |
| 4098 | |
| 4099 | /* |
| 4100 | * Threads can block in arc_get_data_buf() waiting for this thread to evict |
| 4101 | * enough data and signal them to proceed. When this happens, the threads in |
| 4102 | * arc_get_data_buf() are sleeping while holding the hash lock for their |
| 4103 | * particular arc header. Thus, we must be careful to never sleep on a |
| 4104 | * hash lock in this thread. This is to prevent the following deadlock: |
| 4105 | * |
| 4106 | * - Thread A sleeps on CV in arc_get_data_buf() holding hash lock "L", |
| 4107 | * waiting for the reclaim thread to signal it. |
| 4108 | * |
| 4109 | * - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter, |
| 4110 | * fails, and goes to sleep forever. |
| 4111 | * |
| 4112 | * This possible deadlock is avoided by always acquiring a hash lock |
| 4113 | * using mutex_tryenter() from arc_reclaim_thread(). |
| 4114 | */ |
| 4115 | static void |
| 4116 | arc_reclaim_thread(void *dummy __unused) |
| 4117 | { |
| 4118 | hrtime_t growtime = 0; |
| 4119 | callb_cpr_t cpr; |
| 4120 | |
| 4121 | CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG); |
| 4122 | |
| 4123 | mutex_enter(&arc_reclaim_lock); |
| 4124 | while (!arc_reclaim_thread_exit) { |
| 4125 | uint64_t evicted = 0; |
| 4126 | |
| 4127 | /* |
| 4128 | * This is necessary in order for the mdb ::arc dcmd to |
| 4129 | * show up to date information. Since the ::arc command |
| 4130 | * does not call the kstat's update function, without |
| 4131 | * this call, the command may show stale stats for the |
| 4132 | * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even |
| 4133 | * with this change, the data might be up to 1 second |
| 4134 | * out of date; but that should suffice. The arc_state_t |
| 4135 | * structures can be queried directly if more accurate |
| 4136 | * information is needed. |
| 4137 | */ |
| 4138 | if (arc_ksp != NULL) |
| 4139 | arc_ksp->ks_update(arc_ksp, KSTAT_READ); |
| 4140 | |
| 4141 | mutex_exit(&arc_reclaim_lock); |
| 4142 | |
| 4143 | /* |
| 4144 | * We call arc_adjust() before (possibly) calling |
| 4145 | * arc_kmem_reap_now(), so that we can wake up |
| 4146 | * arc_get_data_buf() sooner. |
| 4147 | */ |
| 4148 | evicted = arc_adjust(); |
| 4149 | |
| 4150 | int64_t free_memory = arc_available_memory(); |
| 4151 | if (free_memory < 0) { |
| 4152 | |
| 4153 | arc_no_grow = B_TRUE; |
| 4154 | arc_warm = B_TRUE; |
| 4155 | |
| 4156 | /* |
| 4157 | * Wait at least zfs_grow_retry (default 60) seconds |
| 4158 | * before considering growing. |
| 4159 | */ |
| 4160 | growtime = gethrtime() + SEC2NSEC(arc_grow_retry); |
| 4161 | |
| 4162 | arc_kmem_reap_now(); |
| 4163 | |
| 4164 | /* |
| 4165 | * If we are still low on memory, shrink the ARC |
| 4166 | * so that we have arc_shrink_min free space. |
| 4167 | */ |
| 4168 | free_memory = arc_available_memory(); |
| 4169 | |
| 4170 | int64_t to_free = |
| 4171 | (arc_c >> arc_shrink_shift) - free_memory; |
| 4172 | if (to_free > 0) { |
| 4173 | #ifdef _KERNEL |
| 4174 | to_free = MAX(to_free, ptob(needfree)); |
| 4175 | #endif |
| 4176 | arc_shrink(to_free); |
| 4177 | } |
| 4178 | } else if (free_memory < arc_c >> arc_no_grow_shift) { |
| 4179 | arc_no_grow = B_TRUE; |
| 4180 | } else if (gethrtime() >= growtime) { |
| 4181 | arc_no_grow = B_FALSE; |
| 4182 | } |
| 4183 | |
| 4184 | mutex_enter(&arc_reclaim_lock); |
| 4185 | |
| 4186 | /* |
| 4187 | * If evicted is zero, we couldn't evict anything via |
| 4188 | * arc_adjust(). This could be due to hash lock |
| 4189 | * collisions, but more likely due to the majority of |
| 4190 | * arc buffers being unevictable. Therefore, even if |
| 4191 | * arc_size is above arc_c, another pass is unlikely to |
| 4192 | * be helpful and could potentially cause us to enter an |
| 4193 | * infinite loop. |
| 4194 | */ |
| 4195 | if (arc_size <= arc_c || evicted == 0) { |
| 4196 | #ifdef _KERNEL |
| 4197 | needfree = 0; |
| 4198 | #endif |
| 4199 | /* |
| 4200 | * We're either no longer overflowing, or we |
| 4201 | * can't evict anything more, so we should wake |
| 4202 | * up any threads before we go to sleep. |
| 4203 | */ |
| 4204 | cv_broadcast(&arc_reclaim_waiters_cv); |
| 4205 | |
| 4206 | /* |
| 4207 | * Block until signaled, or after one second (we |
| 4208 | * might need to perform arc_kmem_reap_now() |
| 4209 | * even if we aren't being signalled) |
| 4210 | */ |
| 4211 | CALLB_CPR_SAFE_BEGIN(&cpr); |
| 4212 | (void) cv_timedwait_hires(&arc_reclaim_thread_cv, |
| 4213 | &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0); |
| 4214 | CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock); |
| 4215 | } |
| 4216 | } |
| 4217 | |
| 4218 | arc_reclaim_thread_exit = B_FALSE; |
| 4219 | cv_broadcast(&arc_reclaim_thread_cv); |
| 4220 | CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_lock */ |
| 4221 | thread_exit(); |
| 4222 | } |
| 4223 | |
| 4224 | #ifdef __FreeBSD__ |
| 4225 | |
| 4226 | static u_int arc_dnlc_evicts_arg; |
| 4227 | extern struct vfsops zfs_vfsops; |
| 4228 | |
| 4229 | static void |
| 4230 | arc_dnlc_evicts_thread(void *dummy __unused) |
| 4231 | { |
| 4232 | callb_cpr_t cpr; |
| 4233 | u_int percent; |
| 4234 | |
| 4235 | CALLB_CPR_INIT(&cpr, &arc_dnlc_evicts_lock, callb_generic_cpr, FTAG); |
| 4236 | |
| 4237 | mutex_enter(&arc_dnlc_evicts_lock); |
| 4238 | while (!arc_dnlc_evicts_thread_exit) { |
| 4239 | CALLB_CPR_SAFE_BEGIN(&cpr); |
| 4240 | (void) cv_wait(&arc_dnlc_evicts_cv, &arc_dnlc_evicts_lock); |
| 4241 | CALLB_CPR_SAFE_END(&cpr, &arc_dnlc_evicts_lock); |
| 4242 | if (arc_dnlc_evicts_arg != 0) { |
| 4243 | percent = arc_dnlc_evicts_arg; |
| 4244 | mutex_exit(&arc_dnlc_evicts_lock); |
| 4245 | #ifdef _KERNEL |
| 4246 | vnlru_free(desiredvnodes * percent / 100, &zfs_vfsops); |
| 4247 | #endif |
| 4248 | mutex_enter(&arc_dnlc_evicts_lock); |
| 4249 | /* |
| 4250 | * Clear our token only after vnlru_free() |
| 4251 | * pass is done, to avoid false queueing of |
| 4252 | * the requests. |
| 4253 | */ |
| 4254 | arc_dnlc_evicts_arg = 0; |
| 4255 | } |
| 4256 | } |
| 4257 | arc_dnlc_evicts_thread_exit = FALSE; |
| 4258 | cv_broadcast(&arc_dnlc_evicts_cv); |
| 4259 | CALLB_CPR_EXIT(&cpr); |
| 4260 | thread_exit(); |
| 4261 | } |
| 4262 | |
| 4263 | void |
| 4264 | dnlc_reduce_cache(void *arg) |
| 4265 | { |
| 4266 | u_int percent; |
| 4267 | |
| 4268 | percent = (u_int)(uintptr_t)arg; |
| 4269 | mutex_enter(&arc_dnlc_evicts_lock); |
| 4270 | if (arc_dnlc_evicts_arg == 0) { |
| 4271 | arc_dnlc_evicts_arg = percent; |
| 4272 | cv_broadcast(&arc_dnlc_evicts_cv); |
| 4273 | } |
| 4274 | mutex_exit(&arc_dnlc_evicts_lock); |
| 4275 | } |
| 4276 | |
| 4277 | #endif |
| 4278 | |
| 4279 | /* |
| 4280 | * Adapt arc info given the number of bytes we are trying to add and |
| 4281 | * the state that we are comming from. This function is only called |
| 4282 | * when we are adding new content to the cache. |
| 4283 | */ |
| 4284 | static void |
| 4285 | arc_adapt(int bytes, arc_state_t *state) |
| 4286 | { |
| 4287 | int mult; |
| 4288 | uint64_t arc_p_min = (arc_c >> arc_p_min_shift); |
| 4289 | int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size); |
| 4290 | int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size); |
| 4291 | |
| 4292 | if (state == arc_l2c_only) |
| 4293 | return; |
| 4294 | |
| 4295 | ASSERT(bytes > 0); |
| 4296 | /* |
| 4297 | * Adapt the target size of the MRU list: |
| 4298 | * - if we just hit in the MRU ghost list, then increase |
| 4299 | * the target size of the MRU list. |
| 4300 | * - if we just hit in the MFU ghost list, then increase |
| 4301 | * the target size of the MFU list by decreasing the |
| 4302 | * target size of the MRU list. |
| 4303 | */ |
| 4304 | if (state == arc_mru_ghost) { |
| 4305 | mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size); |
| 4306 | mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ |
| 4307 | |
| 4308 | arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); |
| 4309 | } else if (state == arc_mfu_ghost) { |
| 4310 | uint64_t delta; |
| 4311 | |
| 4312 | mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size); |
| 4313 | mult = MIN(mult, 10); |
| 4314 | |
| 4315 | delta = MIN(bytes * mult, arc_p); |
| 4316 | arc_p = MAX(arc_p_min, arc_p - delta); |
| 4317 | } |
| 4318 | ASSERT((int64_t)arc_p >= 0); |
| 4319 | |
| 4320 | if (arc_reclaim_needed()) { |
| 4321 | cv_signal(&arc_reclaim_thread_cv); |
| 4322 | return; |
| 4323 | } |
| 4324 | |
| 4325 | if (arc_no_grow) |
| 4326 | return; |
| 4327 | |
| 4328 | if (arc_c >= arc_c_max) |
| 4329 | return; |
| 4330 | |
| 4331 | /* |
| 4332 | * If we're within (2 * maxblocksize) bytes of the target |
| 4333 | * cache size, increment the target cache size |
| 4334 | */ |
| 4335 | if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { |
| 4336 | DTRACE_PROBE1(arc__inc_adapt, int, bytes); |
| 4337 | atomic_add_64(&arc_c, (int64_t)bytes); |
| 4338 | if (arc_c > arc_c_max) |
| 4339 | arc_c = arc_c_max; |
| 4340 | else if (state == arc_anon) |
| 4341 | atomic_add_64(&arc_p, (int64_t)bytes); |
| 4342 | if (arc_p > arc_c) |
| 4343 | arc_p = arc_c; |
| 4344 | } |
| 4345 | ASSERT((int64_t)arc_p >= 0); |
| 4346 | } |
| 4347 | |
| 4348 | /* |
| 4349 | * Check if arc_size has grown past our upper threshold, determined by |
| 4350 | * zfs_arc_overflow_shift. |
| 4351 | */ |
| 4352 | static boolean_t |
| 4353 | arc_is_overflowing(void) |
| 4354 | { |
| 4355 | /* Always allow at least one block of overflow */ |
| 4356 | uint64_t overflow = MAX(SPA_MAXBLOCKSIZE, |
| 4357 | arc_c >> zfs_arc_overflow_shift); |
| 4358 | |
| 4359 | return (arc_size >= arc_c + overflow); |
| 4360 | } |
| 4361 | |
| 4362 | /* |
| 4363 | * Allocate a block and return it to the caller. If we are hitting the |
| 4364 | * hard limit for the cache size, we must sleep, waiting for the eviction |
| 4365 | * thread to catch up. If we're past the target size but below the hard |
| 4366 | * limit, we'll only signal the reclaim thread and continue on. |
| 4367 | */ |
| 4368 | static void * |
| 4369 | arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag) |
| 4370 | { |
| 4371 | void *datap = NULL; |
| 4372 | arc_state_t *state = hdr->b_l1hdr.b_state; |
| 4373 | arc_buf_contents_t type = arc_buf_type(hdr); |
| 4374 | |
| 4375 | arc_adapt(size, state); |
| 4376 | |
| 4377 | /* |
| 4378 | * If arc_size is currently overflowing, and has grown past our |
| 4379 | * upper limit, we must be adding data faster than the evict |
| 4380 | * thread can evict. Thus, to ensure we don't compound the |
| 4381 | * problem by adding more data and forcing arc_size to grow even |
| 4382 | * further past it's target size, we halt and wait for the |
| 4383 | * eviction thread to catch up. |
| 4384 | * |
| 4385 | * It's also possible that the reclaim thread is unable to evict |
| 4386 | * enough buffers to get arc_size below the overflow limit (e.g. |
| 4387 | * due to buffers being un-evictable, or hash lock collisions). |
| 4388 | * In this case, we want to proceed regardless if we're |
| 4389 | * overflowing; thus we don't use a while loop here. |
| 4390 | */ |
| 4391 | if (arc_is_overflowing()) { |
| 4392 | mutex_enter(&arc_reclaim_lock); |
| 4393 | |
| 4394 | /* |
| 4395 | * Now that we've acquired the lock, we may no longer be |
| 4396 | * over the overflow limit, lets check. |
| 4397 | * |
| 4398 | * We're ignoring the case of spurious wake ups. If that |
| 4399 | * were to happen, it'd let this thread consume an ARC |
| 4400 | * buffer before it should have (i.e. before we're under |
| 4401 | * the overflow limit and were signalled by the reclaim |
| 4402 | * thread). As long as that is a rare occurrence, it |
| 4403 | * shouldn't cause any harm. |
| 4404 | */ |
| 4405 | if (arc_is_overflowing()) { |
| 4406 | cv_signal(&arc_reclaim_thread_cv); |
| 4407 | cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock); |
| 4408 | } |
| 4409 | |
| 4410 | mutex_exit(&arc_reclaim_lock); |
| 4411 | } |
| 4412 | |
| 4413 | VERIFY3U(hdr->b_type, ==, type); |
| 4414 | if (type == ARC_BUFC_METADATA) { |
| 4415 | datap = zio_buf_alloc(size); |
| 4416 | arc_space_consume(size, ARC_SPACE_META); |
| 4417 | } else { |
| 4418 | ASSERT(type == ARC_BUFC_DATA); |
| 4419 | datap = zio_data_buf_alloc(size); |
| 4420 | arc_space_consume(size, ARC_SPACE_DATA); |
| 4421 | } |
| 4422 | |
| 4423 | /* |
| 4424 | * Update the state size. Note that ghost states have a |
| 4425 | * "ghost size" and so don't need to be updated. |
| 4426 | */ |
| 4427 | if (!GHOST_STATE(state)) { |
| 4428 | |
| 4429 | (void) refcount_add_many(&state->arcs_size, size, tag); |
| 4430 | |
| 4431 | /* |
| 4432 | * If this is reached via arc_read, the link is |
| 4433 | * protected by the hash lock. If reached via |
| 4434 | * arc_buf_alloc, the header should not be accessed by |
| 4435 | * any other thread. And, if reached via arc_read_done, |
| 4436 | * the hash lock will protect it if it's found in the |
| 4437 | * hash table; otherwise no other thread should be |
| 4438 | * trying to [add|remove]_reference it. |
| 4439 | */ |
| 4440 | if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { |
| 4441 | ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); |
| 4442 | (void) refcount_add_many(&state->arcs_esize[type], |
| 4443 | size, tag); |
| 4444 | } |
| 4445 | |
| 4446 | /* |
| 4447 | * If we are growing the cache, and we are adding anonymous |
| 4448 | * data, and we have outgrown arc_p, update arc_p |
| 4449 | */ |
| 4450 | if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon && |
| 4451 | (refcount_count(&arc_anon->arcs_size) + |
| 4452 | refcount_count(&arc_mru->arcs_size) > arc_p)) |
| 4453 | arc_p = MIN(arc_c, arc_p + size); |
| 4454 | } |
| 4455 | ARCSTAT_BUMP(arcstat_allocated); |
| 4456 | return (datap); |
| 4457 | } |
| 4458 | |
| 4459 | /* |
| 4460 | * Free the arc data buffer. |
| 4461 | */ |
| 4462 | static void |
| 4463 | arc_free_data_buf(arc_buf_hdr_t *hdr, void *data, uint64_t size, void *tag) |
| 4464 | { |
| 4465 | arc_state_t *state = hdr->b_l1hdr.b_state; |
| 4466 | arc_buf_contents_t type = arc_buf_type(hdr); |
| 4467 | |
| 4468 | /* protected by hash lock, if in the hash table */ |
| 4469 | if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { |
| 4470 | ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); |
| 4471 | ASSERT(state != arc_anon && state != arc_l2c_only); |
| 4472 | |
| 4473 | (void) refcount_remove_many(&state->arcs_esize[type], |
| 4474 | size, tag); |
| 4475 | } |
| 4476 | (void) refcount_remove_many(&state->arcs_size, size, tag); |
| 4477 | |
| 4478 | VERIFY3U(hdr->b_type, ==, type); |
| 4479 | if (type == ARC_BUFC_METADATA) { |
| 4480 | zio_buf_free(data, size); |
| 4481 | arc_space_return(size, ARC_SPACE_META); |
| 4482 | } else { |
| 4483 | ASSERT(type == ARC_BUFC_DATA); |
| 4484 | zio_data_buf_free(data, size); |
| 4485 | arc_space_return(size, ARC_SPACE_DATA); |
| 4486 | } |
| 4487 | } |
| 4488 | |
| 4489 | /* |
| 4490 | * This routine is called whenever a buffer is accessed. |
| 4491 | * NOTE: the hash lock is dropped in this function. |
| 4492 | */ |
| 4493 | static void |
| 4494 | arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) |
| 4495 | { |
| 4496 | clock_t now; |
| 4497 | |
| 4498 | ASSERT(MUTEX_HELD(hash_lock)); |
| 4499 | ASSERT(HDR_HAS_L1HDR(hdr)); |
| 4500 | |
| 4501 | if (hdr->b_l1hdr.b_state == arc_anon) { |
| 4502 | /* |
| 4503 | * This buffer is not in the cache, and does not |
| 4504 | * appear in our "ghost" list. Add the new buffer |
| 4505 | * to the MRU state. |
| 4506 | */ |
| 4507 | |
| 4508 | ASSERT0(hdr->b_l1hdr.b_arc_access); |
| 4509 | hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); |
| 4510 | DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); |
| 4511 | arc_change_state(arc_mru, hdr, hash_lock); |
| 4512 | |
| 4513 | } else if (hdr->b_l1hdr.b_state == arc_mru) { |
| 4514 | now = ddi_get_lbolt(); |
| 4515 | |
| 4516 | /* |
| 4517 | * If this buffer is here because of a prefetch, then either: |
| 4518 | * - clear the flag if this is a "referencing" read |
| 4519 | * (any subsequent access will bump this into the MFU state). |
| 4520 | * or |
| 4521 | * - move the buffer to the head of the list if this is |
| 4522 | * another prefetch (to make it less likely to be evicted). |
