| 1 | /* |
| 2 | * CDDL HEADER START |
| 3 | * |
| 4 | * The contents of this file are subject to the terms of the |
| 5 | * Common Development and Distribution License (the "License"). |
| 6 | * You may not use this file except in compliance with the License. |
| 7 | * |
| 8 | * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE |
| 9 | * or http://www.opensolaris.org/os/licensing. |
| 10 | * See the License for the specific language governing permissions |
| 11 | * and limitations under the License. |
| 12 | * |
| 13 | * When distributing Covered Code, include this CDDL HEADER in each |
| 14 | * file and include the License file at usr/src/OPENSOLARIS.LICENSE. |
| 15 | * If applicable, add the following below this CDDL HEADER, with the |
| 16 | * fields enclosed by brackets "[]" replaced with your own identifying |
| 17 | * information: Portions Copyright [yyyy] [name of copyright owner] |
| 18 | * |
| 19 | * CDDL HEADER END |
| 20 | */ |
| 21 | |
| 22 | /* |
| 23 | * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. |
| 24 | * Copyright (c) 2012, 2015 by Delphix. All rights reserved. |
| 25 | * Copyright 2015 RackTop Systems. |
| 26 | * Copyright 2016 Nexenta Systems, Inc. |
| 27 | */ |
| 28 | |
| 29 | /* |
| 30 | * Pool import support functions. |
| 31 | * |
| 32 | * To import a pool, we rely on reading the configuration information from the |
| 33 | * ZFS label of each device. If we successfully read the label, then we |
| 34 | * organize the configuration information in the following hierarchy: |
| 35 | * |
| 36 | * pool guid -> toplevel vdev guid -> label txg |
| 37 | * |
| 38 | * Duplicate entries matching this same tuple will be discarded. Once we have |
| 39 | * examined every device, we pick the best label txg config for each toplevel |
| 40 | * vdev. We then arrange these toplevel vdevs into a complete pool config, and |
| 41 | * update any paths that have changed. Finally, we attempt to import the pool |
| 42 | * using our derived config, and record the results. |
| 43 | */ |
| 44 | |
| 45 | #include <ctype.h> |
| 46 | #include <devid.h> |
| 47 | #include <dirent.h> |
| 48 | #include <errno.h> |
| 49 | #include <libintl.h> |
| 50 | #include <stddef.h> |
| 51 | #include <stdlib.h> |
| 52 | #include <string.h> |
| 53 | #include <sys/stat.h> |
| 54 | #include <unistd.h> |
| 55 | #include <fcntl.h> |
| 56 | #include <thread_pool.h> |
| 57 | #ifdef __FreeBSD__ |
| 58 | #include <libgeom.h> |
| 59 | #endif |
| 60 | #ifdef __NetBSD__ |
| 61 | #include <util.h> |
| 62 | static int native_ioctl(int fd, unsigned long cmd, void *arg); |
| 63 | #endif |
| 64 | |
| 65 | #include <sys/vdev_impl.h> |
| 66 | |
| 67 | #include "libzfs.h" |
| 68 | #include "libzfs_impl.h" |
| 69 | |
| 70 | /* |
| 71 | * Intermediate structures used to gather configuration information. |
| 72 | */ |
| 73 | typedef struct config_entry { |
| 74 | uint64_t ce_txg; |
| 75 | nvlist_t *ce_config; |
| 76 | struct config_entry *ce_next; |
| 77 | } config_entry_t; |
| 78 | |
| 79 | typedef struct vdev_entry { |
| 80 | uint64_t ve_guid; |
| 81 | config_entry_t *ve_configs; |
| 82 | struct vdev_entry *ve_next; |
| 83 | } vdev_entry_t; |
| 84 | |
| 85 | typedef struct pool_entry { |
| 86 | uint64_t pe_guid; |
| 87 | vdev_entry_t *pe_vdevs; |
| 88 | struct pool_entry *pe_next; |
| 89 | } pool_entry_t; |
| 90 | |
| 91 | typedef struct name_entry { |
| 92 | char *ne_name; |
| 93 | uint64_t ne_guid; |
| 94 | struct name_entry *ne_next; |
| 95 | } name_entry_t; |
| 96 | |
| 97 | typedef struct pool_list { |
| 98 | pool_entry_t *pools; |
| 99 | name_entry_t *names; |
| 100 | } pool_list_t; |
| 101 | |
| 102 | static char * |
| 103 | get_devid(const char *path) |
| 104 | { |
| 105 | #ifdef have_devid |
| 106 | int fd; |
| 107 | ddi_devid_t devid; |
| 108 | char *minor, *ret; |
| 109 | |
| 110 | if ((fd = open(path, O_RDONLY)) < 0) |
| 111 | return (NULL); |
| 112 | |
| 113 | minor = NULL; |
| 114 | ret = NULL; |
| 115 | if (devid_get(fd, &devid) == 0) { |
| 116 | if (devid_get_minor_name(fd, &minor) == 0) |
| 117 | ret = devid_str_encode(devid, minor); |
| 118 | if (minor != NULL) |
| 119 | devid_str_free(minor); |
| 120 | devid_free(devid); |
| 121 | } |
| 122 | (void) close(fd); |
| 123 | |
| 124 | return (ret); |
| 125 | #else |
| 126 | return (NULL); |
| 127 | #endif |
| 128 | } |
| 129 | |
| 130 | |
| 131 | /* |
| 132 | * Go through and fix up any path and/or devid information for the given vdev |
| 133 | * configuration. |
| 134 | */ |
| 135 | static int |
| 136 | fix_paths(nvlist_t *nv, name_entry_t *names) |
| 137 | { |
| 138 | nvlist_t **child; |
| 139 | uint_t c, children; |
| 140 | uint64_t guid; |
| 141 | name_entry_t *ne, *best; |
| 142 | char *path, *devid; |
| 143 | int matched; |
| 144 | |
| 145 | if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, |
| 146 | &child, &children) == 0) { |
| 147 | for (c = 0; c < children; c++) |
| 148 | if (fix_paths(child[c], names) != 0) |
| 149 | return (-1); |
| 150 | return (0); |
| 151 | } |
| 152 | |
| 153 | /* |
| 154 | * This is a leaf (file or disk) vdev. In either case, go through |
| 155 | * the name list and see if we find a matching guid. If so, replace |
| 156 | * the path and see if we can calculate a new devid. |
| 157 | * |
| 158 | * There may be multiple names associated with a particular guid, in |
| 159 | * which case we have overlapping slices or multiple paths to the same |
| 160 | * disk. If this is the case, then we want to pick the path that is |
| 161 | * the most similar to the original, where "most similar" is the number |
| 162 | * of matching characters starting from the end of the path. This will |
| 163 | * preserve slice numbers even if the disks have been reorganized, and |
| 164 | * will also catch preferred disk names if multiple paths exist. |
| 165 | */ |
| 166 | verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0); |
| 167 | if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0) |
| 168 | path = NULL; |
| 169 | |
| 170 | matched = 0; |
| 171 | best = NULL; |
| 172 | for (ne = names; ne != NULL; ne = ne->ne_next) { |
| 173 | if (ne->ne_guid == guid) { |
| 174 | const char *src, *dst; |
| 175 | int count; |
| 176 | |
| 177 | if (path == NULL) { |
| 178 | best = ne; |
| 179 | break; |
| 180 | } |
| 181 | |
| 182 | src = ne->ne_name + strlen(ne->ne_name) - 1; |
| 183 | dst = path + strlen(path) - 1; |
| 184 | for (count = 0; src >= ne->ne_name && dst >= path; |
| 185 | src--, dst--, count++) |
| 186 | if (*src != *dst) |
| 187 | break; |
| 188 | |
| 189 | /* |
| 190 | * At this point, 'count' is the number of characters |
| 191 | * matched from the end. |
| 192 | */ |
| 193 | if (count > matched || best == NULL) { |
| 194 | best = ne; |
| 195 | matched = count; |
| 196 | } |
| 197 | } |
| 198 | } |
| 199 | |
| 200 | if (best == NULL) |
| 201 | return (0); |
| 202 | |
| 203 | if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0) |
| 204 | return (-1); |
| 205 | |
| 206 | if ((devid = get_devid(best->ne_name)) == NULL) { |
| 207 | (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID); |
| 208 | } else { |