| 4523 | */ |
| 4524 | if (HDR_PREFETCH(hdr)) { |
| 4525 | if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { |
| 4526 | /* link protected by hash lock */ |
| 4527 | ASSERT(multilist_link_active( |
| 4528 | &hdr->b_l1hdr.b_arc_node)); |
| 4529 | } else { |
| 4530 | arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); |
| 4531 | ARCSTAT_BUMP(arcstat_mru_hits); |
| 4532 | } |
| 4533 | hdr->b_l1hdr.b_arc_access = now; |
| 4534 | return; |
| 4535 | } |
| 4536 | |
| 4537 | /* |
| 4538 | * This buffer has been "accessed" only once so far, |
| 4539 | * but it is still in the cache. Move it to the MFU |
| 4540 | * state. |
| 4541 | */ |
| 4542 | if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) { |
| 4543 | /* |
| 4544 | * More than 125ms have passed since we |
| 4545 | * instantiated this buffer. Move it to the |
| 4546 | * most frequently used state. |
| 4547 | */ |
| 4548 | hdr->b_l1hdr.b_arc_access = now; |
| 4549 | DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); |
| 4550 | arc_change_state(arc_mfu, hdr, hash_lock); |
| 4551 | } |
| 4552 | ARCSTAT_BUMP(arcstat_mru_hits); |
| 4553 | } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) { |
| 4554 | arc_state_t *new_state; |
| 4555 | /* |
| 4556 | * This buffer has been "accessed" recently, but |
| 4557 | * was evicted from the cache. Move it to the |
| 4558 | * MFU state. |
| 4559 | */ |
| 4560 | |
| 4561 | if (HDR_PREFETCH(hdr)) { |
| 4562 | new_state = arc_mru; |
| 4563 | if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) |
| 4564 | arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); |
| 4565 | DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); |
| 4566 | } else { |
| 4567 | new_state = arc_mfu; |
| 4568 | DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); |
| 4569 | } |
| 4570 | |
| 4571 | hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); |
| 4572 | arc_change_state(new_state, hdr, hash_lock); |
| 4573 | |
| 4574 | ARCSTAT_BUMP(arcstat_mru_ghost_hits); |
| 4575 | } else if (hdr->b_l1hdr.b_state == arc_mfu) { |
| 4576 | /* |
| 4577 | * This buffer has been accessed more than once and is |
| 4578 | * still in the cache. Keep it in the MFU state. |
| 4579 | * |
| 4580 | * NOTE: an add_reference() that occurred when we did |
| 4581 | * the arc_read() will have kicked this off the list. |
| 4582 | * If it was a prefetch, we will explicitly move it to |
| 4583 | * the head of the list now. |
| 4584 | */ |
| 4585 | if ((HDR_PREFETCH(hdr)) != 0) { |
| 4586 | ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); |
| 4587 | /* link protected by hash_lock */ |
| 4588 | ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node)); |
| 4589 | } |
| 4590 | ARCSTAT_BUMP(arcstat_mfu_hits); |
| 4591 | hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); |
| 4592 | } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) { |
| 4593 | arc_state_t *new_state = arc_mfu; |
| 4594 | /* |
| 4595 | * This buffer has been accessed more than once but has |
| 4596 | * been evicted from the cache. Move it back to the |
| 4597 | * MFU state. |
| 4598 | */ |
| 4599 | |
| 4600 | if (HDR_PREFETCH(hdr)) { |
| 4601 | /* |
| 4602 | * This is a prefetch access... |
| 4603 | * move this block back to the MRU state. |
| 4604 | */ |
| 4605 | ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt)); |
| 4606 | new_state = arc_mru; |
| 4607 | } |
| 4608 | |
| 4609 | hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); |
| 4610 | DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); |
| 4611 | arc_change_state(new_state, hdr, hash_lock); |
| 4612 | |
| 4613 | ARCSTAT_BUMP(arcstat_mfu_ghost_hits); |
| 4614 | } else if (hdr->b_l1hdr.b_state == arc_l2c_only) { |
| 4615 | /* |
| 4616 | * This buffer is on the 2nd Level ARC. |
| 4617 | */ |
| 4618 | |
| 4619 | hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); |
| 4620 | DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); |
| 4621 | arc_change_state(arc_mfu, hdr, hash_lock); |
| 4622 | } else { |
| 4623 | ASSERT(!"invalid arc state" ); |
| 4624 | } |
| 4625 | } |
| 4626 | |
| 4627 | /* a generic arc_done_func_t which you can use */ |
| 4628 | /* ARGSUSED */ |
| 4629 | void |
| 4630 | arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) |
| 4631 | { |
| 4632 | if (zio == NULL || zio->io_error == 0) |
| 4633 | bcopy(buf->b_data, arg, HDR_GET_LSIZE(buf->b_hdr)); |
| 4634 | arc_buf_destroy(buf, arg); |
| 4635 | } |
| 4636 | |
| 4637 | /* a generic arc_done_func_t */ |
| 4638 | void |
| 4639 | arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) |
| 4640 | { |
| 4641 | arc_buf_t **bufp = arg; |
| 4642 | if (zio && zio->io_error) { |
| 4643 | arc_buf_destroy(buf, arg); |
| 4644 | *bufp = NULL; |
| 4645 | } else { |
| 4646 | *bufp = buf; |
| 4647 | ASSERT(buf->b_data); |
| 4648 | } |
| 4649 | } |
| 4650 | |
| 4651 | static void |
| 4652 | arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp) |
| 4653 | { |
| 4654 | if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { |
| 4655 | ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0); |
| 4656 | ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); |
| 4657 | } else { |
| 4658 | if (HDR_COMPRESSION_ENABLED(hdr)) { |
| 4659 | ASSERT3U(HDR_GET_COMPRESS(hdr), ==, |
| 4660 | BP_GET_COMPRESS(bp)); |
| 4661 | } |
| 4662 | ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); |
| 4663 | ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp)); |
| 4664 | } |
| 4665 | } |
| 4666 | |
| 4667 | static void |
| 4668 | arc_read_done(zio_t *zio) |
| 4669 | { |
| 4670 | arc_buf_hdr_t *hdr = zio->io_private; |
| 4671 | arc_buf_t *abuf = NULL; /* buffer we're assigning to callback */ |
| 4672 | kmutex_t *hash_lock = NULL; |
| 4673 | arc_callback_t *callback_list, *acb; |
| 4674 | int freeable = B_FALSE; |
| 4675 | |
| 4676 | /* |
| 4677 | * The hdr was inserted into hash-table and removed from lists |
| 4678 | * prior to starting I/O. We should find this header, since |
| 4679 | * it's in the hash table, and it should be legit since it's |
| 4680 | * not possible to evict it during the I/O. The only possible |
| 4681 | * reason for it not to be found is if we were freed during the |
| 4682 | * read. |
| 4683 | */ |
| 4684 | if (HDR_IN_HASH_TABLE(hdr)) { |
| 4685 | ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); |
| 4686 | ASSERT3U(hdr->b_dva.dva_word[0], ==, |
| 4687 | BP_IDENTITY(zio->io_bp)->dva_word[0]); |
| 4688 | ASSERT3U(hdr->b_dva.dva_word[1], ==, |
| 4689 | BP_IDENTITY(zio->io_bp)->dva_word[1]); |
| 4690 | |
| 4691 | arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp, |
| 4692 | &hash_lock); |
| 4693 | |
| 4694 | ASSERT((found == hdr && |
| 4695 | DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || |
| 4696 | (found == hdr && HDR_L2_READING(hdr))); |
| 4697 | ASSERT3P(hash_lock, !=, NULL); |
| 4698 | } |
| 4699 | |
| 4700 | if (zio->io_error == 0) { |
| 4701 | /* byteswap if necessary */ |
| 4702 | if (BP_SHOULD_BYTESWAP(zio->io_bp)) { |
| 4703 | if (BP_GET_LEVEL(zio->io_bp) > 0) { |
| 4704 | hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; |
| 4705 | } else { |
| 4706 | hdr->b_l1hdr.b_byteswap = |
| 4707 | DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); |
| 4708 | } |
| 4709 | } else { |
| 4710 | hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; |
| 4711 | } |
| 4712 | } |
| 4713 | |
| 4714 | arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED); |
| 4715 | if (l2arc_noprefetch && HDR_PREFETCH(hdr)) |
| 4716 | arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE); |
| 4717 | |
| 4718 | callback_list = hdr->b_l1hdr.b_acb; |
| 4719 | ASSERT3P(callback_list, !=, NULL); |
| 4720 | |
| 4721 | if (hash_lock && zio->io_error == 0 && |
| 4722 | hdr->b_l1hdr.b_state == arc_anon) { |
| 4723 | /* |
| 4724 | * Only call arc_access on anonymous buffers. This is because |
| 4725 | * if we've issued an I/O for an evicted buffer, we've already |
| 4726 | * called arc_access (to prevent any simultaneous readers from |
| 4727 | * getting confused). |
| 4728 | */ |
| 4729 | arc_access(hdr, hash_lock); |
| 4730 | } |
| 4731 | |
| 4732 | /* create copies of the data buffer for the callers */ |
| 4733 | for (acb = callback_list; acb; acb = acb->acb_next) { |
| 4734 | if (acb->acb_done != NULL) { |
| 4735 | /* |
| 4736 | * If we're here, then this must be a demand read |
| 4737 | * since prefetch requests don't have callbacks. |
| 4738 | * If a read request has a callback (i.e. acb_done is |
| 4739 | * not NULL), then we decompress the data for the |
| 4740 | * first request and clone the rest. This avoids |
| 4741 | * having to waste cpu resources decompressing data |
| 4742 | * that nobody is explicitly waiting to read. |
| 4743 | */ |
| 4744 | if (abuf == NULL) { |
| 4745 | acb->acb_buf = arc_buf_alloc_impl(hdr, |
| 4746 | acb->acb_private); |
| 4747 | if (zio->io_error == 0) { |
| 4748 | zio->io_error = |
| 4749 | arc_decompress(acb->acb_buf); |
| 4750 | } |
| 4751 | abuf = acb->acb_buf; |
| 4752 | } else { |
| 4753 | add_reference(hdr, acb->acb_private); |
| 4754 | acb->acb_buf = arc_buf_clone(abuf); |
| 4755 | } |
| 4756 | } |
| 4757 | } |
| 4758 | hdr->b_l1hdr.b_acb = NULL; |
| 4759 | arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); |
| 4760 | if (abuf == NULL) { |
| 4761 | /* |
| 4762 | * This buffer didn't have a callback so it must |
| 4763 | * be a prefetch. |
| 4764 | */ |
| 4765 | ASSERT(HDR_PREFETCH(hdr)); |
| 4766 | ASSERT0(hdr->b_l1hdr.b_bufcnt); |
| 4767 | ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); |
| 4768 | } |
| 4769 | |
| 4770 | ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) || |
| 4771 | callback_list != NULL); |
| 4772 | |
| 4773 | if (zio->io_error == 0) { |
| 4774 | arc_hdr_verify(hdr, zio->io_bp); |
| 4775 | } else { |
| 4776 | arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); |
| 4777 | if (hdr->b_l1hdr.b_state != arc_anon) |
| 4778 | arc_change_state(arc_anon, hdr, hash_lock); |
| 4779 | if (HDR_IN_HASH_TABLE(hdr)) |
| 4780 | buf_hash_remove(hdr); |
| 4781 | freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt); |
| 4782 | } |
| 4783 | |
| 4784 | /* |
| 4785 | * Broadcast before we drop the hash_lock to avoid the possibility |
| 4786 | * that the hdr (and hence the cv) might be freed before we get to |
| 4787 | * the cv_broadcast(). |
| 4788 | */ |
| 4789 | cv_broadcast(&hdr->b_l1hdr.b_cv); |
| 4790 | |
| 4791 | if (hash_lock != NULL) { |
| 4792 | mutex_exit(hash_lock); |
| 4793 | } else { |
| 4794 | /* |
| 4795 | * This block was freed while we waited for the read to |
| 4796 | * complete. It has been removed from the hash table and |
| 4797 | * moved to the anonymous state (so that it won't show up |
| 4798 | * in the cache). |
| 4799 | */ |
| 4800 | ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); |
| 4801 | freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt); |
| 4802 | } |
| 4803 | |
| 4804 | /* execute each callback and free its structure */ |
| 4805 | while ((acb = callback_list) != NULL) { |
| 4806 | if (acb->acb_done) |
| 4807 | acb->acb_done(zio, acb->acb_buf, acb->acb_private); |
| 4808 | |
| 4809 | if (acb->acb_zio_dummy != NULL) { |
| 4810 | acb->acb_zio_dummy->io_error = zio->io_error; |
| 4811 | zio_nowait(acb->acb_zio_dummy); |
| 4812 | } |
| 4813 | |
| 4814 | callback_list = acb->acb_next; |
| 4815 | kmem_free(acb, sizeof (arc_callback_t)); |
| 4816 | } |
| 4817 | |
| 4818 | if (freeable) |
| 4819 | arc_hdr_destroy(hdr); |
| 4820 | } |
| 4821 | |
| 4822 | /* |
| 4823 | * "Read" the block at the specified DVA (in bp) via the |
| 4824 | * cache. If the block is found in the cache, invoke the provided |
| 4825 | * callback immediately and return. Note that the `zio' parameter |
| 4826 | * in the callback will be NULL in this case, since no IO was |
| 4827 | * required. If the block is not in the cache pass the read request |
| 4828 | * on to the spa with a substitute callback function, so that the |
| 4829 | * requested block will be added to the cache. |
| 4830 | * |
| 4831 | * If a read request arrives for a block that has a read in-progress, |
| 4832 | * either wait for the in-progress read to complete (and return the |
| 4833 | * results); or, if this is a read with a "done" func, add a record |
| 4834 | * to the read to invoke the "done" func when the read completes, |
| 4835 | * and return; or just return. |
| 4836 | * |
| 4837 | * arc_read_done() will invoke all the requested "done" functions |
| 4838 | * for readers of this block. |
| 4839 | */ |
| 4840 | int |
| 4841 | arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done, |
| 4842 | void *private, zio_priority_t priority, int zio_flags, |
| 4843 | arc_flags_t *arc_flags, const zbookmark_phys_t *zb) |
| 4844 | { |
| 4845 | arc_buf_hdr_t *hdr = NULL; |
| 4846 | kmutex_t *hash_lock = NULL; |
| 4847 | zio_t *rzio; |
| 4848 | uint64_t guid = spa_load_guid(spa); |
| 4849 | |
| 4850 | ASSERT(!BP_IS_EMBEDDED(bp) || |
| 4851 | BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); |
| 4852 | |
| 4853 | top: |
| 4854 | if (!BP_IS_EMBEDDED(bp)) { |
| 4855 | /* |
| 4856 | * Embedded BP's have no DVA and require no I/O to "read". |
| 4857 | * Create an anonymous arc buf to back it. |
| 4858 | */ |
| 4859 | hdr = buf_hash_find(guid, bp, &hash_lock); |
| 4860 | } |
| 4861 | |
| 4862 | if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_pdata != NULL) { |
| 4863 | arc_buf_t *buf = NULL; |
| 4864 | *arc_flags |= ARC_FLAG_CACHED; |
| 4865 | |
| 4866 | if (HDR_IO_IN_PROGRESS(hdr)) { |
| 4867 | |
| 4868 | if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) && |
| 4869 | priority == ZIO_PRIORITY_SYNC_READ) { |
| 4870 | /* |
| 4871 | * This sync read must wait for an |
| 4872 | * in-progress async read (e.g. a predictive |
| 4873 | * prefetch). Async reads are queued |
| 4874 | * separately at the vdev_queue layer, so |
| 4875 | * this is a form of priority inversion. |
| 4876 | * Ideally, we would "inherit" the demand |
| 4877 | * i/o's priority by moving the i/o from |
| 4878 | * the async queue to the synchronous queue, |
| 4879 | * but there is currently no mechanism to do |
| 4880 | * so. Track this so that we can evaluate |
| 4881 | * the magnitude of this potential performance |
| 4882 | * problem. |
| 4883 | * |
| 4884 | * Note that if the prefetch i/o is already |
| 4885 | * active (has been issued to the device), |
| 4886 | * the prefetch improved performance, because |
| 4887 | * we issued it sooner than we would have |
| 4888 | * without the prefetch. |
| 4889 | */ |
| 4890 | DTRACE_PROBE1(arc__sync__wait__for__async, |
| 4891 | arc_buf_hdr_t *, hdr); |
| 4892 | ARCSTAT_BUMP(arcstat_sync_wait_for_async); |
| 4893 | } |
| 4894 | if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { |
| 4895 | arc_hdr_clear_flags(hdr, |
| 4896 | ARC_FLAG_PREDICTIVE_PREFETCH); |
| 4897 | } |
| 4898 | |
| 4899 | if (*arc_flags & ARC_FLAG_WAIT) { |
| 4900 | cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); |
| 4901 | mutex_exit(hash_lock); |
| 4902 | goto top; |
| 4903 | } |
| 4904 | ASSERT(*arc_flags & ARC_FLAG_NOWAIT); |
| 4905 | |
| 4906 | if (done) { |
| 4907 | arc_callback_t *acb = NULL; |
| 4908 | |
| 4909 | acb = kmem_zalloc(sizeof (arc_callback_t), |
| 4910 | KM_SLEEP); |
| 4911 | acb->acb_done = done; |
| 4912 | acb->acb_private = private; |
| 4913 | if (pio != NULL) |
| 4914 | acb->acb_zio_dummy = zio_null(pio, |
| 4915 | spa, NULL, NULL, NULL, zio_flags); |
| 4916 | |
| 4917 | ASSERT3P(acb->acb_done, !=, NULL); |
| 4918 | acb->acb_next = hdr->b_l1hdr.b_acb; |
| 4919 | hdr->b_l1hdr.b_acb = acb; |
| 4920 | mutex_exit(hash_lock); |
| 4921 | return (0); |
| 4922 | } |
| 4923 | mutex_exit(hash_lock); |
| 4924 | return (0); |
| 4925 | } |
| 4926 | |
| 4927 | ASSERT(hdr->b_l1hdr.b_state == arc_mru || |
| 4928 | hdr->b_l1hdr.b_state == arc_mfu); |
| 4929 | |
| 4930 | if (done) { |
| 4931 | if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { |
| 4932 | /* |
| 4933 | * This is a demand read which does not have to |
| 4934 | * wait for i/o because we did a predictive |
| 4935 | * prefetch i/o for it, which has completed. |
| 4936 | */ |
| 4937 | DTRACE_PROBE1( |
| 4938 | arc__demand__hit__predictive__prefetch, |
| 4939 | arc_buf_hdr_t *, hdr); |