| 209 | if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) { |
| 210 | devid_str_free(devid); |
| 211 | return (-1); |
| 212 | } |
| 213 | devid_str_free(devid); |
| 214 | } |
| 215 | |
| 216 | return (0); |
| 217 | } |
| 218 | |
| 219 | /* |
| 220 | * Add the given configuration to the list of known devices. |
| 221 | */ |
| 222 | static int |
| 223 | add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path, |
| 224 | nvlist_t *config) |
| 225 | { |
| 226 | uint64_t pool_guid, vdev_guid, top_guid, txg, state; |
| 227 | pool_entry_t *pe; |
| 228 | vdev_entry_t *ve; |
| 229 | config_entry_t *ce; |
| 230 | name_entry_t *ne; |
| 231 | |
| 232 | /* |
| 233 | * If this is a hot spare not currently in use or level 2 cache |
| 234 | * device, add it to the list of names to translate, but don't do |
| 235 | * anything else. |
| 236 | */ |
| 237 | if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, |
| 238 | &state) == 0 && |
| 239 | (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) && |
| 240 | nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) { |
| 241 | if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) |
| 242 | return (-1); |
| 243 | |
| 244 | if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { |
| 245 | free(ne); |
| 246 | return (-1); |
| 247 | } |
| 248 | ne->ne_guid = vdev_guid; |
| 249 | ne->ne_next = pl->names; |
| 250 | pl->names = ne; |
| 251 | return (0); |
| 252 | } |
| 253 | |
| 254 | /* |
| 255 | * If we have a valid config but cannot read any of these fields, then |
| 256 | * it means we have a half-initialized label. In vdev_label_init() |
| 257 | * we write a label with txg == 0 so that we can identify the device |
| 258 | * in case the user refers to the same disk later on. If we fail to |
| 259 | * create the pool, we'll be left with a label in this state |
| 260 | * which should not be considered part of a valid pool. |
| 261 | */ |
| 262 | if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, |
| 263 | &pool_guid) != 0 || |
| 264 | nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, |
| 265 | &vdev_guid) != 0 || |
| 266 | nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID, |
| 267 | &top_guid) != 0 || |
| 268 | nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, |
| 269 | &txg) != 0 || txg == 0) { |
| 270 | nvlist_free(config); |
| 271 | return (0); |
| 272 | } |
| 273 | |
| 274 | /* |
| 275 | * First, see if we know about this pool. If not, then add it to the |
| 276 | * list of known pools. |
| 277 | */ |
| 278 | for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { |
| 279 | if (pe->pe_guid == pool_guid) |
| 280 | break; |
| 281 | } |
| 282 | |
| 283 | if (pe == NULL) { |
| 284 | if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) { |
| 285 | nvlist_free(config); |
| 286 | return (-1); |
| 287 | } |
| 288 | pe->pe_guid = pool_guid; |
| 289 | pe->pe_next = pl->pools; |
| 290 | pl->pools = pe; |
| 291 | } |
| 292 | |
| 293 | /* |
| 294 | * Second, see if we know about this toplevel vdev. Add it if its |
| 295 | * missing. |
| 296 | */ |
| 297 | for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { |
| 298 | if (ve->ve_guid == top_guid) |
| 299 | break; |
| 300 | } |
| 301 | |
| 302 | if (ve == NULL) { |
| 303 | if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) { |
| 304 | nvlist_free(config); |
| 305 | return (-1); |
| 306 | } |
| 307 | ve->ve_guid = top_guid; |
| 308 | ve->ve_next = pe->pe_vdevs; |
| 309 | pe->pe_vdevs = ve; |
| 310 | } |
| 311 | |
| 312 | /* |
| 313 | * Third, see if we have a config with a matching transaction group. If |
| 314 | * so, then we do nothing. Otherwise, add it to the list of known |
| 315 | * configs. |
| 316 | */ |
| 317 | for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) { |
| 318 | if (ce->ce_txg == txg) |
| 319 | break; |
| 320 | } |
| 321 | |
| 322 | if (ce == NULL) { |
| 323 | if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) { |
| 324 | nvlist_free(config); |
| 325 | return (-1); |
| 326 | } |
| 327 | ce->ce_txg = txg; |
| 328 | ce->ce_config = config; |
| 329 | ce->ce_next = ve->ve_configs; |
| 330 | ve->ve_configs = ce; |
| 331 | } else { |
| 332 | nvlist_free(config); |
| 333 | } |
| 334 | |
| 335 | /* |
| 336 | * At this point we've successfully added our config to the list of |
| 337 | * known configs. The last thing to do is add the vdev guid -> path |
| 338 | * mappings so that we can fix up the configuration as necessary before |
| 339 | * doing the import. |
| 340 | */ |
| 341 | if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) |
| 342 | return (-1); |
| 343 | |
| 344 | if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { |
| 345 | free(ne); |
| 346 | return (-1); |
| 347 | } |
| 348 | |
| 349 | ne->ne_guid = vdev_guid; |
| 350 | ne->ne_next = pl->names; |
| 351 | pl->names = ne; |
| 352 | |
| 353 | return (0); |
| 354 | } |
| 355 | |
| 356 | /* |
| 357 | * Returns true if the named pool matches the given GUID. |
| 358 | */ |
| 359 | static int |
| 360 | pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid, |
| 361 | boolean_t *isactive) |
| 362 | { |
| 363 | zpool_handle_t *zhp; |
| 364 | uint64_t theguid; |
| 365 | |
| 366 | if (zpool_open_silent(hdl, name, &zhp) != 0) |
| 367 | return (-1); |
| 368 | |
| 369 | if (zhp == NULL) { |
| 370 | *isactive = B_FALSE; |
| 371 | return (0); |
| 372 | } |
| 373 | |
| 374 | verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID, |
| 375 | &theguid) == 0); |
| 376 | |
| 377 | zpool_close(zhp); |
| 378 | |
| 379 | *isactive = (theguid == guid); |
| 380 | return (0); |
| 381 | } |
| 382 | |
| 383 | static nvlist_t * |
| 384 | refresh_config(libzfs_handle_t *hdl, nvlist_t *config) |
| 385 | { |
| 386 | nvlist_t *nvl; |
| 387 | zfs_cmd_t zc = { 0 }; |
| 388 | int err; |
| 389 | |
| 390 | if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0) |
| 391 | return (NULL); |
| 392 | |
| 393 | if (zcmd_alloc_dst_nvlist(hdl, &zc, |
| 394 | zc.zc_nvlist_conf_size * 2) != 0) { |
| 395 | zcmd_free_nvlists(&zc); |
| 396 | return (NULL); |
| 397 | } |
| 398 | |
| 399 | while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT, |
| 400 | &zc)) != 0 && errno == ENOMEM) { |
| 401 | if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) { |
| 402 | zcmd_free_nvlists(&zc); |
| 403 | return (NULL); |
| 404 | } |
| 405 | } |
| 406 | |
| 407 | if (err) { |
| 408 | zcmd_free_nvlists(&zc); |
| 409 | return (NULL); |
| 410 | } |
| 411 | |
| 412 | if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) { |
| 413 | zcmd_free_nvlists(&zc); |
| 414 | return (NULL); |
| 415 | } |
| 416 | |
| 417 | zcmd_free_nvlists(&zc); |
| 418 | return (nvl); |
| 419 | } |
| 420 | |
| 421 | /* |
| 422 | * Determine if the vdev id is a hole in the namespace. |
| 423 | */ |
| 424 | boolean_t |
| 425 | vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id) |
| 426 | { |
| 427 | for (int c = 0; c < holes; c++) { |
| 428 | |
| 429 | /* Top-level is a hole */ |
| 430 | if (hole_array[c] == id) |
| 431 | return (B_TRUE); |
| 432 | } |
| 433 | return (B_FALSE); |
| 434 | } |
| 435 | |
| 436 | /* |
| 437 | * Convert our list of pools into the definitive set of configurations. We |