| 4940 | ARCSTAT_BUMP( |
| 4941 | arcstat_demand_hit_predictive_prefetch); |
| 4942 | arc_hdr_clear_flags(hdr, |
| 4943 | ARC_FLAG_PREDICTIVE_PREFETCH); |
| 4944 | } |
| 4945 | ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp)); |
| 4946 | |
| 4947 | /* |
| 4948 | * If this block is already in use, create a new |
| 4949 | * copy of the data so that we will be guaranteed |
| 4950 | * that arc_release() will always succeed. |
| 4951 | */ |
| 4952 | buf = hdr->b_l1hdr.b_buf; |
| 4953 | if (buf == NULL) { |
| 4954 | ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt)); |
| 4955 | ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); |
| 4956 | buf = arc_buf_alloc_impl(hdr, private); |
| 4957 | VERIFY0(arc_decompress(buf)); |
| 4958 | } else { |
| 4959 | add_reference(hdr, private); |
| 4960 | buf = arc_buf_clone(buf); |
| 4961 | } |
| 4962 | ASSERT3P(buf->b_data, !=, NULL); |
| 4963 | |
| 4964 | } else if (*arc_flags & ARC_FLAG_PREFETCH && |
| 4965 | refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { |
| 4966 | arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); |
| 4967 | } |
| 4968 | DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); |
| 4969 | arc_access(hdr, hash_lock); |
| 4970 | if (*arc_flags & ARC_FLAG_L2CACHE) |
| 4971 | arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); |
| 4972 | mutex_exit(hash_lock); |
| 4973 | ARCSTAT_BUMP(arcstat_hits); |
| 4974 | ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), |
| 4975 | demand, prefetch, !HDR_ISTYPE_METADATA(hdr), |
| 4976 | data, metadata, hits); |
| 4977 | |
| 4978 | if (done) |
| 4979 | done(NULL, buf, private); |
| 4980 | } else { |
| 4981 | uint64_t lsize = BP_GET_LSIZE(bp); |
| 4982 | uint64_t psize = BP_GET_PSIZE(bp); |
| 4983 | arc_callback_t *acb; |
| 4984 | vdev_t *vd = NULL; |
| 4985 | uint64_t addr = 0; |
| 4986 | boolean_t devw = B_FALSE; |
| 4987 | uint64_t size; |
| 4988 | |
| 4989 | if (hdr == NULL) { |
| 4990 | /* this block is not in the cache */ |
| 4991 | arc_buf_hdr_t *exists = NULL; |
| 4992 | arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); |
| 4993 | hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, |
| 4994 | BP_GET_COMPRESS(bp), type); |
| 4995 | |
| 4996 | if (!BP_IS_EMBEDDED(bp)) { |
| 4997 | hdr->b_dva = *BP_IDENTITY(bp); |
| 4998 | hdr->b_birth = BP_PHYSICAL_BIRTH(bp); |
| 4999 | exists = buf_hash_insert(hdr, &hash_lock); |
| 5000 | } |
| 5001 | if (exists != NULL) { |
| 5002 | /* somebody beat us to the hash insert */ |
| 5003 | mutex_exit(hash_lock); |
| 5004 | buf_discard_identity(hdr); |
| 5005 | arc_hdr_destroy(hdr); |
| 5006 | goto top; /* restart the IO request */ |
| 5007 | } |
| 5008 | } else { |
| 5009 | /* |
| 5010 | * This block is in the ghost cache. If it was L2-only |
| 5011 | * (and thus didn't have an L1 hdr), we realloc the |
| 5012 | * header to add an L1 hdr. |
| 5013 | */ |
| 5014 | if (!HDR_HAS_L1HDR(hdr)) { |
| 5015 | hdr = arc_hdr_realloc(hdr, hdr_l2only_cache, |
| 5016 | hdr_full_cache); |
| 5017 | } |
| 5018 | ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); |
| 5019 | ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state)); |
| 5020 | ASSERT(!HDR_IO_IN_PROGRESS(hdr)); |
| 5021 | ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); |
| 5022 | ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); |
| 5023 | |
| 5024 | /* |
| 5025 | * This is a delicate dance that we play here. |
| 5026 | * This hdr is in the ghost list so we access it |
| 5027 | * to move it out of the ghost list before we |
| 5028 | * initiate the read. If it's a prefetch then |
| 5029 | * it won't have a callback so we'll remove the |
| 5030 | * reference that arc_buf_alloc_impl() created. We |
| 5031 | * do this after we've called arc_access() to |
| 5032 | * avoid hitting an assert in remove_reference(). |
| 5033 | */ |
| 5034 | arc_access(hdr, hash_lock); |
| 5035 | arc_hdr_alloc_pdata(hdr); |
| 5036 | } |
| 5037 | ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); |
| 5038 | size = arc_hdr_size(hdr); |
| 5039 | |
| 5040 | /* |
| 5041 | * If compression is enabled on the hdr, then will do |
| 5042 | * RAW I/O and will store the compressed data in the hdr's |
| 5043 | * data block. Otherwise, the hdr's data block will contain |
| 5044 | * the uncompressed data. |
| 5045 | */ |
| 5046 | if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) { |
| 5047 | zio_flags |= ZIO_FLAG_RAW; |
| 5048 | } |
| 5049 | |
| 5050 | if (*arc_flags & ARC_FLAG_PREFETCH) |
| 5051 | arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); |
| 5052 | if (*arc_flags & ARC_FLAG_L2CACHE) |
| 5053 | arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); |
| 5054 | if (BP_GET_LEVEL(bp) > 0) |
| 5055 | arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT); |
| 5056 | if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH) |
| 5057 | arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH); |
| 5058 | ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state)); |
| 5059 | |
| 5060 | acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); |
| 5061 | acb->acb_done = done; |
| 5062 | acb->acb_private = private; |
| 5063 | |
| 5064 | ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); |
| 5065 | hdr->b_l1hdr.b_acb = acb; |
| 5066 | arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); |
| 5067 | |
| 5068 | if (HDR_HAS_L2HDR(hdr) && |
| 5069 | (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) { |
| 5070 | devw = hdr->b_l2hdr.b_dev->l2ad_writing; |
| 5071 | addr = hdr->b_l2hdr.b_daddr; |
| 5072 | /* |
| 5073 | * Lock out device removal. |
| 5074 | */ |
| 5075 | if (vdev_is_dead(vd) || |
| 5076 | !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) |
| 5077 | vd = NULL; |
| 5078 | } |
| 5079 | |
| 5080 | if (priority == ZIO_PRIORITY_ASYNC_READ) |
| 5081 | arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); |
| 5082 | else |
| 5083 | arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); |
| 5084 | |
| 5085 | if (hash_lock != NULL) |
| 5086 | mutex_exit(hash_lock); |
| 5087 | |
| 5088 | /* |
| 5089 | * At this point, we have a level 1 cache miss. Try again in |
| 5090 | * L2ARC if possible. |
| 5091 | */ |
| 5092 | ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize); |
| 5093 | |
| 5094 | DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, |
| 5095 | uint64_t, lsize, zbookmark_phys_t *, zb); |
| 5096 | ARCSTAT_BUMP(arcstat_misses); |
| 5097 | ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), |
| 5098 | demand, prefetch, !HDR_ISTYPE_METADATA(hdr), |
| 5099 | data, metadata, misses); |
| 5100 | #ifdef __FreeBSD__ |
| 5101 | #ifdef _KERNEL |
| 5102 | #ifdef RACCT |
| 5103 | if (racct_enable) { |
| 5104 | PROC_LOCK(curproc); |
| 5105 | racct_add_force(curproc, RACCT_READBPS, size); |
| 5106 | racct_add_force(curproc, RACCT_READIOPS, 1); |
| 5107 | PROC_UNLOCK(curproc); |
| 5108 | } |
| 5109 | #endif /* RACCT */ |
| 5110 | curthread->td_ru.ru_inblock++; |
| 5111 | #endif |
| 5112 | #endif |
| 5113 | |
| 5114 | if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { |
| 5115 | /* |
| 5116 | * Read from the L2ARC if the following are true: |
| 5117 | * 1. The L2ARC vdev was previously cached. |
| 5118 | * 2. This buffer still has L2ARC metadata. |
| 5119 | * 3. This buffer isn't currently writing to the L2ARC. |
| 5120 | * 4. The L2ARC entry wasn't evicted, which may |
| 5121 | * also have invalidated the vdev. |
| 5122 | * 5. This isn't prefetch and l2arc_noprefetch is set. |
| 5123 | */ |
| 5124 | if (HDR_HAS_L2HDR(hdr) && |
| 5125 | !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && |
| 5126 | !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { |
| 5127 | l2arc_read_callback_t *cb; |
| 5128 | void* b_data; |
| 5129 | |
| 5130 | DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); |
| 5131 | ARCSTAT_BUMP(arcstat_l2_hits); |
| 5132 | |
| 5133 | cb = kmem_zalloc(sizeof (l2arc_read_callback_t), |
| 5134 | KM_SLEEP); |
| 5135 | cb->l2rcb_hdr = hdr; |
| 5136 | cb->l2rcb_bp = *bp; |
| 5137 | cb->l2rcb_zb = *zb; |
| 5138 | cb->l2rcb_flags = zio_flags; |
| 5139 | uint64_t asize = vdev_psize_to_asize(vd, size); |
| 5140 | if (asize != size) { |
| 5141 | b_data = zio_data_buf_alloc(asize); |
| 5142 | cb->l2rcb_data = b_data; |
| 5143 | } else { |
| 5144 | b_data = hdr->b_l1hdr.b_pdata; |
| 5145 | } |
| 5146 | |
| 5147 | ASSERT(addr >= VDEV_LABEL_START_SIZE && |
| 5148 | addr + asize < vd->vdev_psize - |
| 5149 | VDEV_LABEL_END_SIZE); |
| 5150 | |
| 5151 | /* |
| 5152 | * l2arc read. The SCL_L2ARC lock will be |
| 5153 | * released by l2arc_read_done(). |
| 5154 | * Issue a null zio if the underlying buffer |
| 5155 | * was squashed to zero size by compression. |
| 5156 | */ |
| 5157 | ASSERT3U(HDR_GET_COMPRESS(hdr), !=, |
| 5158 | ZIO_COMPRESS_EMPTY); |
| 5159 | rzio = zio_read_phys(pio, vd, addr, |
| 5160 | asize, b_data, |
| 5161 | ZIO_CHECKSUM_OFF, |
| 5162 | l2arc_read_done, cb, priority, |
| 5163 | zio_flags | ZIO_FLAG_DONT_CACHE | |
| 5164 | ZIO_FLAG_CANFAIL | |
| 5165 | ZIO_FLAG_DONT_PROPAGATE | |
| 5166 | ZIO_FLAG_DONT_RETRY, B_FALSE); |
| 5167 | DTRACE_PROBE2(l2arc__read, vdev_t *, vd, |
| 5168 | zio_t *, rzio); |
| 5169 | ARCSTAT_INCR(arcstat_l2_read_bytes, size); |
| 5170 | |
| 5171 | if (*arc_flags & ARC_FLAG_NOWAIT) { |
| 5172 | zio_nowait(rzio); |
| 5173 | return (0); |
| 5174 | } |
| 5175 | |
| 5176 | ASSERT(*arc_flags & ARC_FLAG_WAIT); |
| 5177 | if (zio_wait(rzio) == 0) |
| 5178 | return (0); |
| 5179 | |
| 5180 | /* l2arc read error; goto zio_read() */ |
| 5181 | } else { |
| 5182 | DTRACE_PROBE1(l2arc__miss, |
| 5183 | arc_buf_hdr_t *, hdr); |
| 5184 | ARCSTAT_BUMP(arcstat_l2_misses); |
| 5185 | if (HDR_L2_WRITING(hdr)) |
| 5186 | ARCSTAT_BUMP(arcstat_l2_rw_clash); |
| 5187 | spa_config_exit(spa, SCL_L2ARC, vd); |
| 5188 | } |
| 5189 | } else { |
| 5190 | if (vd != NULL) |
| 5191 | spa_config_exit(spa, SCL_L2ARC, vd); |
| 5192 | if (l2arc_ndev != 0) { |
| 5193 | DTRACE_PROBE1(l2arc__miss, |
| 5194 | arc_buf_hdr_t *, hdr); |
| 5195 | ARCSTAT_BUMP(arcstat_l2_misses); |
| 5196 | } |
| 5197 | } |
| 5198 | |
| 5199 | rzio = zio_read(pio, spa, bp, hdr->b_l1hdr.b_pdata, size, |
| 5200 | arc_read_done, hdr, priority, zio_flags, zb); |
| 5201 | |
| 5202 | if (*arc_flags & ARC_FLAG_WAIT) |
| 5203 | return (zio_wait(rzio)); |
| 5204 | |
| 5205 | ASSERT(*arc_flags & ARC_FLAG_NOWAIT); |
| 5206 | zio_nowait(rzio); |
| 5207 | } |
| 5208 | return (0); |
| 5209 | } |
| 5210 | |
| 5211 | /* |
| 5212 | * Notify the arc that a block was freed, and thus will never be used again. |
| 5213 | */ |
| 5214 | void |
| 5215 | arc_freed(spa_t *spa, const blkptr_t *bp) |
| 5216 | { |
| 5217 | arc_buf_hdr_t *hdr; |
| 5218 | kmutex_t *hash_lock; |
| 5219 | uint64_t guid = spa_load_guid(spa); |
| 5220 | |
| 5221 | ASSERT(!BP_IS_EMBEDDED(bp)); |
| 5222 | |
| 5223 | hdr = buf_hash_find(guid, bp, &hash_lock); |
| 5224 | if (hdr == NULL) |
| 5225 | return; |
| 5226 | |
| 5227 | /* |
| 5228 | * We might be trying to free a block that is still doing I/O |
| 5229 | * (i.e. prefetch) or has a reference (i.e. a dedup-ed, |
| 5230 | * dmu_sync-ed block). If this block is being prefetched, then it |
| 5231 | * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr |
| 5232 | * until the I/O completes. A block may also have a reference if it is |
| 5233 | * part of a dedup-ed, dmu_synced write. The dmu_sync() function would |
| 5234 | * have written the new block to its final resting place on disk but |
| 5235 | * without the dedup flag set. This would have left the hdr in the MRU |
| 5236 | * state and discoverable. When the txg finally syncs it detects that |
| 5237 | * the block was overridden in open context and issues an override I/O. |
| 5238 | * Since this is a dedup block, the override I/O will determine if the |
| 5239 | * block is already in the DDT. If so, then it will replace the io_bp |
| 5240 | * with the bp from the DDT and allow the I/O to finish. When the I/O |
| 5241 | * reaches the done callback, dbuf_write_override_done, it will |
| 5242 | * check to see if the io_bp and io_bp_override are identical. |
| 5243 | * If they are not, then it indicates that the bp was replaced with |
| 5244 | * the bp in the DDT and the override bp is freed. This allows |
| 5245 | * us to arrive here with a reference on a block that is being |
| 5246 | * freed. So if we have an I/O in progress, or a reference to |
| 5247 | * this hdr, then we don't destroy the hdr. |
| 5248 | */ |
| 5249 | if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) && |
| 5250 | refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) { |
| 5251 | arc_change_state(arc_anon, hdr, hash_lock); |
| 5252 | arc_hdr_destroy(hdr); |
| 5253 | mutex_exit(hash_lock); |
| 5254 | } else { |
| 5255 | mutex_exit(hash_lock); |
| 5256 | } |
| 5257 | |
| 5258 | } |
| 5259 | |
| 5260 | /* |
| 5261 | * Release this buffer from the cache, making it an anonymous buffer. This |
| 5262 | * must be done after a read and prior to modifying the buffer contents. |
| 5263 | * If the buffer has more than one reference, we must make |
| 5264 | * a new hdr for the buffer. |
| 5265 | */ |
| 5266 | void |
| 5267 | arc_release(arc_buf_t *buf, void *tag) |
| 5268 | { |
| 5269 | arc_buf_hdr_t *hdr = buf->b_hdr; |
| 5270 | |
| 5271 | /* |
| 5272 | * It would be nice to assert that if it's DMU metadata (level > |
| 5273 | * 0 || it's the dnode file), then it must be syncing context. |
| 5274 | * But we don't know that information at this level. |
| 5275 | */ |
| 5276 | |
| 5277 | mutex_enter(&buf->b_evict_lock); |
| 5278 | |
| 5279 | ASSERT(HDR_HAS_L1HDR(hdr)); |
| 5280 | |
| 5281 | /* |
| 5282 | * We don't grab the hash lock prior to this check, because if |
| 5283 | * the buffer's header is in the arc_anon state, it won't be |
| 5284 | * linked into the hash table. |
| 5285 | */ |
| 5286 | if (hdr->b_l1hdr.b_state == arc_anon) { |
| 5287 | mutex_exit(&buf->b_evict_lock); |
| 5288 | ASSERT(!HDR_IO_IN_PROGRESS(hdr)); |
| 5289 | ASSERT(!HDR_IN_HASH_TABLE(hdr)); |
| 5290 | ASSERT(!HDR_HAS_L2HDR(hdr)); |
| 5291 | ASSERT(HDR_EMPTY(hdr)); |
| 5292 | ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); |
| 5293 | ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1); |
| 5294 | ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node)); |
| 5295 | |
| 5296 | hdr->b_l1hdr.b_arc_access = 0; |
| 5297 | |
| 5298 | /* |
| 5299 | * If the buf is being overridden then it may already |
| 5300 | * have a hdr that is not empty. |
| 5301 | */ |
| 5302 | buf_discard_identity(hdr); |
| 5303 | arc_buf_thaw(buf); |
| 5304 | |
| 5305 | return; |
| 5306 | } |
| 5307 | |
| 5308 | kmutex_t *hash_lock = HDR_LOCK(hdr); |
| 5309 | mutex_enter(hash_lock); |
| 5310 | |
| 5311 | /* |
| 5312 | * This assignment is only valid as long as the hash_lock is |
| 5313 | * held, we must be careful not to reference state or the |
| 5314 | * b_state field after dropping the lock. |
| 5315 | */ |
| 5316 | arc_state_t *state = hdr->b_l1hdr.b_state; |
| 5317 | ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); |
| 5318 | ASSERT3P(state, !=, arc_anon); |
| 5319 | |
| 5320 | /* this buffer is not on any list */ |
| 5321 | ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) > 0); |
| 5322 | |
| 5323 | if (HDR_HAS_L2HDR(hdr)) { |
| 5324 | mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx); |
| 5325 | |
| 5326 | /* |
| 5327 | * We have to recheck this conditional again now that |
| 5328 | * we're holding the l2ad_mtx to prevent a race with |
| 5329 | * another thread which might be concurrently calling |
| 5330 | * l2arc_evict(). In that case, l2arc_evict() might have |
| 5331 | * destroyed the header's L2 portion as we were waiting |
| 5332 | * to acquire the l2ad_mtx. |
| 5333 | */ |
| 5334 | if (HDR_HAS_L2HDR(hdr)) { |
| 5335 | l2arc_trim(hdr); |
| 5336 | arc_hdr_l2hdr_destroy(hdr); |
| 5337 | } |
| 5338 | |
| 5339 | mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx); |
| 5340 | } |
| 5341 | |
| 5342 | /* |
| 5343 | * Do we have more than one buf? |
| 5344 | */ |
| 5345 | if (hdr->b_l1hdr.b_bufcnt > 1) { |
| 5346 | arc_buf_hdr_t *nhdr; |
| 5347 | arc_buf_t **bufp; |
| 5348 | uint64_t spa = hdr->b_spa; |
| 5349 | uint64_t psize = HDR_GET_PSIZE(hdr); |
| 5350 | uint64_t lsize = HDR_GET_LSIZE(hdr); |
| 5351 | enum zio_compress compress = HDR_GET_COMPRESS(hdr); |
| 5352 | arc_buf_contents_t type = arc_buf_type(hdr); |
| 5353 | VERIFY3U(hdr->b_type, ==, type); |
| 5354 | |
| 5355 | ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL); |
| 5356 | (void) remove_reference(hdr, hash_lock, tag); |
| 5357 | |
| 5358 | if (arc_buf_is_shared(buf)) { |
| 5359 | ASSERT(HDR_SHARED_DATA(hdr)); |
| 5360 | ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); |
| 5361 | ASSERT(ARC_BUF_LAST(buf)); |
| 5362 | } |
| 5363 | |
| 5364 | /* |
| 5365 | * Pull the data off of this hdr and attach it to |
| 5366 | * a new anonymous hdr. Also find the last buffer |
| 5367 | * in the hdr's buffer list. |
| 5368 | */ |
| 5369 | arc_buf_t *lastbuf = NULL; |
| 5370 | bufp = &hdr->b_l1hdr.b_buf; |
| 5371 | while (*bufp != NULL) { |
| 5372 | if (*bufp == buf) { |
| 5373 | *bufp = buf->b_next; |
| 5374 | } |
| 5375 | |
| 5376 | /* |
| 5377 | * If we've removed a buffer in the middle of |
| 5378 | * the list then update the lastbuf and update |
| 5379 | * bufp. |
| 5380 | */ |
| 5381 | if (*bufp != NULL) { |
| 5382 | lastbuf = *bufp; |
| 5383 | bufp = &(*bufp)->b_next; |
| 5384 | } |
| 5385 | } |
| 5386 | buf->b_next = NULL; |
| 5387 | ASSERT3P(lastbuf, !=, buf); |
| 5388 | ASSERT3P(lastbuf, !=, NULL); |
| 5389 | |
| 5390 | /* |
| 5391 | * If the current arc_buf_t and the hdr are sharing their data |
| 5392 | * buffer, then we must stop sharing that block, transfer |
| 5393 | * ownership and setup sharing with a new arc_buf_t at the end |
| 5394 | * of the hdr's b_buf list. |
| 5395 | */ |
| 5396 | if (arc_buf_is_shared(buf)) { |
| 5397 | ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); |
| 5398 | ASSERT(ARC_BUF_LAST(lastbuf)); |
| 5399 | VERIFY(!arc_buf_is_shared(lastbuf)); |
| 5400 | |
| 5401 | /* |
| 5402 | * First, sever the block sharing relationship between |
| 5403 | * buf and the arc_buf_hdr_t. Then, setup a new |
| 5404 | * block sharing relationship with the last buffer |
| 5405 | * on the arc_buf_t list. |
| 5406 | */ |
| 5407 | arc_unshare_buf(hdr, buf); |
| 5408 | arc_share_buf(hdr, lastbuf); |
| 5409 | VERIFY3P(lastbuf->b_data, !=, NULL); |
| 5410 | } else if (HDR_SHARED_DATA(hdr)) { |
| 5411 | ASSERT(arc_buf_is_shared(lastbuf)); |
| 5412 | } |
| 5413 | ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); |
| 5414 | ASSERT3P(state, !=, arc_l2c_only); |
| 5415 | |
| 5416 | (void) refcount_remove_many(&state->arcs_size, |
| 5417 | HDR_GET_LSIZE(hdr), buf); |
| 5418 | |
| 5419 | if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { |
| 5420 | ASSERT3P(state, !=, arc_l2c_only); |
| 5421 | (void) refcount_remove_many(&state->arcs_esize[type], |
| 5422 | HDR_GET_LSIZE(hdr), buf); |
| 5423 | } |
| 5424 | |
| 5425 | hdr->b_l1hdr.b_bufcnt -= 1; |
| 5426 | arc_cksum_verify(buf); |
| 5427 | #ifdef illumos |
| 5428 | arc_buf_unwatch(buf); |
| 5429 | #endif |
| 5430 | |
| 5431 | mutex_exit(hash_lock); |
| 5432 | |
| 5433 | /* |
| 5434 | * Allocate a new hdr. The new hdr will contain a b_pdata |
| 5435 | * buffer which will be freed in arc_write(). |
| 5436 | */ |
| 5437 | nhdr = arc_hdr_alloc(spa, psize, lsize, compress, type); |
| 5438 | ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL); |
| 5439 | ASSERT0(nhdr->b_l1hdr.b_bufcnt); |
| 5440 | ASSERT0(refcount_count(&nhdr->b_l1hdr.b_refcnt)); |
| 5441 | VERIFY3U(nhdr->b_type, ==, type); |
| 5442 | ASSERT(!HDR_SHARED_DATA(nhdr)); |
| 5443 | |
| 5444 | nhdr->b_l1hdr.b_buf = buf; |
| 5445 | nhdr->b_l1hdr.b_bufcnt = 1; |
| 5446 | (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag); |
| 5447 | buf->b_hdr = nhdr; |
| 5448 | |
| 5449 | mutex_exit(&buf->b_evict_lock); |
| 5450 | (void) refcount_add_many(&arc_anon->arcs_size, |
| 5451 | HDR_GET_LSIZE(nhdr), buf); |
| 5452 | } else { |
| 5453 | mutex_exit(&buf->b_evict_lock); |
| 5454 | ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1); |
| 5455 | /* protected by hash lock, or hdr is on arc_anon */ |
| 5456 | ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); |
| 5457 | ASSERT(!HDR_IO_IN_PROGRESS(hdr)); |
| 5458 | arc_change_state(arc_anon, hdr, hash_lock); |
| 5459 | hdr->b_l1hdr.b_arc_access = 0; |
| 5460 | mutex_exit(hash_lock); |
| 5461 | |
| 5462 | buf_discard_identity(hdr); |
| 5463 | arc_buf_thaw(buf); |
| 5464 | } |
| 5465 | } |
| 5466 | |
| 5467 | int |
| 5468 | arc_released(arc_buf_t *buf) |
| 5469 | { |
| 5470 | int released; |
| 5471 | |
| 5472 | mutex_enter(&buf->b_evict_lock); |
| 5473 | released = (buf->b_data != NULL && |
| 5474 | buf->b_hdr->b_l1hdr.b_state == arc_anon); |
| 5475 | mutex_exit(&buf->b_evict_lock); |
| 5476 | return (released); |
| 5477 | } |
| 5478 | |
| 5479 | #ifdef ZFS_DEBUG |
| 5480 | int |
| 5481 | arc_referenced(arc_buf_t *buf) |
| 5482 | { |
| 5483 | int referenced; |
| 5484 | |
| 5485 | mutex_enter(&buf->b_evict_lock); |
| 5486 | referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt)); |
| 5487 | mutex_exit(&buf->b_evict_lock); |
| 5488 | return (referenced); |
| 5489 | } |
| 5490 | #endif |
| 5491 | |
| 5492 | static void |
| 5493 | arc_write_ready(zio_t *zio) |
| 5494 | { |
| 5495 | arc_write_callback_t *callback = zio->io_private; |
| 5496 | arc_buf_t *buf = callback->awcb_buf; |
| 5497 | arc_buf_hdr_t *hdr = buf->b_hdr; |
| 5498 | uint64_t psize = BP_IS_HOLE(zio->io_bp) ? 0 : BP_GET_PSIZE(zio->io_bp); |
| 5499 | |
| 5500 | ASSERT(HDR_HAS_L1HDR(hdr)); |
| 5501 | ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt)); |
| 5502 | ASSERT(hdr->b_l1hdr.b_bufcnt > 0); |
| 5503 | |
| 5504 | /* |
| 5505 | * If we're reexecuting this zio because the pool suspended, then |
| 5506 | * cleanup any state that was previously set the first time the |
| 5507 | * callback as invoked. |
| 5508 | */ |
| 5509 | if (zio->io_flags & ZIO_FLAG_REEXECUTED) { |
| 5510 | arc_cksum_free(hdr); |
| 5511 | #ifdef illumos |
| 5512 | arc_buf_unwatch(buf); |
| 5513 | #endif |
| 5514 | if (hdr->b_l1hdr.b_pdata != NULL) { |
| 5515 | if (arc_buf_is_shared(buf)) { |
| 5516 | ASSERT(HDR_SHARED_DATA(hdr)); |
| 5517 | |
| 5518 | arc_unshare_buf(hdr, buf); |
| 5519 | } else { |
| 5520 | arc_hdr_free_pdata(hdr); |
| 5521 | } |
| 5522 | } |
| 5523 | } |
| 5524 | ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); |
| 5525 | ASSERT(!HDR_SHARED_DATA(hdr)); |
| 5526 | ASSERT(!arc_buf_is_shared(buf)); |
| 5527 | |
| 5528 | callback->awcb_ready(zio, buf, callback->awcb_private); |
| 5529 | |
| 5530 | if (HDR_IO_IN_PROGRESS(hdr)) |
| 5531 | ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED); |
| 5532 | |
| 5533 | arc_cksum_compute(buf); |
| 5534 | arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); |
| 5535 | |
| 5536 | enum zio_compress compress; |
| 5537 | if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { |
| 5538 | compress = ZIO_COMPRESS_OFF; |
| 5539 | } else { |
| 5540 | ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(zio->io_bp)); |
| 5541 | compress = BP_GET_COMPRESS(zio->io_bp); |
| 5542 | } |
| 5543 | HDR_SET_PSIZE(hdr, psize); |
| 5544 | arc_hdr_set_compress(hdr, compress); |
| 5545 | |
| 5546 | /* |
| 5547 | * If the hdr is compressed, then copy the compressed |
| 5548 | * zio contents into arc_buf_hdr_t. Otherwise, copy the original |
| 5549 | * data buf into the hdr. Ideally, we would like to always copy the |
| 5550 | * io_data into b_pdata but the user may have disabled compressed |
| 5551 | * arc thus the on-disk block may or may not match what we maintain |
| 5552 | * in the hdr's b_pdata field. |
| 5553 | */ |
| 5554 | if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) { |
| 5555 | ASSERT(BP_GET_COMPRESS(zio->io_bp) != ZIO_COMPRESS_OFF); |
| 5556 | ASSERT3U(psize, >, 0); |
| 5557 | arc_hdr_alloc_pdata(hdr); |
| 5558 | bcopy(zio->io_data, hdr->b_l1hdr.b_pdata, psize); |
| 5559 | } else { |
| 5560 | ASSERT3P(buf->b_data, ==, zio->io_orig_data); |
| 5561 | ASSERT3U(zio->io_orig_size, ==, HDR_GET_LSIZE(hdr)); |
| 5562 | ASSERT3U(hdr->b_l1hdr.b_byteswap, ==, DMU_BSWAP_NUMFUNCS); |
| 5563 | ASSERT(!HDR_SHARED_DATA(hdr)); |
| 5564 | ASSERT(!arc_buf_is_shared(buf)); |
| 5565 | ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); |
| 5566 | ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); |
| 5567 | |
| 5568 | /* |
| 5569 | * This hdr is not compressed so we're able to share |
| 5570 | * the arc_buf_t data buffer with the hdr. |
| 5571 | */ |
| 5572 | arc_share_buf(hdr, buf); |
| 5573 | VERIFY0(bcmp(zio->io_orig_data, hdr->b_l1hdr.b_pdata, |
| 5574 | HDR_GET_LSIZE(hdr))); |
| 5575 | } |
| 5576 | arc_hdr_verify(hdr, zio->io_bp); |
| 5577 | } |
| 5578 | |
| 5579 | static void |
| 5580 | arc_write_children_ready(zio_t *zio) |
| 5581 | { |
| 5582 | arc_write_callback_t *callback = zio->io_private; |
| 5583 | arc_buf_t *buf = callback->awcb_buf; |
| 5584 | |
| 5585 | callback->awcb_children_ready(zio, buf, callback->awcb_private); |
| 5586 | } |
| 5587 | |
| 5588 | /* |
| 5589 | * The SPA calls this callback for each physical write that happens on behalf |
| 5590 | * of a logical write. See the comment in dbuf_write_physdone() for details. |
| 5591 | */ |
| 5592 | static void |
| 5593 | arc_write_physdone(zio_t *zio) |
| 5594 | { |
| 5595 | arc_write_callback_t *cb = zio->io_private; |
| 5596 | if (cb->awcb_physdone != NULL) |
| 5597 | cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); |
| 5598 | } |
| 5599 | |
| 5600 | static void |
| 5601 | arc_write_done(zio_t *zio) |
| 5602 | { |
| 5603 | arc_write_callback_t *callback = zio->io_private; |
| 5604 | arc_buf_t *buf = callback->awcb_buf; |
| 5605 | arc_buf_hdr_t *hdr = buf->b_hdr; |
| 5606 | |
| 5607 | ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); |
| 5608 | |
| 5609 | if (zio->io_error == 0) { |
| 5610 | arc_hdr_verify(hdr, zio->io_bp); |
| 5611 | |
| 5612 | if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { |
| 5613 | buf_discard_identity(hdr); |
| 5614 | } else { |
| 5615 | hdr->b_dva = *BP_IDENTITY(zio->io_bp); |
| 5616 | hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); |
| 5617 | } |
| 5618 | } else { |
| 5619 | ASSERT(HDR_EMPTY(hdr)); |
| 5620 | } |
| 5621 | |
| 5622 | /* |
| 5623 | * If the block to be written was all-zero or compressed enough to be |
| 5624 | * embedded in the BP, no write was performed so there will be no |
| 5625 | * dva/birth/checksum. The buffer must therefore remain anonymous |
| 5626 | * (and uncached). |
| 5627 | */ |
| 5628 | if (!HDR_EMPTY(hdr)) { |
| 5629 | arc_buf_hdr_t *exists; |
| 5630 | kmutex_t *hash_lock; |
| 5631 | |
| 5632 | ASSERT(zio->io_error == 0); |
| 5633 | |
| 5634 | arc_cksum_verify(buf); |
| 5635 | |
| 5636 | exists = buf_hash_insert(hdr, &hash_lock); |
| 5637 | if (exists != NULL) { |
| 5638 | /* |
| 5639 | * This can only happen if we overwrite for |
| 5640 | * sync-to-convergence, because we remove |
| 5641 | * buffers from the hash table when we arc_free(). |
| 5642 | */ |
| 5643 | if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { |
| 5644 | if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) |
| 5645 | panic("bad overwrite, hdr=%p exists=%p" , |
| 5646 | (void *)hdr, (void *)exists); |
| 5647 | ASSERT(refcount_is_zero( |
| 5648 | &exists->b_l1hdr.b_refcnt)); |
| 5649 | arc_change_state(arc_anon, exists, hash_lock); |
| 5650 | mutex_exit(hash_lock); |
| 5651 | arc_hdr_destroy(exists); |
| 5652 | exists = buf_hash_insert(hdr, &hash_lock); |
| 5653 | ASSERT3P(exists, ==, NULL); |
| 5654 | } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { |
| 5655 | /* nopwrite */ |
| 5656 | ASSERT(zio->io_prop.zp_nopwrite); |
| 5657 | if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) |
| 5658 | panic("bad nopwrite, hdr=%p exists=%p" , |
| 5659 | (void *)hdr, (void *)exists); |
| 5660 | } else { |
| 5661 | /* Dedup */ |
| 5662 | ASSERT(hdr->b_l1hdr.b_bufcnt == 1); |
| 5663 | ASSERT(hdr->b_l1hdr.b_state == arc_anon); |
| 5664 | ASSERT(BP_GET_DEDUP(zio->io_bp)); |
| 5665 | ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); |
| 5666 | } |
| 5667 | } |
| 5668 | arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); |
| 5669 | /* if it's not anon, we are doing a scrub */ |
| 5670 | if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon) |
| 5671 | arc_access(hdr, hash_lock); |
| 5672 | mutex_exit(hash_lock); |
| 5673 | } else { |
| 5674 | arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); |
| 5675 | } |
| 5676 | |
| 5677 | ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); |
| 5678 | callback->awcb_done(zio, buf, callback->awcb_private); |
| 5679 | |
| 5680 | kmem_free(callback, sizeof (arc_write_callback_t)); |
| 5681 | } |
| 5682 | |
| 5683 | zio_t * |
| 5684 | arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf, |
| 5685 | boolean_t l2arc, const zio_prop_t *zp, arc_done_func_t *ready, |
| 5686 | arc_done_func_t *children_ready, arc_done_func_t *physdone, |
| 5687 | arc_done_func_t *done, void *private, zio_priority_t priority, |
| 5688 | int zio_flags, const zbookmark_phys_t *zb) |
| 5689 | { |
| 5690 | arc_buf_hdr_t *hdr = buf->b_hdr; |
| 5691 | arc_write_callback_t *callback; |
| 5692 | zio_t *zio; |
| 5693 | |
| 5694 | ASSERT3P(ready, !=, NULL); |
| 5695 | ASSERT3P(done, !=, NULL); |
| 5696 | ASSERT(!HDR_IO_ERROR(hdr)); |
| 5697 | ASSERT(!HDR_IO_IN_PROGRESS(hdr)); |
| 5698 | ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); |
| 5699 | ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); |
| 5700 | if (l2arc) |
| 5701 | arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); |
| 5702 | callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); |
| 5703 | callback->awcb_ready = ready; |
| 5704 | callback->awcb_children_ready = children_ready; |
| 5705 | callback->awcb_physdone = physdone; |
| 5706 | callback->awcb_done = done; |
| 5707 | callback->awcb_private = private; |
| 5708 | callback->awcb_buf = buf; |
| 5709 | |
| 5710 | /* |
| 5711 | * The hdr's b_pdata is now stale, free it now. A new data block |
| 5712 | * will be allocated when the zio pipeline calls arc_write_ready(). |
| 5713 | */ |
| 5714 | if (hdr->b_l1hdr.b_pdata != NULL) { |
| 5715 | /* |
| 5716 | * If the buf is currently sharing the data block with |
| 5717 | * the hdr then we need to break that relationship here. |
| 5718 | * The hdr will remain with a NULL data pointer and the |
| 5719 | * buf will take sole ownership of the block. |
| 5720 | */ |
| 5721 | if (arc_buf_is_shared(buf)) { |
| 5722 | ASSERT(ARC_BUF_LAST(buf)); |
| 5723 | arc_unshare_buf(hdr, buf); |
| 5724 | } else { |
| 5725 | arc_hdr_free_pdata(hdr); |
| 5726 | } |
| 5727 | VERIFY3P(buf->b_data, !=, NULL); |
| 5728 | arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF); |
| 5729 | } |
| 5730 | ASSERT(!arc_buf_is_shared(buf)); |
| 5731 | ASSERT3P(hdr->b_l1hdr.b_pdata, ==, NULL); |
| 5732 | |
| 5733 | zio = zio_write(pio, spa, txg, bp, buf->b_data, HDR_GET_LSIZE(hdr), zp, |
| 5734 | arc_write_ready, |
| 5735 | (children_ready != NULL) ? arc_write_children_ready : NULL, |
| 5736 | arc_write_physdone, arc_write_done, callback, |
| 5737 | priority, zio_flags, zb); |
| 5738 | |
| 5739 | return (zio); |
| 5740 | } |
| 5741 | |
| 5742 | static int |
| 5743 | arc_memory_throttle(uint64_t reserve, uint64_t txg) |
| 5744 | { |
| 5745 | #ifdef _KERNEL |
| 5746 | uint64_t available_memory = ptob(freemem); |
| 5747 | static uint64_t page_load = 0; |
| 5748 | static uint64_t last_txg = 0; |
| 5749 | |
| 5750 | #if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC) |
| 5751 | available_memory = |
| 5752 | MIN(available_memory, ptob(vmem_size(heap_arena, VMEM_FREE))); |
| 5753 | #endif |
| 5754 | |
| 5755 | if (freemem > (uint64_t)physmem * arc_lotsfree_percent / 100) |
| 5756 | return (0); |
| 5757 | |
| 5758 | if (txg > last_txg) { |
| 5759 | last_txg = txg; |
| 5760 | page_load = 0; |
| 5761 | } |
| 5762 | /* |
| 5763 | * If we are in pageout, we know that memory is already tight, |
| 5764 | * the arc is already going to be evicting, so we just want to |
| 5765 | * continue to let page writes occur as quickly as possible. |
| 5766 | */ |
| 5767 | if (curlwp == uvm.pagedaemon_lwp) { |
| 5768 | if (page_load > MAX(ptob(minfree), available_memory) / 4) |
| 5769 | return (SET_ERROR(ERESTART)); |
| 5770 | /* Note: reserve is inflated, so we deflate */ |