| 438 | * start by picking the best config for each toplevel vdev. Once that's done, |
| 439 | * we assemble the toplevel vdevs into a full config for the pool. We make a |
| 440 | * pass to fix up any incorrect paths, and then add it to the main list to |
| 441 | * return to the user. |
| 442 | */ |
| 443 | static nvlist_t * |
| 444 | get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok) |
| 445 | { |
| 446 | pool_entry_t *pe; |
| 447 | vdev_entry_t *ve; |
| 448 | config_entry_t *ce; |
| 449 | nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot; |
| 450 | nvlist_t **spares, **l2cache; |
| 451 | uint_t i, nspares, nl2cache; |
| 452 | boolean_t config_seen; |
| 453 | uint64_t best_txg; |
| 454 | char *name, *hostname = NULL; |
| 455 | uint64_t guid; |
| 456 | uint_t children = 0; |
| 457 | nvlist_t **child = NULL; |
| 458 | uint_t holes; |
| 459 | uint64_t *hole_array, max_id; |
| 460 | uint_t c; |
| 461 | boolean_t isactive; |
| 462 | uint64_t hostid; |
| 463 | nvlist_t *nvl; |
| 464 | boolean_t found_one = B_FALSE; |
| 465 | boolean_t valid_top_config = B_FALSE; |
| 466 | |
| 467 | if (nvlist_alloc(&ret, 0, 0) != 0) |
| 468 | goto nomem; |
| 469 | |
| 470 | for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { |
| 471 | uint64_t id, max_txg = 0; |
| 472 | |
| 473 | if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0) |
| 474 | goto nomem; |
| 475 | config_seen = B_FALSE; |
| 476 | |
| 477 | /* |
| 478 | * Iterate over all toplevel vdevs. Grab the pool configuration |
| 479 | * from the first one we find, and then go through the rest and |
| 480 | * add them as necessary to the 'vdevs' member of the config. |
| 481 | */ |
| 482 | for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { |
| 483 | |
| 484 | /* |
| 485 | * Determine the best configuration for this vdev by |
| 486 | * selecting the config with the latest transaction |
| 487 | * group. |
| 488 | */ |
| 489 | best_txg = 0; |
| 490 | for (ce = ve->ve_configs; ce != NULL; |
| 491 | ce = ce->ce_next) { |
| 492 | |
| 493 | if (ce->ce_txg > best_txg) { |
| 494 | tmp = ce->ce_config; |
| 495 | best_txg = ce->ce_txg; |
| 496 | } |
| 497 | } |
| 498 | |
| 499 | /* |
| 500 | * We rely on the fact that the max txg for the |
| 501 | * pool will contain the most up-to-date information |
| 502 | * about the valid top-levels in the vdev namespace. |
| 503 | */ |
| 504 | if (best_txg > max_txg) { |
| 505 | (void) nvlist_remove(config, |
| 506 | ZPOOL_CONFIG_VDEV_CHILDREN, |
| 507 | DATA_TYPE_UINT64); |
| 508 | (void) nvlist_remove(config, |
| 509 | ZPOOL_CONFIG_HOLE_ARRAY, |
| 510 | DATA_TYPE_UINT64_ARRAY); |
| 511 | |
| 512 | max_txg = best_txg; |
| 513 | hole_array = NULL; |
| 514 | holes = 0; |
| 515 | max_id = 0; |
| 516 | valid_top_config = B_FALSE; |
| 517 | |
| 518 | if (nvlist_lookup_uint64(tmp, |
| 519 | ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) { |
| 520 | verify(nvlist_add_uint64(config, |
| 521 | ZPOOL_CONFIG_VDEV_CHILDREN, |
| 522 | max_id) == 0); |
| 523 | valid_top_config = B_TRUE; |
| 524 | } |
| 525 | |
| 526 | if (nvlist_lookup_uint64_array(tmp, |
| 527 | ZPOOL_CONFIG_HOLE_ARRAY, &hole_array, |
| 528 | &holes) == 0) { |
| 529 | verify(nvlist_add_uint64_array(config, |
| 530 | ZPOOL_CONFIG_HOLE_ARRAY, |
| 531 | hole_array, holes) == 0); |
| 532 | } |
| 533 | } |
| 534 | |
| 535 | if (!config_seen) { |
| 536 | /* |
| 537 | * Copy the relevant pieces of data to the pool |
| 538 | * configuration: |
| 539 | * |
| 540 | * version |
| 541 | * pool guid |
| 542 | * name |
| 543 | * comment (if available) |