| 5771 | page_load += reserve / 8; |
| 5772 | return (0); |
| 5773 | } else if (page_load > 0 && arc_reclaim_needed()) { |
| 5774 | /* memory is low, delay before restarting */ |
| 5775 | ARCSTAT_INCR(arcstat_memory_throttle_count, 1); |
| 5776 | return (SET_ERROR(EAGAIN)); |
| 5777 | } |
| 5778 | page_load = 0; |
| 5779 | #endif |
| 5780 | return (0); |
| 5781 | } |
| 5782 | |
| 5783 | void |
| 5784 | arc_tempreserve_clear(uint64_t reserve) |
| 5785 | { |
| 5786 | atomic_add_64(&arc_tempreserve, -reserve); |
| 5787 | ASSERT((int64_t)arc_tempreserve >= 0); |
| 5788 | } |
| 5789 | |
| 5790 | int |
| 5791 | arc_tempreserve_space(uint64_t reserve, uint64_t txg) |
| 5792 | { |
| 5793 | int error; |
| 5794 | uint64_t anon_size; |
| 5795 | |
| 5796 | if (reserve > arc_c/4 && !arc_no_grow) { |
| 5797 | arc_c = MIN(arc_c_max, reserve * 4); |
| 5798 | DTRACE_PROBE1(arc__set_reserve, uint64_t, arc_c); |
| 5799 | } |
| 5800 | if (reserve > arc_c) |
| 5801 | return (SET_ERROR(ENOMEM)); |
| 5802 | |
| 5803 | /* |
| 5804 | * Don't count loaned bufs as in flight dirty data to prevent long |
| 5805 | * network delays from blocking transactions that are ready to be |
| 5806 | * assigned to a txg. |
| 5807 | */ |
| 5808 | anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) - |
| 5809 | arc_loaned_bytes), 0); |
| 5810 | |
| 5811 | /* |
| 5812 | * Writes will, almost always, require additional memory allocations |
| 5813 | * in order to compress/encrypt/etc the data. We therefore need to |
| 5814 | * make sure that there is sufficient available memory for this. |
| 5815 | */ |
| 5816 | error = arc_memory_throttle(reserve, txg); |
| 5817 | if (error != 0) |
| 5818 | return (error); |
| 5819 | |
| 5820 | /* |
| 5821 | * Throttle writes when the amount of dirty data in the cache |
| 5822 | * gets too large. We try to keep the cache less than half full |
| 5823 | * of dirty blocks so that our sync times don't grow too large. |
| 5824 | * Note: if two requests come in concurrently, we might let them |
| 5825 | * both succeed, when one of them should fail. Not a huge deal. |
| 5826 | */ |
| 5827 | |
| 5828 | if (reserve + arc_tempreserve + anon_size > arc_c / 2 && |
| 5829 | anon_size > arc_c / 4) { |
| 5830 | uint64_t meta_esize = |
| 5831 | refcount_count(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); |
| 5832 | uint64_t data_esize = |
| 5833 | refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]); |
| 5834 | dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " |
| 5835 | "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n" , |
| 5836 | arc_tempreserve >> 10, meta_esize >> 10, |
| 5837 | data_esize >> 10, reserve >> 10, arc_c >> 10); |
| 5838 | return (SET_ERROR(ERESTART)); |
| 5839 | } |
| 5840 | atomic_add_64(&arc_tempreserve, reserve); |
| 5841 | return (0); |
| 5842 | } |
| 5843 | |
| 5844 | static void |
| 5845 | arc_kstat_update_state(arc_state_t *state, kstat_named_t *size, |
| 5846 | kstat_named_t *evict_data, kstat_named_t *evict_metadata) |
| 5847 | { |
| 5848 | size->value.ui64 = refcount_count(&state->arcs_size); |
| 5849 | evict_data->value.ui64 = |
| 5850 | refcount_count(&state->arcs_esize[ARC_BUFC_DATA]); |
| 5851 | evict_metadata->value.ui64 = |
| 5852 | refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]); |
| 5853 | } |
| 5854 | |
| 5855 | static int |
| 5856 | arc_kstat_update(kstat_t *ksp, int rw) |
| 5857 | { |
| 5858 | arc_stats_t *as = ksp->ks_data; |
| 5859 | |
| 5860 | if (rw == KSTAT_WRITE) { |
| 5861 | return (EACCES); |
| 5862 | } else { |
| 5863 | arc_kstat_update_state(arc_anon, |
| 5864 | &as->arcstat_anon_size, |
| 5865 | &as->arcstat_anon_evictable_data, |
| 5866 | &as->arcstat_anon_evictable_metadata); |
| 5867 | arc_kstat_update_state(arc_mru, |
| 5868 | &as->arcstat_mru_size, |
| 5869 | &as->arcstat_mru_evictable_data, |
| 5870 | &as->arcstat_mru_evictable_metadata); |
| 5871 | arc_kstat_update_state(arc_mru_ghost, |
| 5872 | &as->arcstat_mru_ghost_size, |
| 5873 | &as->arcstat_mru_ghost_evictable_data, |
| 5874 | &as->arcstat_mru_ghost_evictable_metadata); |
| 5875 | arc_kstat_update_state(arc_mfu, |
| 5876 | &as->arcstat_mfu_size, |
| 5877 | &as->arcstat_mfu_evictable_data, |
| 5878 | &as->arcstat_mfu_evictable_metadata); |
| 5879 | arc_kstat_update_state(arc_mfu_ghost, |
| 5880 | &as->arcstat_mfu_ghost_size, |
| 5881 | &as->arcstat_mfu_ghost_evictable_data, |
| 5882 | &as->arcstat_mfu_ghost_evictable_metadata); |
| 5883 | } |
| 5884 | |
| 5885 | return (0); |
| 5886 | } |
| 5887 | |
| 5888 | /* |
| 5889 | * This function *must* return indices evenly distributed between all |
| 5890 | * sublists of the multilist. This is needed due to how the ARC eviction |
| 5891 | * code is laid out; arc_evict_state() assumes ARC buffers are evenly |
| 5892 | * distributed between all sublists and uses this assumption when |
| 5893 | * deciding which sublist to evict from and how much to evict from it. |
| 5894 | */ |
| 5895 | unsigned int |
| 5896 | arc_state_multilist_index_func(multilist_t *ml, void *obj) |
| 5897 | { |
| 5898 | arc_buf_hdr_t *hdr = obj; |
| 5899 | |
| 5900 | /* |
| 5901 | * We rely on b_dva to generate evenly distributed index |
| 5902 | * numbers using buf_hash below. So, as an added precaution, |
| 5903 | * let's make sure we never add empty buffers to the arc lists. |
| 5904 | */ |
| 5905 | ASSERT(!HDR_EMPTY(hdr)); |
| 5906 | |
| 5907 | /* |
| 5908 | * The assumption here, is the hash value for a given |
| 5909 | * arc_buf_hdr_t will remain constant throughout it's lifetime |
| 5910 | * (i.e. it's b_spa, b_dva, and b_birth fields don't change). |
| 5911 | * Thus, we don't need to store the header's sublist index |
| 5912 | * on insertion, as this index can be recalculated on removal. |
| 5913 | * |
| 5914 | * Also, the low order bits of the hash value are thought to be |
| 5915 | * distributed evenly. Otherwise, in the case that the multilist |
| 5916 | * has a power of two number of sublists, each sublists' usage |
| 5917 | * would not be evenly distributed. |
| 5918 | */ |
| 5919 | return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) % |
| 5920 | multilist_get_num_sublists(ml)); |
| 5921 | } |
| 5922 | |
| 5923 | #ifdef _KERNEL |
| 5924 | #ifdef __FreeBSD__ |
| 5925 | static eventhandler_tag arc_event_lowmem = NULL; |
| 5926 | #endif |
| 5927 | |
| 5928 | static void |
| 5929 | arc_lowmem(void *arg __unused, int howto __unused) |
| 5930 | { |
| 5931 | |
| 5932 | mutex_enter(&arc_reclaim_lock); |
| 5933 | /* XXX: Memory deficit should be passed as argument. */ |
| 5934 | needfree = btoc(arc_c >> arc_shrink_shift); |
| 5935 | DTRACE_PROBE(arc__needfree); |
| 5936 | cv_signal(&arc_reclaim_thread_cv); |
| 5937 | |
| 5938 | /* |
| 5939 | * It is unsafe to block here in arbitrary threads, because we can come |
| 5940 | * here from ARC itself and may hold ARC locks and thus risk a deadlock |
| 5941 | * with ARC reclaim thread. |
| 5942 | */ |
| 5943 | if (curlwp == uvm.pagedaemon_lwp) |
| 5944 | (void) cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock); |
| 5945 | mutex_exit(&arc_reclaim_lock); |
| 5946 | } |
| 5947 | #endif |
| 5948 | |
| 5949 | static void |
| 5950 | arc_state_init(void) |
| 5951 | { |
| 5952 | arc_anon = &ARC_anon; |
| 5953 | arc_mru = &ARC_mru; |
| 5954 | arc_mru_ghost = &ARC_mru_ghost; |
| 5955 | arc_mfu = &ARC_mfu; |
| 5956 | arc_mfu_ghost = &ARC_mfu_ghost; |
| 5957 | arc_l2c_only = &ARC_l2c_only; |
| 5958 | |
| 5959 | multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], |
| 5960 | sizeof (arc_buf_hdr_t), |
| 5961 | offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), |
| 5962 | zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); |
| 5963 | multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA], |
| 5964 | sizeof (arc_buf_hdr_t), |
| 5965 | offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), |
| 5966 | zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); |
| 5967 | multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], |
| 5968 | sizeof (arc_buf_hdr_t), |
| 5969 | offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), |
| 5970 | zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); |
| 5971 | multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], |
| 5972 | sizeof (arc_buf_hdr_t), |
| 5973 | offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), |
| 5974 | zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); |
| 5975 | multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], |
| 5976 | sizeof (arc_buf_hdr_t), |
| 5977 | offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), |
| 5978 | zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); |
| 5979 | multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], |
| 5980 | sizeof (arc_buf_hdr_t), |
| 5981 | offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), |
| 5982 | zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); |
| 5983 | multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], |
| 5984 | sizeof (arc_buf_hdr_t), |
| 5985 | offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), |
| 5986 | zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); |
| 5987 | multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], |
| 5988 | sizeof (arc_buf_hdr_t), |
| 5989 | offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), |
| 5990 | zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); |
| 5991 | multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], |
| 5992 | sizeof (arc_buf_hdr_t), |
| 5993 | offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), |
| 5994 | zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); |
| 5995 | multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], |
| 5996 | sizeof (arc_buf_hdr_t), |
| 5997 | offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), |
| 5998 | zfs_arc_num_sublists_per_state, arc_state_multilist_index_func); |
| 5999 | |
| 6000 | refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); |
| 6001 | refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]); |
| 6002 | refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); |
| 6003 | refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]); |
| 6004 | refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); |
| 6005 | refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); |
| 6006 | refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); |
| 6007 | refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); |
| 6008 | refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); |
| 6009 | refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); |
| 6010 | refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); |
| 6011 | refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); |
| 6012 | |
| 6013 | refcount_create(&arc_anon->arcs_size); |
| 6014 | refcount_create(&arc_mru->arcs_size); |
| 6015 | refcount_create(&arc_mru_ghost->arcs_size); |
| 6016 | refcount_create(&arc_mfu->arcs_size); |
| 6017 | refcount_create(&arc_mfu_ghost->arcs_size); |
| 6018 | refcount_create(&arc_l2c_only->arcs_size); |
| 6019 | } |
| 6020 | |
| 6021 | static void |
| 6022 | arc_state_fini(void) |
| 6023 | { |
| 6024 | refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); |
| 6025 | refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]); |
| 6026 | refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); |
| 6027 | refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]); |
| 6028 | refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); |
| 6029 | refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); |
| 6030 | refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); |
| 6031 | refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); |
| 6032 | refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); |
| 6033 | refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); |
| 6034 | refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); |
| 6035 | refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); |
| 6036 | |
| 6037 | refcount_destroy(&arc_anon->arcs_size); |
| 6038 | refcount_destroy(&arc_mru->arcs_size); |
| 6039 | refcount_destroy(&arc_mru_ghost->arcs_size); |
| 6040 | refcount_destroy(&arc_mfu->arcs_size); |
| 6041 | refcount_destroy(&arc_mfu_ghost->arcs_size); |
| 6042 | refcount_destroy(&arc_l2c_only->arcs_size); |
| 6043 | |
| 6044 | multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); |
| 6045 | multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); |
| 6046 | multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); |
| 6047 | multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); |
| 6048 | multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); |
| 6049 | multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); |
| 6050 | multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); |
| 6051 | multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); |
| 6052 | } |
| 6053 | |
| 6054 | uint64_t |
| 6055 | arc_max_bytes(void) |
| 6056 | { |
| 6057 | return (arc_c_max); |
| 6058 | } |
| 6059 | |
| 6060 | void |
| 6061 | arc_init(void) |
| 6062 | { |
| 6063 | int i, prefetch_tunable_set = 0; |
| 6064 | |
| 6065 | mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL); |
| 6066 | cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL); |
| 6067 | cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL); |
| 6068 | |
| 6069 | #ifdef __FreeBSD__ |
| 6070 | mutex_init(&arc_dnlc_evicts_lock, NULL, MUTEX_DEFAULT, NULL); |
| 6071 | cv_init(&arc_dnlc_evicts_cv, NULL, CV_DEFAULT, NULL); |
| 6072 | #endif |
| 6073 | |
| 6074 | /* Convert seconds to clock ticks */ |
| 6075 | arc_min_prefetch_lifespan = 1 * hz; |
| 6076 | |
| 6077 | /* Start out with 1/8 of all memory */ |
| 6078 | arc_c = kmem_size() / 8; |
| 6079 | |
| 6080 | #ifdef illumos |
| 6081 | #ifdef _KERNEL |
| 6082 | /* |
| 6083 | * On architectures where the physical memory can be larger |
| 6084 | * than the addressable space (intel in 32-bit mode), we may |
| 6085 | * need to limit the cache to 1/8 of VM size. |
| 6086 | */ |
| 6087 | arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); |
| 6088 | #endif |
| 6089 | #endif /* illumos */ |
| 6090 | /* set min cache to 1/32 of all memory, or arc_abs_min, whichever is more */ |
| 6091 | arc_c_min = MAX(arc_c / 4, arc_abs_min); |
| 6092 | /* set max to 1/2 of all memory, or all but 1GB, whichever is more */ |
| 6093 | if (arc_c * 8 >= 1 << 30) |
| 6094 | arc_c_max = (arc_c * 8) - (1 << 30); |
| 6095 | else |
| 6096 | arc_c_max = arc_c_min; |
| 6097 | arc_c_max = MAX(arc_c * 5, arc_c_max); |
| 6098 | |
| 6099 | /* |
| 6100 | * In userland, there's only the memory pressure that we artificially |
| 6101 | * create (see arc_available_memory()). Don't let arc_c get too |
| 6102 | * small, because it can cause transactions to be larger than |
| 6103 | * arc_c, causing arc_tempreserve_space() to fail. |
| 6104 | */ |
| 6105 | #ifndef _KERNEL |
| 6106 | arc_c_min = arc_c_max / 2; |
| 6107 | #endif |
| 6108 | |
| 6109 | #ifdef _KERNEL |
| 6110 | /* |
| 6111 | * Allow the tunables to override our calculations if they are |
| 6112 | * reasonable. |
| 6113 | */ |
| 6114 | if (zfs_arc_max > arc_abs_min && zfs_arc_max < kmem_size()) { |
| 6115 | arc_c_max = zfs_arc_max; |
| 6116 | arc_c_min = MIN(arc_c_min, arc_c_max); |
| 6117 | } |
| 6118 | if (zfs_arc_min > arc_abs_min && zfs_arc_min <= arc_c_max) |
| 6119 | arc_c_min = zfs_arc_min; |
| 6120 | #endif |
| 6121 | |
| 6122 | arc_c = arc_c_max; |
| 6123 | arc_p = (arc_c >> 1); |
| 6124 | arc_size = 0; |
| 6125 | |
| 6126 | /* limit meta-data to 1/4 of the arc capacity */ |
| 6127 | arc_meta_limit = arc_c_max / 4; |
| 6128 | |
| 6129 | /* Allow the tunable to override if it is reasonable */ |
| 6130 | if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) |
| 6131 | arc_meta_limit = zfs_arc_meta_limit; |
| 6132 | |
| 6133 | if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) |
| 6134 | arc_c_min = arc_meta_limit / 2; |
| 6135 | |
| 6136 | if (zfs_arc_meta_min > 0) { |
| 6137 | arc_meta_min = zfs_arc_meta_min; |
| 6138 | } else { |
| 6139 | arc_meta_min = arc_c_min / 2; |
| 6140 | } |
| 6141 | |
| 6142 | if (zfs_arc_grow_retry > 0) |
| 6143 | arc_grow_retry = zfs_arc_grow_retry; |
| 6144 | |
| 6145 | if (zfs_arc_shrink_shift > 0) |
| 6146 | arc_shrink_shift = zfs_arc_shrink_shift; |
| 6147 | |
| 6148 | /* |
| 6149 | * Ensure that arc_no_grow_shift is less than arc_shrink_shift. |
| 6150 | */ |
| 6151 | if (arc_no_grow_shift >= arc_shrink_shift) |
| 6152 | arc_no_grow_shift = arc_shrink_shift - 1; |
| 6153 | |
| 6154 | if (zfs_arc_p_min_shift > 0) |
| 6155 | arc_p_min_shift = zfs_arc_p_min_shift; |
| 6156 | |
| 6157 | if (zfs_arc_num_sublists_per_state < 1) |
| 6158 | zfs_arc_num_sublists_per_state = MAX(max_ncpus, 1); |
| 6159 | |
| 6160 | /* if kmem_flags are set, lets try to use less memory */ |
| 6161 | if (kmem_debugging()) |
| 6162 | arc_c = arc_c / 2; |
| 6163 | if (arc_c < arc_c_min) |
| 6164 | arc_c = arc_c_min; |
| 6165 | |
| 6166 | zfs_arc_min = arc_c_min; |
| 6167 | zfs_arc_max = arc_c_max; |
| 6168 | |
| 6169 | arc_state_init(); |
| 6170 | buf_init(); |
| 6171 | |
| 6172 | arc_reclaim_thread_exit = B_FALSE; |
| 6173 | #ifdef __FreeBSD__ |
| 6174 | arc_dnlc_evicts_thread_exit = FALSE; |
| 6175 | #endif |
| 6176 | |
| 6177 | arc_ksp = kstat_create("zfs" , 0, "arcstats" , "misc" , KSTAT_TYPE_NAMED, |
| 6178 | sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); |
| 6179 | |
| 6180 | if (arc_ksp != NULL) { |
| 6181 | arc_ksp->ks_data = &arc_stats; |
| 6182 | arc_ksp->ks_update = arc_kstat_update; |
| 6183 | kstat_install(arc_ksp); |
| 6184 | } |
| 6185 | |
| 6186 | (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, |
| 6187 | TS_RUN, minclsyspri); |
| 6188 | |
| 6189 | #ifdef __FreeBSD__ |
| 6190 | #ifdef _KERNEL |
| 6191 | arc_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, arc_lowmem, NULL, |
| 6192 | EVENTHANDLER_PRI_FIRST); |
| 6193 | #endif |
| 6194 | |
| 6195 | (void) thread_create(NULL, 0, arc_dnlc_evicts_thread, NULL, 0, &p0, |
| 6196 | TS_RUN, minclsyspri); |
| 6197 | #endif |
| 6198 | |
| 6199 | arc_dead = B_FALSE; |
| 6200 | arc_warm = B_FALSE; |
| 6201 | |
| 6202 | /* |
| 6203 | * Calculate maximum amount of dirty data per pool. |
| 6204 | * |
| 6205 | * If it has been set by /etc/system, take that. |
| 6206 | * Otherwise, use a percentage of physical memory defined by |
| 6207 | * zfs_dirty_data_max_percent (default 10%) with a cap at |
| 6208 | * zfs_dirty_data_max_max (default 4GB). |
| 6209 | */ |
| 6210 | if (zfs_dirty_data_max == 0) { |
| 6211 | zfs_dirty_data_max = ptob(physmem) * |
| 6212 | zfs_dirty_data_max_percent / 100; |
| 6213 | zfs_dirty_data_max = MIN(zfs_dirty_data_max, |
| 6214 | zfs_dirty_data_max_max); |
| 6215 | } |
| 6216 | |
| 6217 | #ifdef _KERNEL |
| 6218 | if (TUNABLE_INT_FETCH("vfs.zfs.prefetch_disable" , &zfs_prefetch_disable)) |
| 6219 | prefetch_tunable_set = 1; |
| 6220 | |
| 6221 | #ifdef __i386__ |
| 6222 | if (prefetch_tunable_set == 0) { |
| 6223 | printf("ZFS NOTICE: Prefetch is disabled by default on i386 " |
| 6224 | "-- to enable,\n" ); |
| 6225 | printf(" add \"vfs.zfs.prefetch_disable=0\" " |
| 6226 | "to /boot/loader.conf.\n" ); |
| 6227 | zfs_prefetch_disable = 1; |
| 6228 | } |
| 6229 | #else |
| 6230 | if ((((uint64_t)physmem * PAGESIZE) < (1ULL << 32)) && |
| 6231 | prefetch_tunable_set == 0) { |
| 6232 | printf("ZFS NOTICE: Prefetch is disabled by default if less " |
| 6233 | "than 4GB of RAM is present;\n" |
| 6234 | " to enable, add \"vfs.zfs.prefetch_disable=0\" " |
| 6235 | "to /boot/loader.conf.\n" ); |
| 6236 | zfs_prefetch_disable = 1; |
| 6237 | } |
| 6238 | #endif |
| 6239 | /* Warn about ZFS memory and address space requirements. */ |
| 6240 | if (((uint64_t)physmem * PAGESIZE) < (256 + 128 + 64) * (1 << 20)) { |
| 6241 | printf("ZFS WARNING: Recommended minimum RAM size is 512MB; " |
| 6242 | "expect unstable behavior.\n" ); |
| 6243 | } |
| 6244 | if (kmem_size() < 512 * (1 << 20)) { |
| 6245 | printf("ZFS WARNING: Recommended minimum kmem_size is 512MB; " |
| 6246 | "expect unstable behavior.\n" ); |
| 6247 | printf(" Consider tuning vm.kmem_size and " |
| 6248 | "vm.kmem_size_max\n" ); |
| 6249 | printf(" in /boot/loader.conf.\n" ); |
| 6250 | } |
| 6251 | #endif |
| 6252 | } |
| 6253 | |
| 6254 | void |
| 6255 | arc_fini(void) |
| 6256 | { |
| 6257 | mutex_enter(&arc_reclaim_lock); |
| 6258 | arc_reclaim_thread_exit = B_TRUE; |
| 6259 | /* |
| 6260 | * The reclaim thread will set arc_reclaim_thread_exit back to |
| 6261 | * B_FALSE when it is finished exiting; we're waiting for that. |
| 6262 | */ |
| 6263 | while (arc_reclaim_thread_exit) { |
| 6264 | cv_signal(&arc_reclaim_thread_cv); |
| 6265 | cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock); |
| 6266 | } |
| 6267 | mutex_exit(&arc_reclaim_lock); |
| 6268 | |
| 6269 | /* Use B_TRUE to ensure *all* buffers are evicted */ |
| 6270 | arc_flush(NULL, B_TRUE); |
| 6271 | |
| 6272 | #ifdef __FreeBSD__ |
| 6273 | mutex_enter(&arc_dnlc_evicts_lock); |
| 6274 | arc_dnlc_evicts_thread_exit = TRUE; |
| 6275 | |
| 6276 | /* |
| 6277 | * The user evicts thread will set arc_user_evicts_thread_exit |
| 6278 | * to FALSE when it is finished exiting; we're waiting for that. |
| 6279 | */ |
| 6280 | while (arc_dnlc_evicts_thread_exit) { |
| 6281 | cv_signal(&arc_dnlc_evicts_cv); |
| 6282 | cv_wait(&arc_dnlc_evicts_cv, &arc_dnlc_evicts_lock); |
| 6283 | } |
| 6284 | mutex_exit(&arc_dnlc_evicts_lock); |
| 6285 | |
| 6286 | mutex_destroy(&arc_dnlc_evicts_lock); |
| 6287 | cv_destroy(&arc_dnlc_evicts_cv); |
| 6288 | #endif |
| 6289 | |
| 6290 | arc_dead = B_TRUE; |
| 6291 | |
| 6292 | if (arc_ksp != NULL) { |
| 6293 | kstat_delete(arc_ksp); |
| 6294 | arc_ksp = NULL; |
| 6295 | } |
| 6296 | |
| 6297 | mutex_destroy(&arc_reclaim_lock); |
| 6298 | cv_destroy(&arc_reclaim_thread_cv); |
| 6299 | cv_destroy(&arc_reclaim_waiters_cv); |
| 6300 | |
| 6301 | arc_state_fini(); |
| 6302 | buf_fini(); |
| 6303 | |
| 6304 | ASSERT0(arc_loaned_bytes); |
| 6305 | |
| 6306 | #ifdef __FreeBSD__ |
| 6307 | #ifdef _KERNEL |
| 6308 | if (arc_event_lowmem != NULL) |
| 6309 | EVENTHANDLER_DEREGISTER(vm_lowmem, arc_event_lowmem); |
| 6310 | #endif |
| 6311 | #endif |
| 6312 | } |
| 6313 | |
| 6314 | /* |
| 6315 | * Level 2 ARC |
| 6316 | * |
| 6317 | * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. |
| 6318 | * It uses dedicated storage devices to hold cached data, which are populated |
| 6319 | * using large infrequent writes. The main role of this cache is to boost |
| 6320 | * the performance of random read workloads. The intended L2ARC devices |
| 6321 | * include short-stroked disks, solid state disks, and other media with |
| 6322 | * substantially faster read latency than disk. |
| 6323 | * |
| 6324 | * +-----------------------+ |
| 6325 | * | ARC | |
| 6326 | * +-----------------------+ |
| 6327 | * | ^ ^ |
| 6328 | * | | | |
| 6329 | * l2arc_feed_thread() arc_read() |
| 6330 | * | | | |
| 6331 | * | l2arc read | |
| 6332 | * V | | |
| 6333 | * +---------------+ | |
| 6334 | * | L2ARC | | |
| 6335 | * +---------------+ | |
| 6336 | * | ^ | |
| 6337 | * l2arc_write() | | |
| 6338 | * | | | |
| 6339 | * V | | |
| 6340 | * +-------+ +-------+ |
| 6341 | * | vdev | | vdev | |
| 6342 | * | cache | | cache | |
| 6343 | * +-------+ +-------+ |
| 6344 | * +=========+ .-----. |
| 6345 | * : L2ARC : |-_____-| |
| 6346 | * : devices : | Disks | |
| 6347 | * +=========+ `-_____-' |
| 6348 | * |
| 6349 | * Read requests are satisfied from the following sources, in order: |
| 6350 | * |
| 6351 | * 1) ARC |
| 6352 | * 2) vdev cache of L2ARC devices |
| 6353 | * 3) L2ARC devices |
| 6354 | * 4) vdev cache of disks |
| 6355 | * 5) disks |
| 6356 | * |
| 6357 | * Some L2ARC device types exhibit extremely slow write performance. |
| 6358 | * To accommodate for this there are some significant differences between |
| 6359 | * the L2ARC and traditional cache design: |
| 6360 | * |
| 6361 | * 1. There is no eviction path from the ARC to the L2ARC. Evictions from |
| 6362 | * the ARC behave as usual, freeing buffers and placing headers on ghost |
| 6363 | * lists. The ARC does not send buffers to the L2ARC during eviction as |
| 6364 | * this would add inflated write latencies for all ARC memory pressure. |
| 6365 | * |
| 6366 | * 2. The L2ARC attempts to cache data from the ARC before it is evicted. |
| 6367 | * It does this by periodically scanning buffers from the eviction-end of |
| 6368 | * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are |
| 6369 | * not already there. It scans until a headroom of buffers is satisfied, |
| 6370 | * which itself is a buffer for ARC eviction. If a compressible buffer is |
| 6371 | * found during scanning and selected for writing to an L2ARC device, we |
| 6372 | * temporarily boost scanning headroom during the next scan cycle to make |
| 6373 | * sure we adapt to compression effects (which might significantly reduce |
| 6374 | * the data volume we write to L2ARC). The thread that does this is |
| 6375 | * l2arc_feed_thread(), illustrated below; example sizes are included to |
| 6376 | * provide a better sense of ratio than this diagram: |
| 6377 | * |
| 6378 | * head --> tail |
| 6379 | * +---------------------+----------+ |
| 6380 | * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC |
| 6381 | * +---------------------+----------+ | o L2ARC eligible |
| 6382 | * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer |
| 6383 | * +---------------------+----------+ | |
| 6384 | * 15.9 Gbytes ^ 32 Mbytes | |
| 6385 | * headroom | |
| 6386 | * l2arc_feed_thread() |
| 6387 | * | |
| 6388 | * l2arc write hand <--[oooo]--' |
| 6389 | * | 8 Mbyte |
| 6390 | * | write max |
| 6391 | * V |
| 6392 | * +==============================+ |
| 6393 | * L2ARC dev |####|#|###|###| |####| ... | |
| 6394 | * +==============================+ |
| 6395 | * 32 Gbytes |
| 6396 | * |
| 6397 | * 3. If an ARC buffer is copied to the L2ARC but then hit instead of |
| 6398 | * evicted, then the L2ARC has cached a buffer much sooner than it probably |
| 6399 | * needed to, potentially wasting L2ARC device bandwidth and storage. It is |
| 6400 | * safe to say that this is an uncommon case, since buffers at the end of |
| 6401 | * the ARC lists have moved there due to inactivity. |
| 6402 | * |
| 6403 | * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, |
| 6404 | * then the L2ARC simply misses copying some buffers. This serves as a |
| 6405 | * pressure valve to prevent heavy read workloads from both stalling the ARC |
| 6406 | * with waits and clogging the L2ARC with writes. This also helps prevent |
| 6407 | * the potential for the L2ARC to churn if it attempts to cache content too |
| 6408 | * quickly, such as during backups of the entire pool. |
| 6409 | * |
| 6410 | * 5. After system boot and before the ARC has filled main memory, there are |
| 6411 | * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru |
| 6412 | * lists can remain mostly static. Instead of searching from tail of these |
| 6413 | * lists as pictured, the l2arc_feed_thread() will search from the list heads |
| 6414 | * for eligible buffers, greatly increasing its chance of finding them. |
| 6415 | * |
| 6416 | * The L2ARC device write speed is also boosted during this time so that |
| 6417 | * the L2ARC warms up faster. Since there have been no ARC evictions yet, |
| 6418 | * there are no L2ARC reads, and no fear of degrading read performance |
| 6419 | * through increased writes. |
| 6420 | * |
| 6421 | * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that |
| 6422 | * the vdev queue can aggregate them into larger and fewer writes. Each |
| 6423 | * device is written to in a rotor fashion, sweeping writes through |
| 6424 | * available space then repeating. |
| 6425 | * |
| 6426 | * 7. The L2ARC does not store dirty content. It never needs to flush |
| 6427 | * write buffers back to disk based storage. |
| 6428 | * |
| 6429 | * 8. If an ARC buffer is written (and dirtied) which also exists in the |
| 6430 | * L2ARC, the now stale L2ARC buffer is immediately dropped. |
| 6431 | * |
| 6432 | * The performance of the L2ARC can be tweaked by a number of tunables, which |
| 6433 | * may be necessary for different workloads: |
| 6434 | * |
| 6435 | * l2arc_write_max max write bytes per interval |
| 6436 | * l2arc_write_boost extra write bytes during device warmup |
| 6437 | * l2arc_noprefetch skip caching prefetched buffers |
| 6438 | * l2arc_headroom number of max device writes to precache |
| 6439 | * l2arc_headroom_boost when we find compressed buffers during ARC |
| 6440 | * scanning, we multiply headroom by this |
| 6441 | * percentage factor for the next scan cycle, |
| 6442 | * since more compressed buffers are likely to |
| 6443 | * be present |
| 6444 | * l2arc_feed_secs seconds between L2ARC writing |
| 6445 | * |
| 6446 | * Tunables may be removed or added as future performance improvements are |
| 6447 | * integrated, and also may become zpool properties. |
| 6448 | * |
| 6449 | * There are three key functions that control how the L2ARC warms up: |
| 6450 | * |
| 6451 | * l2arc_write_eligible() check if a buffer is eligible to cache |
| 6452 | * l2arc_write_size() calculate how much to write |
| 6453 | * l2arc_write_interval() calculate sleep delay between writes |
| 6454 | * |
| 6455 | * These three functions determine what to write, how much, and how quickly |
| 6456 | * to send writes. |
| 6457 | */ |
| 6458 | |
| 6459 | static boolean_t |
| 6460 | l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) |
| 6461 | { |
| 6462 | /* |
| 6463 | * A buffer is *not* eligible for the L2ARC if it: |
| 6464 | * 1. belongs to a different spa. |
| 6465 | * 2. is already cached on the L2ARC. |
| 6466 | * 3. has an I/O in progress (it may be an incomplete read). |
| 6467 | * 4. is flagged not eligible (zfs property). |
| 6468 | */ |
| 6469 | if (hdr->b_spa != spa_guid) { |
| 6470 | ARCSTAT_BUMP(arcstat_l2_write_spa_mismatch); |
| 6471 | return (B_FALSE); |
| 6472 | } |
| 6473 | if (HDR_HAS_L2HDR(hdr)) { |
| 6474 | ARCSTAT_BUMP(arcstat_l2_write_in_l2); |
| 6475 | return (B_FALSE); |
| 6476 | } |
| 6477 | if (HDR_IO_IN_PROGRESS(hdr)) { |
| 6478 | ARCSTAT_BUMP(arcstat_l2_write_hdr_io_in_progress); |
| 6479 | return (B_FALSE); |
| 6480 | } |
| 6481 | if (!HDR_L2CACHE(hdr)) { |
| 6482 | ARCSTAT_BUMP(arcstat_l2_write_not_cacheable); |
| 6483 | return (B_FALSE); |
| 6484 | } |
| 6485 | |
| 6486 | return (B_TRUE); |
| 6487 | } |
| 6488 | |
| 6489 | static uint64_t |
| 6490 | l2arc_write_size(void) |
| 6491 | { |
| 6492 | uint64_t size; |
| 6493 | |
| 6494 | /* |
| 6495 | * Make sure our globals have meaningful values in case the user |
| 6496 | * altered them. |
| 6497 | */ |
| 6498 | size = l2arc_write_max; |
| 6499 | if (size == 0) { |
| 6500 | cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " |
| 6501 | "be greater than zero, resetting it to the default (%d)" , |
| 6502 | L2ARC_WRITE_SIZE); |
| 6503 | size = l2arc_write_max = L2ARC_WRITE_SIZE; |
| 6504 | } |
| 6505 | |
| 6506 | if (arc_warm == B_FALSE) |
| 6507 | size += l2arc_write_boost; |
| 6508 | |
| 6509 | return (size); |
| 6510 | |
| 6511 | } |
| 6512 | |
| 6513 | static clock_t |
| 6514 | l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) |
| 6515 | { |
| 6516 | clock_t interval, next, now; |
| 6517 | |
| 6518 | /* |
| 6519 | * If the ARC lists are busy, increase our write rate; if the |
| 6520 | * lists are stale, idle back. This is achieved by checking |
| 6521 | * how much we previously wrote - if it was more than half of |
| 6522 | * what we wanted, schedule the next write much sooner. |
| 6523 | */ |
| 6524 | if (l2arc_feed_again && wrote > (wanted / 2)) |
| 6525 | interval = (hz * l2arc_feed_min_ms) / 1000; |
| 6526 | else |
| 6527 | interval = hz * l2arc_feed_secs; |
| 6528 | |
| 6529 | now = ddi_get_lbolt(); |
| 6530 | next = MAX(now, MIN(now + interval, began + interval)); |
| 6531 | |
| 6532 | return (next); |
| 6533 | } |
| 6534 | |
| 6535 | /* |
| 6536 | * Cycle through L2ARC devices. This is how L2ARC load balances. |
| 6537 | * If a device is returned, this also returns holding the spa config lock. |
| 6538 | */ |
| 6539 | static l2arc_dev_t * |
| 6540 | l2arc_dev_get_next(void) |
| 6541 | { |
| 6542 | l2arc_dev_t *first, *next = NULL; |
| 6543 | |
| 6544 | /* |
| 6545 | * Lock out the removal of spas (spa_namespace_lock), then removal |