| 544 | * pool state |
| 545 | * hostid (if available) |
| 546 | * hostname (if available) |
| 547 | */ |
| 548 | uint64_t state, version; |
| 549 | char * = NULL; |
| 550 | |
| 551 | version = fnvlist_lookup_uint64(tmp, |
| 552 | ZPOOL_CONFIG_VERSION); |
| 553 | fnvlist_add_uint64(config, |
| 554 | ZPOOL_CONFIG_VERSION, version); |
| 555 | guid = fnvlist_lookup_uint64(tmp, |
| 556 | ZPOOL_CONFIG_POOL_GUID); |
| 557 | fnvlist_add_uint64(config, |
| 558 | ZPOOL_CONFIG_POOL_GUID, guid); |
| 559 | name = fnvlist_lookup_string(tmp, |
| 560 | ZPOOL_CONFIG_POOL_NAME); |
| 561 | fnvlist_add_string(config, |
| 562 | ZPOOL_CONFIG_POOL_NAME, name); |
| 563 | |
| 564 | if (nvlist_lookup_string(tmp, |
| 565 | ZPOOL_CONFIG_COMMENT, &comment) == 0) |
| 566 | fnvlist_add_string(config, |
| 567 | ZPOOL_CONFIG_COMMENT, comment); |
| 568 | |
| 569 | state = fnvlist_lookup_uint64(tmp, |
| 570 | ZPOOL_CONFIG_POOL_STATE); |
| 571 | fnvlist_add_uint64(config, |
| 572 | ZPOOL_CONFIG_POOL_STATE, state); |
| 573 | |
| 574 | hostid = 0; |
| 575 | if (nvlist_lookup_uint64(tmp, |
| 576 | ZPOOL_CONFIG_HOSTID, &hostid) == 0) { |
| 577 | fnvlist_add_uint64(config, |
| 578 | ZPOOL_CONFIG_HOSTID, hostid); |
| 579 | hostname = fnvlist_lookup_string(tmp, |
| 580 | ZPOOL_CONFIG_HOSTNAME); |
| 581 | fnvlist_add_string(config, |
| 582 | ZPOOL_CONFIG_HOSTNAME, hostname); |
| 583 | } |
| 584 | |
| 585 | config_seen = B_TRUE; |
| 586 | } |
| 587 | |
| 588 | /* |
| 589 | * Add this top-level vdev to the child array. |
| 590 | */ |
| 591 | verify(nvlist_lookup_nvlist(tmp, |
| 592 | ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0); |
| 593 | verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID, |
| 594 | &id) == 0); |
| 595 | |
| 596 | if (id >= children) { |
| 597 | nvlist_t **newchild; |
| 598 | |
| 599 | newchild = zfs_alloc(hdl, (id + 1) * |
| 600 | sizeof (nvlist_t *)); |
| 601 | if (newchild == NULL) |
| 602 | goto nomem; |
| 603 | |
| 604 | for (c = 0; c < children; c++) |
| 605 | newchild[c] = child[c]; |
| 606 | |
| 607 | free(child); |
| 608 | child = newchild; |
| 609 | children = id + 1; |
| 610 | } |
| 611 | if (nvlist_dup(nvtop, &child[id], 0) != 0) |
| 612 | goto nomem; |
| 613 | |
| 614 | } |
| 615 | |
| 616 | /* |
| 617 | * If we have information about all the top-levels then |
| 618 | * clean up the nvlist which we've constructed. This |
| 619 | * means removing any extraneous devices that are |
| 620 | * beyond the valid range or adding devices to the end |
| 621 | * of our array which appear to be missing. |
| 622 | */ |
| 623 | if (valid_top_config) { |
| 624 | if (max_id < children) { |
| 625 | for (c = max_id; c < children; c++) |
| 626 | nvlist_free(child[c]); |
| 627 | children = max_id; |
| 628 | } else if (max_id > children) { |
| 629 | nvlist_t **newchild; |
| 630 | |
| 631 | newchild = zfs_alloc(hdl, (max_id) * |
| 632 | sizeof (nvlist_t *)); |
| 633 | if (newchild == NULL) |
| 634 | goto nomem; |
| 635 | |
| 636 | for (c = 0; c < children; c++) |
| 637 | newchild[c] = child[c]; |
| 638 | |
| 639 | free(child); |
| 640 | child = newchild; |
| 641 | children = max_id; |
| 642 | } |
| 643 | } |
| 644 | |
| 645 | verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, |
| 646 | &guid) == 0); |
| 647 | |
| 648 | /* |
| 649 | * The vdev namespace may contain holes as a result of |
| 650 | * device removal. We must add them back into the vdev |
| 651 | * tree before we process any missing devices. |
| 652 | */ |
| 653 | if (holes > 0) { |
| 654 | ASSERT(valid_top_config); |
| 655 | |