| 6546 | * of cache devices (l2arc_dev_mtx). Once a device has been selected, |
| 6547 | * both locks will be dropped and a spa config lock held instead. |
| 6548 | */ |
| 6549 | mutex_enter(&spa_namespace_lock); |
| 6550 | mutex_enter(&l2arc_dev_mtx); |
| 6551 | |
| 6552 | /* if there are no vdevs, there is nothing to do */ |
| 6553 | if (l2arc_ndev == 0) |
| 6554 | goto out; |
| 6555 | |
| 6556 | first = NULL; |
| 6557 | next = l2arc_dev_last; |
| 6558 | do { |
| 6559 | /* loop around the list looking for a non-faulted vdev */ |
| 6560 | if (next == NULL) { |
| 6561 | next = list_head(l2arc_dev_list); |
| 6562 | } else { |
| 6563 | next = list_next(l2arc_dev_list, next); |
| 6564 | if (next == NULL) |
| 6565 | next = list_head(l2arc_dev_list); |
| 6566 | } |
| 6567 | |
| 6568 | /* if we have come back to the start, bail out */ |
| 6569 | if (first == NULL) |
| 6570 | first = next; |
| 6571 | else if (next == first) |
| 6572 | break; |
| 6573 | |
| 6574 | } while (vdev_is_dead(next->l2ad_vdev)); |
| 6575 | |
| 6576 | /* if we were unable to find any usable vdevs, return NULL */ |
| 6577 | if (vdev_is_dead(next->l2ad_vdev)) |
| 6578 | next = NULL; |
| 6579 | |
| 6580 | l2arc_dev_last = next; |
| 6581 | |
| 6582 | out: |
| 6583 | mutex_exit(&l2arc_dev_mtx); |
| 6584 | |
| 6585 | /* |
| 6586 | * Grab the config lock to prevent the 'next' device from being |
| 6587 | * removed while we are writing to it. |
| 6588 | */ |
| 6589 | if (next != NULL) |
| 6590 | spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); |
| 6591 | mutex_exit(&spa_namespace_lock); |
| 6592 | |
| 6593 | return (next); |
| 6594 | } |
| 6595 | |
| 6596 | /* |
| 6597 | * Free buffers that were tagged for destruction. |
| 6598 | */ |
| 6599 | static void |
| 6600 | l2arc_do_free_on_write() |
| 6601 | { |
| 6602 | list_t *buflist; |
| 6603 | l2arc_data_free_t *df, *df_prev; |
| 6604 | |
| 6605 | mutex_enter(&l2arc_free_on_write_mtx); |
| 6606 | buflist = l2arc_free_on_write; |
| 6607 | |
| 6608 | for (df = list_tail(buflist); df; df = df_prev) { |
| 6609 | df_prev = list_prev(buflist, df); |
| 6610 | ASSERT3P(df->l2df_data, !=, NULL); |
| 6611 | if (df->l2df_type == ARC_BUFC_METADATA) { |
| 6612 | zio_buf_free(df->l2df_data, df->l2df_size); |
| 6613 | } else { |
| 6614 | ASSERT(df->l2df_type == ARC_BUFC_DATA); |
| 6615 | zio_data_buf_free(df->l2df_data, df->l2df_size); |
| 6616 | } |
| 6617 | list_remove(buflist, df); |
| 6618 | kmem_free(df, sizeof (l2arc_data_free_t)); |
| 6619 | } |
| 6620 | |
| 6621 | mutex_exit(&l2arc_free_on_write_mtx); |
| 6622 | } |
| 6623 | |
| 6624 | /* |
| 6625 | * A write to a cache device has completed. Update all headers to allow |
| 6626 | * reads from these buffers to begin. |
| 6627 | */ |
| 6628 | static void |
| 6629 | l2arc_write_done(zio_t *zio) |
| 6630 | { |
| 6631 | l2arc_write_callback_t *cb; |
| 6632 | l2arc_dev_t *dev; |
| 6633 | list_t *buflist; |
| 6634 | arc_buf_hdr_t *head, *hdr, *hdr_prev; |
| 6635 | kmutex_t *hash_lock; |
| 6636 | int64_t bytes_dropped = 0; |
| 6637 | |
| 6638 | cb = zio->io_private; |
| 6639 | ASSERT3P(cb, !=, NULL); |
| 6640 | dev = cb->l2wcb_dev; |
| 6641 | ASSERT3P(dev, !=, NULL); |
| 6642 | head = cb->l2wcb_head; |
| 6643 | ASSERT3P(head, !=, NULL); |
| 6644 | buflist = &dev->l2ad_buflist; |
| 6645 | ASSERT3P(buflist, !=, NULL); |
| 6646 | DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, |
| 6647 | l2arc_write_callback_t *, cb); |
| 6648 | |
| 6649 | if (zio->io_error != 0) |
| 6650 | ARCSTAT_BUMP(arcstat_l2_writes_error); |
| 6651 | |
| 6652 | /* |
| 6653 | * All writes completed, or an error was hit. |
| 6654 | */ |
| 6655 | top: |
| 6656 | mutex_enter(&dev->l2ad_mtx); |
| 6657 | for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) { |
| 6658 | hdr_prev = list_prev(buflist, hdr); |
| 6659 | |
| 6660 | hash_lock = HDR_LOCK(hdr); |
| 6661 | |
| 6662 | /* |
| 6663 | * We cannot use mutex_enter or else we can deadlock |
| 6664 | * with l2arc_write_buffers (due to swapping the order |
| 6665 | * the hash lock and l2ad_mtx are taken). |
| 6666 | */ |
| 6667 | if (!mutex_tryenter(hash_lock)) { |
| 6668 | /* |
| 6669 | * Missed the hash lock. We must retry so we |
| 6670 | * don't leave the ARC_FLAG_L2_WRITING bit set. |
| 6671 | */ |
| 6672 | ARCSTAT_BUMP(arcstat_l2_writes_lock_retry); |
| 6673 | |
| 6674 | /* |
| 6675 | * We don't want to rescan the headers we've |
| 6676 | * already marked as having been written out, so |
| 6677 | * we reinsert the head node so we can pick up |
| 6678 | * where we left off. |
| 6679 | */ |
| 6680 | list_remove(buflist, head); |
| 6681 | list_insert_after(buflist, hdr, head); |
| 6682 | |
| 6683 | mutex_exit(&dev->l2ad_mtx); |
| 6684 | |
| 6685 | /* |
| 6686 | * We wait for the hash lock to become available |
| 6687 | * to try and prevent busy waiting, and increase |
| 6688 | * the chance we'll be able to acquire the lock |
| 6689 | * the next time around. |
| 6690 | */ |
| 6691 | mutex_enter(hash_lock); |
| 6692 | mutex_exit(hash_lock); |
| 6693 | goto top; |
| 6694 | } |
| 6695 | |
| 6696 | /* |
| 6697 | * We could not have been moved into the arc_l2c_only |
| 6698 | * state while in-flight due to our ARC_FLAG_L2_WRITING |
| 6699 | * bit being set. Let's just ensure that's being enforced. |
| 6700 | */ |
| 6701 | ASSERT(HDR_HAS_L1HDR(hdr)); |
| 6702 | |
| 6703 | if (zio->io_error != 0) { |
| 6704 | /* |
| 6705 | * Error - drop L2ARC entry. |
| 6706 | */ |
| 6707 | list_remove(buflist, hdr); |
| 6708 | l2arc_trim(hdr); |
| 6709 | arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); |
| 6710 | |
| 6711 | ARCSTAT_INCR(arcstat_l2_asize, -arc_hdr_size(hdr)); |
| 6712 | ARCSTAT_INCR(arcstat_l2_size, -HDR_GET_LSIZE(hdr)); |
| 6713 | |
| 6714 | bytes_dropped += arc_hdr_size(hdr); |
| 6715 | (void) refcount_remove_many(&dev->l2ad_alloc, |
| 6716 | arc_hdr_size(hdr), hdr); |
| 6717 | } |
| 6718 | |
| 6719 | /* |
| 6720 | * Allow ARC to begin reads and ghost list evictions to |
| 6721 | * this L2ARC entry. |
| 6722 | */ |
| 6723 | arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING); |
| 6724 | |
| 6725 | mutex_exit(hash_lock); |
| 6726 | } |
| 6727 | |
| 6728 | atomic_inc_64(&l2arc_writes_done); |
| 6729 | list_remove(buflist, head); |
| 6730 | ASSERT(!HDR_HAS_L1HDR(head)); |
| 6731 | kmem_cache_free(hdr_l2only_cache, head); |
| 6732 | mutex_exit(&dev->l2ad_mtx); |
| 6733 | |
| 6734 | vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); |
| 6735 | |
| 6736 | l2arc_do_free_on_write(); |
| 6737 | |
| 6738 | kmem_free(cb, sizeof (l2arc_write_callback_t)); |
| 6739 | } |
| 6740 | |
| 6741 | /* |
| 6742 | * A read to a cache device completed. Validate buffer contents before |
| 6743 | * handing over to the regular ARC routines. |
| 6744 | */ |
| 6745 | static void |
| 6746 | l2arc_read_done(zio_t *zio) |
| 6747 | { |
| 6748 | l2arc_read_callback_t *cb; |
| 6749 | arc_buf_hdr_t *hdr; |
| 6750 | kmutex_t *hash_lock; |
| 6751 | boolean_t valid_cksum; |
| 6752 | |
| 6753 | ASSERT3P(zio->io_vd, !=, NULL); |
| 6754 | ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); |
| 6755 | |
| 6756 | spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); |
| 6757 | |
| 6758 | cb = zio->io_private; |
| 6759 | ASSERT3P(cb, !=, NULL); |
| 6760 | hdr = cb->l2rcb_hdr; |
| 6761 | ASSERT3P(hdr, !=, NULL); |
| 6762 | |
| 6763 | hash_lock = HDR_LOCK(hdr); |
| 6764 | mutex_enter(hash_lock); |
| 6765 | ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); |
| 6766 | |
| 6767 | /* |
| 6768 | * If the data was read into a temporary buffer, |
| 6769 | * move it and free the buffer. |
| 6770 | */ |
| 6771 | if (cb->l2rcb_data != NULL) { |
| 6772 | ASSERT3U(arc_hdr_size(hdr), <, zio->io_size); |
| 6773 | if (zio->io_error == 0) { |
| 6774 | bcopy(cb->l2rcb_data, hdr->b_l1hdr.b_pdata, |
| 6775 | arc_hdr_size(hdr)); |
| 6776 | } |
| 6777 | |
| 6778 | /* |
| 6779 | * The following must be done regardless of whether |
| 6780 | * there was an error: |
| 6781 | * - free the temporary buffer |
| 6782 | * - point zio to the real ARC buffer |
| 6783 | * - set zio size accordingly |
| 6784 | * These are required because zio is either re-used for |
| 6785 | * an I/O of the block in the case of the error |
| 6786 | * or the zio is passed to arc_read_done() and it |
| 6787 | * needs real data. |
| 6788 | */ |
| 6789 | zio_data_buf_free(cb->l2rcb_data, zio->io_size); |
| 6790 | zio->io_size = zio->io_orig_size = arc_hdr_size(hdr); |
| 6791 | zio->io_data = zio->io_orig_data = hdr->b_l1hdr.b_pdata; |
| 6792 | } |
| 6793 | |
| 6794 | ASSERT3P(zio->io_data, !=, NULL); |
| 6795 | |
| 6796 | /* |
| 6797 | * Check this survived the L2ARC journey. |
| 6798 | */ |
| 6799 | ASSERT3P(zio->io_data, ==, hdr->b_l1hdr.b_pdata); |
| 6800 | zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ |
| 6801 | zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ |
| 6802 | |
| 6803 | valid_cksum = arc_cksum_is_equal(hdr, zio); |
| 6804 | if (valid_cksum && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { |
| 6805 | mutex_exit(hash_lock); |
| 6806 | zio->io_private = hdr; |
| 6807 | arc_read_done(zio); |
| 6808 | } else { |
| 6809 | mutex_exit(hash_lock); |
| 6810 | /* |
| 6811 | * Buffer didn't survive caching. Increment stats and |
| 6812 | * reissue to the original storage device. |
| 6813 | */ |
| 6814 | if (zio->io_error != 0) { |
| 6815 | ARCSTAT_BUMP(arcstat_l2_io_error); |
| 6816 | } else { |
| 6817 | zio->io_error = SET_ERROR(EIO); |
| 6818 | } |
| 6819 | if (!valid_cksum) |
| 6820 | ARCSTAT_BUMP(arcstat_l2_cksum_bad); |
| 6821 | |
| 6822 | /* |
| 6823 | * If there's no waiter, issue an async i/o to the primary |
| 6824 | * storage now. If there *is* a waiter, the caller must |
| 6825 | * issue the i/o in a context where it's OK to block. |
| 6826 | */ |
| 6827 | if (zio->io_waiter == NULL) { |
| 6828 | zio_t *pio = zio_unique_parent(zio); |
| 6829 | |
| 6830 | ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); |
| 6831 | |
| 6832 | zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp, |
| 6833 | hdr->b_l1hdr.b_pdata, zio->io_size, arc_read_done, |
| 6834 | hdr, zio->io_priority, cb->l2rcb_flags, |
| 6835 | &cb->l2rcb_zb)); |
| 6836 | } |
| 6837 | } |
| 6838 | |
| 6839 | kmem_free(cb, sizeof (l2arc_read_callback_t)); |
| 6840 | } |
| 6841 | |
| 6842 | /* |
| 6843 | * This is the list priority from which the L2ARC will search for pages to |
| 6844 | * cache. This is used within loops (0..3) to cycle through lists in the |
| 6845 | * desired order. This order can have a significant effect on cache |
| 6846 | * performance. |
| 6847 | * |
| 6848 | * Currently the metadata lists are hit first, MFU then MRU, followed by |
| 6849 | * the data lists. This function returns a locked list, and also returns |
| 6850 | * the lock pointer. |
| 6851 | */ |
| 6852 | static multilist_sublist_t * |
| 6853 | l2arc_sublist_lock(int list_num) |
| 6854 | { |
| 6855 | multilist_t *ml = NULL; |
| 6856 | unsigned int idx; |
| 6857 | |
| 6858 | ASSERT(list_num >= 0 && list_num <= 3); |
| 6859 | |
| 6860 | switch (list_num) { |
| 6861 | case 0: |
| 6862 | ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; |
| 6863 | break; |
| 6864 | case 1: |
| 6865 | ml = &arc_mru->arcs_list[ARC_BUFC_METADATA]; |
| 6866 | break; |
| 6867 | case 2: |
| 6868 | ml = &arc_mfu->arcs_list[ARC_BUFC_DATA]; |
| 6869 | break; |
| 6870 | case 3: |
| 6871 | ml = &arc_mru->arcs_list[ARC_BUFC_DATA]; |
| 6872 | break; |
| 6873 | } |
| 6874 | |
| 6875 | /* |
| 6876 | * Return a randomly-selected sublist. This is acceptable |
| 6877 | * because the caller feeds only a little bit of data for each |
| 6878 | * call (8MB). Subsequent calls will result in different |
| 6879 | * sublists being selected. |
| 6880 | */ |
| 6881 | idx = multilist_get_random_index(ml); |
| 6882 | return (multilist_sublist_lock(ml, idx)); |
| 6883 | } |
| 6884 | |
| 6885 | /* |
| 6886 | * Evict buffers from the device write hand to the distance specified in |
| 6887 | * bytes. This distance may span populated buffers, it may span nothing. |
| 6888 | * This is clearing a region on the L2ARC device ready for writing. |
| 6889 | * If the 'all' boolean is set, every buffer is evicted. |
| 6890 | */ |
| 6891 | static void |
| 6892 | l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) |
| 6893 | { |
| 6894 | list_t *buflist; |
| 6895 | arc_buf_hdr_t *hdr, *hdr_prev; |
| 6896 | kmutex_t *hash_lock; |
| 6897 | uint64_t taddr; |
| 6898 | |
| 6899 | buflist = &dev->l2ad_buflist; |
| 6900 | |
| 6901 | if (!all && dev->l2ad_first) { |
| 6902 | /* |
| 6903 | * This is the first sweep through the device. There is |
| 6904 | * nothing to evict. |
| 6905 | */ |
| 6906 | return; |
| 6907 | } |
| 6908 | |
| 6909 | if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { |
| 6910 | /* |
| 6911 | * When nearing the end of the device, evict to the end |
| 6912 | * before the device write hand jumps to the start. |
| 6913 | */ |
| 6914 | taddr = dev->l2ad_end; |
| 6915 | } else { |
| 6916 | taddr = dev->l2ad_hand + distance; |
| 6917 | } |
| 6918 | DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, |
| 6919 | uint64_t, taddr, boolean_t, all); |
| 6920 | |
| 6921 | top: |
| 6922 | mutex_enter(&dev->l2ad_mtx); |
| 6923 | for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) { |
| 6924 | hdr_prev = list_prev(buflist, hdr); |
| 6925 | |
| 6926 | hash_lock = HDR_LOCK(hdr); |
| 6927 | |
| 6928 | /* |
| 6929 | * We cannot use mutex_enter or else we can deadlock |
| 6930 | * with l2arc_write_buffers (due to swapping the order |
| 6931 | * the hash lock and l2ad_mtx are taken). |
| 6932 | */ |
| 6933 | if (!mutex_tryenter(hash_lock)) { |
| 6934 | /* |
| 6935 | * Missed the hash lock. Retry. |
| 6936 | */ |
| 6937 | ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); |
| 6938 | mutex_exit(&dev->l2ad_mtx); |
| 6939 | mutex_enter(hash_lock); |
| 6940 | mutex_exit(hash_lock); |
| 6941 | goto top; |
| 6942 | } |
| 6943 | |
| 6944 | if (HDR_L2_WRITE_HEAD(hdr)) { |
| 6945 | /* |
| 6946 | * We hit a write head node. Leave it for |
| 6947 | * l2arc_write_done(). |
| 6948 | */ |
| 6949 | list_remove(buflist, hdr); |
| 6950 | mutex_exit(hash_lock); |
| 6951 | continue; |
| 6952 | } |
| 6953 | |
| 6954 | if (!all && HDR_HAS_L2HDR(hdr) && |
| 6955 | (hdr->b_l2hdr.b_daddr >= taddr || |
| 6956 | hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) { |
| 6957 | /* |
| 6958 | * We've evicted to the target address, |
| 6959 | * or the end of the device. |
| 6960 | */ |
| 6961 | mutex_exit(hash_lock); |
| 6962 | break; |
| 6963 | } |
| 6964 | |
| 6965 | ASSERT(HDR_HAS_L2HDR(hdr)); |
| 6966 | if (!HDR_HAS_L1HDR(hdr)) { |
| 6967 | ASSERT(!HDR_L2_READING(hdr)); |
| 6968 | /* |
| 6969 | * This doesn't exist in the ARC. Destroy. |
| 6970 | * arc_hdr_destroy() will call list_remove() |
| 6971 | * and decrement arcstat_l2_size. |
| 6972 | */ |
| 6973 | arc_change_state(arc_anon, hdr, hash_lock); |
| 6974 | arc_hdr_destroy(hdr); |
| 6975 | } else { |
| 6976 | ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only); |
| 6977 | ARCSTAT_BUMP(arcstat_l2_evict_l1cached); |
| 6978 | /* |
| 6979 | * Invalidate issued or about to be issued |
| 6980 | * reads, since we may be about to write |
| 6981 | * over this location. |
| 6982 | */ |
| 6983 | if (HDR_L2_READING(hdr)) { |
| 6984 | ARCSTAT_BUMP(arcstat_l2_evict_reading); |
| 6985 | arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED); |
| 6986 | } |
| 6987 | |
| 6988 | /* Ensure this header has finished being written */ |
| 6989 | ASSERT(!HDR_L2_WRITING(hdr)); |
| 6990 | |
| 6991 | arc_hdr_l2hdr_destroy(hdr); |
| 6992 | } |
| 6993 | mutex_exit(hash_lock); |
| 6994 | } |
| 6995 | mutex_exit(&dev->l2ad_mtx); |
| 6996 | } |
| 6997 | |
| 6998 | /* |
| 6999 | * Find and write ARC buffers to the L2ARC device. |
| 7000 | * |
| 7001 | * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid |
| 7002 | * for reading until they have completed writing. |
| 7003 | * The headroom_boost is an in-out parameter used to maintain headroom boost |
| 7004 | * state between calls to this function. |
| 7005 | * |
| 7006 | * Returns the number of bytes actually written (which may be smaller than |
| 7007 | * the delta by which the device hand has changed due to alignment). |
| 7008 | */ |