| 656 | for (c = 0; c < children; c++) { |
| 657 | nvlist_t *holey; |
| 658 | |
| 659 | if (child[c] != NULL || |
| 660 | !vdev_is_hole(hole_array, holes, c)) |
| 661 | continue; |
| 662 | |
| 663 | if (nvlist_alloc(&holey, NV_UNIQUE_NAME, |
| 664 | 0) != 0) |
| 665 | goto nomem; |
| 666 | |
| 667 | /* |
| 668 | * Holes in the namespace are treated as |
| 669 | * "hole" top-level vdevs and have a |
| 670 | * special flag set on them. |
| 671 | */ |
| 672 | if (nvlist_add_string(holey, |
| 673 | ZPOOL_CONFIG_TYPE, |
| 674 | VDEV_TYPE_HOLE) != 0 || |
| 675 | nvlist_add_uint64(holey, |
| 676 | ZPOOL_CONFIG_ID, c) != 0 || |
| 677 | nvlist_add_uint64(holey, |
| 678 | ZPOOL_CONFIG_GUID, 0ULL) != 0) { |
| 679 | nvlist_free(holey); |
| 680 | goto nomem; |
| 681 | } |
| 682 | child[c] = holey; |
| 683 | } |
| 684 | } |
| 685 | |
| 686 | /* |
| 687 | * Look for any missing top-level vdevs. If this is the case, |
| 688 | * create a faked up 'missing' vdev as a placeholder. We cannot |
| 689 | * simply compress the child array, because the kernel performs |
| 690 | * certain checks to make sure the vdev IDs match their location |
| 691 | * in the configuration. |
| 692 | */ |
| 693 | for (c = 0; c < children; c++) { |
| 694 | if (child[c] == NULL) { |
| 695 | nvlist_t *missing; |
| 696 | if (nvlist_alloc(&missing, NV_UNIQUE_NAME, |
| 697 | 0) != 0) |
| 698 | goto nomem; |
| 699 | if (nvlist_add_string(missing, |
| 700 | ZPOOL_CONFIG_TYPE, |
| 701 | VDEV_TYPE_MISSING) != 0 || |
| 702 | nvlist_add_uint64(missing, |
| 703 | ZPOOL_CONFIG_ID, c) != 0 || |
| 704 | nvlist_add_uint64(missing, |
| 705 | ZPOOL_CONFIG_GUID, 0ULL) != 0) { |
| 706 | nvlist_free(missing); |
| 707 | goto nomem; |
| 708 | } |
| 709 | child[c] = missing; |
| 710 | } |
| 711 | } |
| 712 | |
| 713 | /* |
| 714 | * Put all of this pool's top-level vdevs into a root vdev. |
| 715 | */ |
| 716 | if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) |
| 717 | goto nomem; |
| 718 | if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, |
| 719 | VDEV_TYPE_ROOT) != 0 || |
| 720 | nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 || |
| 721 | nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 || |
| 722 | nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, |
| 723 | child, children) != 0) { |
| 724 | nvlist_free(nvroot); |
| 725 | goto nomem; |
| 726 | } |
| 727 | |
| 728 | for (c = 0; c < children; c++) |
| 729 | nvlist_free(child[c]); |
| 730 | free(child); |
| 731 | children = 0; |
| 732 | child = NULL; |
| 733 | |
| 734 | /* |
| 735 | * Go through and fix up any paths and/or devids based on our |
| 736 | * known list of vdev GUID -> path mappings. |
| 737 | */ |
| 738 | if (fix_paths(nvroot, pl->names) != 0) { |
| 739 | nvlist_free(nvroot); |
| 740 | goto nomem; |
| 741 | } |
| 742 | |
| 743 | /* |
| 744 | * Add the root vdev to this pool's configuration. |
| 745 | */ |
| 746 | if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, |
| 747 | nvroot) != 0) { |
| 748 | nvlist_free(nvroot); |
| 749 | goto nomem; |
| 750 | } |
| 751 | nvlist_free(nvroot); |
| 752 | |
| 753 | /* |
| 754 | * zdb uses this path to report on active pools that were |
| 755 | * imported or created using -R. |
| 756 | */ |
| 757 | if (active_ok) |
| 758 | goto add_pool; |
| 759 | |
| 760 | /* |
| 761 | * Determine if this pool is currently active, in which case we |
| 762 | * can't actually import it. |
| 763 | */ |
| 764 | verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, |
| 765 | &name) == 0); |
| 766 | verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, |