| 7009 | static uint64_t |
| 7010 | l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) |
| 7011 | { |
| 7012 | arc_buf_hdr_t *hdr, *hdr_prev, *head; |
| 7013 | uint64_t write_asize, write_psize, write_sz, headroom; |
| 7014 | boolean_t full; |
| 7015 | l2arc_write_callback_t *cb; |
| 7016 | zio_t *pio, *wzio; |
| 7017 | uint64_t guid = spa_load_guid(spa); |
| 7018 | int try; |
| 7019 | |
| 7020 | ASSERT3P(dev->l2ad_vdev, !=, NULL); |
| 7021 | |
| 7022 | pio = NULL; |
| 7023 | write_sz = write_asize = write_psize = 0; |
| 7024 | full = B_FALSE; |
| 7025 | head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE); |
| 7026 | arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR); |
| 7027 | |
| 7028 | ARCSTAT_BUMP(arcstat_l2_write_buffer_iter); |
| 7029 | /* |
| 7030 | * Copy buffers for L2ARC writing. |
| 7031 | */ |
| 7032 | for (try = 0; try <= 3; try++) { |
| 7033 | multilist_sublist_t *mls = l2arc_sublist_lock(try); |
| 7034 | uint64_t passed_sz = 0; |
| 7035 | |
| 7036 | ARCSTAT_BUMP(arcstat_l2_write_buffer_list_iter); |
| 7037 | |
| 7038 | /* |
| 7039 | * L2ARC fast warmup. |
| 7040 | * |
| 7041 | * Until the ARC is warm and starts to evict, read from the |
| 7042 | * head of the ARC lists rather than the tail. |
| 7043 | */ |
| 7044 | if (arc_warm == B_FALSE) |
| 7045 | hdr = multilist_sublist_head(mls); |
| 7046 | else |
| 7047 | hdr = multilist_sublist_tail(mls); |
| 7048 | if (hdr == NULL) |
| 7049 | ARCSTAT_BUMP(arcstat_l2_write_buffer_list_null_iter); |
| 7050 | |
| 7051 | headroom = target_sz * l2arc_headroom; |
| 7052 | if (zfs_compressed_arc_enabled) |
| 7053 | headroom = (headroom * l2arc_headroom_boost) / 100; |
| 7054 | |
| 7055 | for (; hdr; hdr = hdr_prev) { |
| 7056 | kmutex_t *hash_lock; |
| 7057 | |
| 7058 | if (arc_warm == B_FALSE) |
| 7059 | hdr_prev = multilist_sublist_next(mls, hdr); |
| 7060 | else |
| 7061 | hdr_prev = multilist_sublist_prev(mls, hdr); |
| 7062 | ARCSTAT_INCR(arcstat_l2_write_buffer_bytes_scanned, |
| 7063 | HDR_GET_LSIZE(hdr)); |
| 7064 | |
| 7065 | hash_lock = HDR_LOCK(hdr); |
| 7066 | if (!mutex_tryenter(hash_lock)) { |
| 7067 | ARCSTAT_BUMP(arcstat_l2_write_trylock_fail); |
| 7068 | /* |
| 7069 | * Skip this buffer rather than waiting. |
| 7070 | */ |
| 7071 | continue; |
| 7072 | } |
| 7073 | |
| 7074 | passed_sz += HDR_GET_LSIZE(hdr); |
| 7075 | if (passed_sz > headroom) { |
| 7076 | /* |
| 7077 | * Searched too far. |
| 7078 | */ |
| 7079 | mutex_exit(hash_lock); |
| 7080 | ARCSTAT_BUMP(arcstat_l2_write_passed_headroom); |
| 7081 | break; |
| 7082 | } |
| 7083 | |
| 7084 | if (!l2arc_write_eligible(guid, hdr)) { |
| 7085 | mutex_exit(hash_lock); |
| 7086 | continue; |
| 7087 | } |
| 7088 | |
| 7089 | /* |
| 7090 | * We rely on the L1 portion of the header below, so |
| 7091 | * it's invalid for this header to have been evicted out |
| 7092 | * of the ghost cache, prior to being written out. The |
| 7093 | * ARC_FLAG_L2_WRITING bit ensures this won't happen. |
| 7094 | */ |
| 7095 | ASSERT(HDR_HAS_L1HDR(hdr)); |
| 7096 | |
| 7097 | ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); |
| 7098 | ASSERT3P(hdr->b_l1hdr.b_pdata, !=, NULL); |
| 7099 | ASSERT3U(arc_hdr_size(hdr), >, 0); |
| 7100 | uint64_t size = arc_hdr_size(hdr); |
| 7101 | uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, |
| 7102 | size); |
| 7103 | |
| 7104 | if ((write_psize + asize) > target_sz) { |
| 7105 | full = B_TRUE; |
| 7106 | mutex_exit(hash_lock); |
| 7107 | ARCSTAT_BUMP(arcstat_l2_write_full); |
| 7108 | break; |
| 7109 | } |
| 7110 | |
| 7111 | if (pio == NULL) { |
| 7112 | /* |
| 7113 | * Insert a dummy header on the buflist so |
| 7114 | * l2arc_write_done() can find where the |
| 7115 | * write buffers begin without searching. |
| 7116 | */ |
| 7117 | mutex_enter(&dev->l2ad_mtx); |
| 7118 | list_insert_head(&dev->l2ad_buflist, head); |
| 7119 | mutex_exit(&dev->l2ad_mtx); |
| 7120 | |
| 7121 | cb = kmem_alloc( |
| 7122 | sizeof (l2arc_write_callback_t), KM_SLEEP); |
| 7123 | cb->l2wcb_dev = dev; |
| 7124 | cb->l2wcb_head = head; |
| 7125 | pio = zio_root(spa, l2arc_write_done, cb, |
| 7126 | ZIO_FLAG_CANFAIL); |
| 7127 | ARCSTAT_BUMP(arcstat_l2_write_pios); |
| 7128 | } |
| 7129 | |
| 7130 | hdr->b_l2hdr.b_dev = dev; |
| 7131 | hdr->b_l2hdr.b_daddr = dev->l2ad_hand; |
| 7132 | arc_hdr_set_flags(hdr, |
| 7133 | ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR); |
| 7134 | |
| 7135 | mutex_enter(&dev->l2ad_mtx); |
| 7136 | list_insert_head(&dev->l2ad_buflist, hdr); |
| 7137 | mutex_exit(&dev->l2ad_mtx); |
| 7138 | |
| 7139 | (void) refcount_add_many(&dev->l2ad_alloc, size, hdr); |
| 7140 | |
| 7141 | /* |
| 7142 | * Normally the L2ARC can use the hdr's data, but if |
| 7143 | * we're sharing data between the hdr and one of its |
| 7144 | * bufs, L2ARC needs its own copy of the data so that |
| 7145 | * the ZIO below can't race with the buf consumer. To |
| 7146 | * ensure that this copy will be available for the |
| 7147 | * lifetime of the ZIO and be cleaned up afterwards, we |
| 7148 | * add it to the l2arc_free_on_write queue. |
| 7149 | */ |
| 7150 | void *to_write; |
| 7151 | if (!HDR_SHARED_DATA(hdr) && size == asize) { |
| 7152 | to_write = hdr->b_l1hdr.b_pdata; |
| 7153 | } else { |
| 7154 | arc_buf_contents_t type = arc_buf_type(hdr); |
| 7155 | if (type == ARC_BUFC_METADATA) { |
| 7156 | to_write = zio_buf_alloc(asize); |
| 7157 | } else { |
| 7158 | ASSERT3U(type, ==, ARC_BUFC_DATA); |
| 7159 | to_write = zio_data_buf_alloc(asize); |
| 7160 | } |
| 7161 | |
| 7162 | bcopy(hdr->b_l1hdr.b_pdata, to_write, size); |
| 7163 | if (asize != size) |
| 7164 | bzero(to_write + size, asize - size); |
| 7165 | l2arc_free_data_on_write(to_write, asize, type); |
| 7166 | } |
| 7167 | wzio = zio_write_phys(pio, dev->l2ad_vdev, |
| 7168 | hdr->b_l2hdr.b_daddr, asize, to_write, |
| 7169 | ZIO_CHECKSUM_OFF, NULL, hdr, |
| 7170 | ZIO_PRIORITY_ASYNC_WRITE, |
| 7171 | ZIO_FLAG_CANFAIL, B_FALSE); |
| 7172 | |
| 7173 | write_sz += HDR_GET_LSIZE(hdr); |
| 7174 | DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, |
| 7175 | zio_t *, wzio); |
| 7176 | |
| 7177 | write_asize += size; |
| 7178 | write_psize += asize; |
| 7179 | dev->l2ad_hand += asize; |
| 7180 | |
| 7181 | mutex_exit(hash_lock); |
| 7182 | |
| 7183 | (void) zio_nowait(wzio); |
| 7184 | } |
| 7185 | |
| 7186 | multilist_sublist_unlock(mls); |
| 7187 | |
| 7188 | if (full == B_TRUE) |
| 7189 | break; |
| 7190 | } |
| 7191 | |
| 7192 | /* No buffers selected for writing? */ |
| 7193 | if (pio == NULL) { |
| 7194 | ASSERT0(write_sz); |
| 7195 | ASSERT(!HDR_HAS_L1HDR(head)); |
| 7196 | kmem_cache_free(hdr_l2only_cache, head); |
| 7197 | return (0); |
| 7198 | } |
| 7199 | |
| 7200 | ASSERT3U(write_psize, <=, target_sz); |
| 7201 | ARCSTAT_BUMP(arcstat_l2_writes_sent); |
| 7202 | ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize); |
| 7203 | ARCSTAT_INCR(arcstat_l2_size, write_sz); |
| 7204 | ARCSTAT_INCR(arcstat_l2_asize, write_asize); |
| 7205 | vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0); |
| 7206 | |
| 7207 | /* |
| 7208 | * Bump device hand to the device start if it is approaching the end. |
| 7209 | * l2arc_evict() will already have evicted ahead for this case. |
| 7210 | */ |
| 7211 | if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { |
| 7212 | dev->l2ad_hand = dev->l2ad_start; |
| 7213 | dev->l2ad_first = B_FALSE; |
| 7214 | } |
| 7215 | |
| 7216 | dev->l2ad_writing = B_TRUE; |
| 7217 | (void) zio_wait(pio); |
| 7218 | dev->l2ad_writing = B_FALSE; |
| 7219 | |
| 7220 | return (write_asize); |
| 7221 | } |
| 7222 | |
| 7223 | /* |
| 7224 | * This thread feeds the L2ARC at regular intervals. This is the beating |
| 7225 | * heart of the L2ARC. |
| 7226 | */ |
| 7227 | static void |
| 7228 | l2arc_feed_thread(void *dummy __unused) |
| 7229 | { |
| 7230 | callb_cpr_t cpr; |
| 7231 | l2arc_dev_t *dev; |
| 7232 | spa_t *spa; |
| 7233 | uint64_t size, wrote; |
| 7234 | clock_t begin, next = ddi_get_lbolt() + hz; |
| 7235 | |
| 7236 | CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); |
| 7237 | |
| 7238 | mutex_enter(&l2arc_feed_thr_lock); |
| 7239 | |
| 7240 | while (l2arc_thread_exit == 0) { |
| 7241 | CALLB_CPR_SAFE_BEGIN(&cpr); |
| 7242 | (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, |
| 7243 | next - ddi_get_lbolt()); |
| 7244 | CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); |
| 7245 | next = ddi_get_lbolt() + hz; |
| 7246 | |
| 7247 | /* |
| 7248 | * Quick check for L2ARC devices. |
| 7249 | */ |
| 7250 | mutex_enter(&l2arc_dev_mtx); |
| 7251 | if (l2arc_ndev == 0) { |
| 7252 | mutex_exit(&l2arc_dev_mtx); |
| 7253 | continue; |
| 7254 | } |
| 7255 | mutex_exit(&l2arc_dev_mtx); |
| 7256 | begin = ddi_get_lbolt(); |
| 7257 | |
| 7258 | /* |
| 7259 | * This selects the next l2arc device to write to, and in |
| 7260 | * doing so the next spa to feed from: dev->l2ad_spa. This |
| 7261 | * will return NULL if there are now no l2arc devices or if |
| 7262 | * they are all faulted. |
| 7263 | * |
| 7264 | * If a device is returned, its spa's config lock is also |
| 7265 | * held to prevent device removal. l2arc_dev_get_next() |
| 7266 | * will grab and release l2arc_dev_mtx. |
| 7267 | */ |
| 7268 | if ((dev = l2arc_dev_get_next()) == NULL) |
| 7269 | continue; |
| 7270 | |
| 7271 | spa = dev->l2ad_spa; |
| 7272 | ASSERT3P(spa, !=, NULL); |
| 7273 | |
| 7274 | /* |
| 7275 | * If the pool is read-only then force the feed thread to |
| 7276 | * sleep a little longer. |
| 7277 | */ |
| 7278 | if (!spa_writeable(spa)) { |
| 7279 | next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; |
| 7280 | spa_config_exit(spa, SCL_L2ARC, dev); |
| 7281 | continue; |
| 7282 | } |
| 7283 | |
| 7284 | /* |
| 7285 | * Avoid contributing to memory pressure. |
| 7286 | */ |
| 7287 | if (arc_reclaim_needed()) { |
| 7288 | ARCSTAT_BUMP(arcstat_l2_abort_lowmem); |
| 7289 | spa_config_exit(spa, SCL_L2ARC, dev); |
| 7290 | continue; |
| 7291 | } |
| 7292 | |
| 7293 | ARCSTAT_BUMP(arcstat_l2_feeds); |
| 7294 | |
| 7295 | size = l2arc_write_size(); |
| 7296 | |
| 7297 | /* |
| 7298 | * Evict L2ARC buffers that will be overwritten. |
| 7299 | */ |
| 7300 | l2arc_evict(dev, size, B_FALSE); |
| 7301 | |
| 7302 | /* |
| 7303 | * Write ARC buffers. |
| 7304 | */ |
| 7305 | wrote = l2arc_write_buffers(spa, dev, size); |
| 7306 | |
| 7307 | /* |
| 7308 | * Calculate interval between writes. |
| 7309 | */ |
| 7310 | next = l2arc_write_interval(begin, size, wrote); |
| 7311 | spa_config_exit(spa, SCL_L2ARC, dev); |
| 7312 | } |
| 7313 | |
| 7314 | l2arc_thread_exit = 0; |
| 7315 | cv_broadcast(&l2arc_feed_thr_cv); |
| 7316 | CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ |
| 7317 | thread_exit(); |
| 7318 | } |
| 7319 | |
| 7320 | boolean_t |
| 7321 | l2arc_vdev_present(vdev_t *vd) |
| 7322 | { |
| 7323 | l2arc_dev_t *dev; |
| 7324 | |
| 7325 | mutex_enter(&l2arc_dev_mtx); |
| 7326 | for (dev = list_head(l2arc_dev_list); dev != NULL; |
| 7327 | dev = list_next(l2arc_dev_list, dev)) { |
| 7328 | if (dev->l2ad_vdev == vd) |
| 7329 | break; |
| 7330 | } |
| 7331 | mutex_exit(&l2arc_dev_mtx); |
| 7332 | |
| 7333 | return (dev != NULL); |
| 7334 | } |
| 7335 | |
| 7336 | /* |
| 7337 | * Add a vdev for use by the L2ARC. By this point the spa has already |
| 7338 | * validated the vdev and opened it. |
| 7339 | */ |
| 7340 | void |
| 7341 | l2arc_add_vdev(spa_t *spa, vdev_t *vd) |
| 7342 | { |
| 7343 | l2arc_dev_t *adddev; |
| 7344 | |
| 7345 | ASSERT(!l2arc_vdev_present(vd)); |
| 7346 | |
| 7347 | vdev_ashift_optimize(vd); |
| 7348 | |
| 7349 | /* |
| 7350 | * Create a new l2arc device entry. |
| 7351 | */ |
| 7352 | adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); |
| 7353 | adddev->l2ad_spa = spa; |
| 7354 | adddev->l2ad_vdev = vd; |
| 7355 | adddev->l2ad_start = VDEV_LABEL_START_SIZE; |
| 7356 | adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); |
| 7357 | adddev->l2ad_hand = adddev->l2ad_start; |
| 7358 | adddev->l2ad_first = B_TRUE; |
| 7359 | adddev->l2ad_writing = B_FALSE; |
| 7360 | |
| 7361 | mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL); |
| 7362 | /* |
| 7363 | * This is a list of all ARC buffers that are still valid on the |
| 7364 | * device. |
| 7365 | */ |
| 7366 | list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), |
| 7367 | offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node)); |
| 7368 | |
| 7369 | vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); |
| 7370 | refcount_create(&adddev->l2ad_alloc); |
| 7371 | |
| 7372 | /* |
| 7373 | * Add device to global list |
| 7374 | */ |
| 7375 | mutex_enter(&l2arc_dev_mtx); |
| 7376 | list_insert_head(l2arc_dev_list, adddev); |
| 7377 | atomic_inc_64(&l2arc_ndev); |
| 7378 | mutex_exit(&l2arc_dev_mtx); |
| 7379 | } |
| 7380 | |
| 7381 | /* |
| 7382 | * Remove a vdev from the L2ARC. |
| 7383 | */ |
| 7384 | void |
| 7385 | l2arc_remove_vdev(vdev_t *vd) |
| 7386 | { |
| 7387 | l2arc_dev_t *dev, *nextdev, *remdev = NULL; |
| 7388 | |
| 7389 | /* |
| 7390 | * Find the device by vdev |
| 7391 | */ |
| 7392 | mutex_enter(&l2arc_dev_mtx); |
| 7393 | for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { |
| 7394 | nextdev = list_next(l2arc_dev_list, dev); |
| 7395 | if (vd == dev->l2ad_vdev) { |
| 7396 | remdev = dev; |
| 7397 | break; |
| 7398 | } |
| 7399 | } |
| 7400 | ASSERT3P(remdev, !=, NULL); |
| 7401 | |
| 7402 | /* |
| 7403 | * Remove device from global list |
| 7404 | */ |
| 7405 | list_remove(l2arc_dev_list, remdev); |
| 7406 | l2arc_dev_last = NULL; /* may have been invalidated */ |
| 7407 | atomic_dec_64(&l2arc_ndev); |
| 7408 | mutex_exit(&l2arc_dev_mtx); |
| 7409 | |
| 7410 | /* |
| 7411 | * Clear all buflists and ARC references. L2ARC device flush. |
| 7412 | */ |
| 7413 | l2arc_evict(remdev, 0, B_TRUE); |
| 7414 | list_destroy(&remdev->l2ad_buflist); |
| 7415 | mutex_destroy(&remdev->l2ad_mtx); |
| 7416 | refcount_destroy(&remdev->l2ad_alloc); |
| 7417 | kmem_free(remdev, sizeof (l2arc_dev_t)); |
| 7418 | } |
| 7419 | |
| 7420 | void |
| 7421 | l2arc_init(void) |
| 7422 | { |
| 7423 | l2arc_thread_exit = 0; |
| 7424 | l2arc_ndev = 0; |
| 7425 | l2arc_writes_sent = 0; |
| 7426 | l2arc_writes_done = 0; |
| 7427 | |
| 7428 | mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); |
| 7429 | cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); |
| 7430 | mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); |
| 7431 | mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); |
| 7432 | |
| 7433 | l2arc_dev_list = &L2ARC_dev_list; |
| 7434 | l2arc_free_on_write = &L2ARC_free_on_write; |
| 7435 | list_create(l2arc_dev_list, sizeof (l2arc_dev_t), |
| 7436 | offsetof(l2arc_dev_t, l2ad_node)); |
| 7437 | list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), |
| 7438 | offsetof(l2arc_data_free_t, l2df_list_node)); |
| 7439 | } |
| 7440 | |
| 7441 | void |
| 7442 | l2arc_fini(void) |
| 7443 | { |
| 7444 | /* |
| 7445 | * This is called from dmu_fini(), which is called from spa_fini(); |
| 7446 | * Because of this, we can assume that all l2arc devices have |
| 7447 | * already been removed when the pools themselves were removed. |
| 7448 | */ |
| 7449 | |
| 7450 | l2arc_do_free_on_write(); |
| 7451 | |
| 7452 | mutex_destroy(&l2arc_feed_thr_lock); |
| 7453 | cv_destroy(&l2arc_feed_thr_cv); |
| 7454 | mutex_destroy(&l2arc_dev_mtx); |
| 7455 | mutex_destroy(&l2arc_free_on_write_mtx); |
| 7456 | |
| 7457 | list_destroy(l2arc_dev_list); |
| 7458 | list_destroy(l2arc_free_on_write); |
| 7459 | } |
| 7460 | |
| 7461 | void |
| 7462 | l2arc_start(void) |
| 7463 | { |
| 7464 | if (!(spa_mode_global & FWRITE)) |
| 7465 | return; |
| 7466 | |
| 7467 | (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, |
| 7468 | TS_RUN, minclsyspri); |
| 7469 | } |
| 7470 | |
| 7471 | void |
| 7472 | l2arc_stop(void) |
| 7473 | { |
| 7474 | if (!(spa_mode_global & FWRITE)) |
| 7475 | return; |
| 7476 | |
| 7477 | mutex_enter(&l2arc_feed_thr_lock); |
| 7478 | cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ |
| 7479 | l2arc_thread_exit = 1; |
| 7480 | while (l2arc_thread_exit != 0) |
| 7481 | cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); |
| 7482 | mutex_exit(&l2arc_feed_thr_lock); |
| 7483 | } |
| 7484 | |