| 767 | &guid) == 0); |
| 768 | |
| 769 | if (pool_active(hdl, name, guid, &isactive) != 0) |
| 770 | goto error; |
| 771 | |
| 772 | if (isactive) { |
| 773 | nvlist_free(config); |
| 774 | config = NULL; |
| 775 | continue; |
| 776 | } |
| 777 | |
| 778 | if ((nvl = refresh_config(hdl, config)) == NULL) { |
| 779 | nvlist_free(config); |
| 780 | config = NULL; |
| 781 | continue; |
| 782 | } |
| 783 | |
| 784 | nvlist_free(config); |
| 785 | config = nvl; |
| 786 | |
| 787 | /* |
| 788 | * Go through and update the paths for spares, now that we have |
| 789 | * them. |
| 790 | */ |
| 791 | verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, |
| 792 | &nvroot) == 0); |
| 793 | if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, |
| 794 | &spares, &nspares) == 0) { |
| 795 | for (i = 0; i < nspares; i++) { |
| 796 | if (fix_paths(spares[i], pl->names) != 0) |
| 797 | goto nomem; |
| 798 | } |
| 799 | } |
| 800 | |
| 801 | /* |
| 802 | * Update the paths for l2cache devices. |
| 803 | */ |
| 804 | if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, |
| 805 | &l2cache, &nl2cache) == 0) { |
| 806 | for (i = 0; i < nl2cache; i++) { |
| 807 | if (fix_paths(l2cache[i], pl->names) != 0) |
| 808 | goto nomem; |
| 809 | } |
| 810 | } |
| 811 | |
| 812 | /* |
| 813 | * Restore the original information read from the actual label. |
| 814 | */ |
| 815 | (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID, |
| 816 | DATA_TYPE_UINT64); |
| 817 | (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME, |
| 818 | DATA_TYPE_STRING); |
| 819 | if (hostid != 0) { |
| 820 | verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, |
| 821 | hostid) == 0); |
| 822 | verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, |
| 823 | hostname) == 0); |
| 824 | } |
| 825 | |
| 826 | add_pool: |
| 827 | /* |
| 828 | * Add this pool to the list of configs. |
| 829 | */ |
| 830 | verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, |
| 831 | &name) == 0); |
| 832 | if (nvlist_add_nvlist(ret, name, config) != 0) |
| 833 | goto nomem; |
| 834 | |
| 835 | found_one = B_TRUE; |
| 836 | nvlist_free(config); |
| 837 | config = NULL; |
| 838 | } |
| 839 | |
| 840 | if (!found_one) { |
| 841 | nvlist_free(ret); |
| 842 | ret = NULL; |
| 843 | } |
| 844 | |
| 845 | return (ret); |
| 846 | |
| 847 | nomem: |
| 848 | (void) no_memory(hdl); |
| 849 | error: |
| 850 | nvlist_free(config); |
| 851 | nvlist_free(ret); |
| 852 | for (c = 0; c < children; c++) |
| 853 | nvlist_free(child[c]); |
| 854 | free(child); |
| 855 | |
| 856 | return (NULL); |
| 857 | } |
| 858 | |
| 859 | /* |
| 860 | * Return the offset of the given label. |
| 861 | */ |
| 862 | static uint64_t |
| 863 | label_offset(uint64_t size, int l) |
| 864 | { |
| 865 | ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0); |
| 866 | return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? |
| 867 | 0 : size - VDEV_LABELS * sizeof (vdev_label_t))); |
| 868 | } |
| 869 | |
| 870 | /* |
| 871 | * Given a file descriptor, read the label information and return an nvlist |
| 872 | * describing the configuration, if there is one. |
| 873 | */ |
| 874 | int |
| 875 | zpool_read_label(int fd, nvlist_t **config) |
| 876 | { |
| 877 | struct stat64 statbuf; |
| 878 | int l; |
| 879 | vdev_label_t *label; |
| 880 | uint64_t state, txg, size; |
| 881 | |
| 882 | *config = NULL; |
| 883 | |
| 884 | if (fstat64(fd, &statbuf) == -1) |
| 885 | return (0); |
| 886 | size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); |
| 887 | |
| 888 | if ((label = malloc(sizeof (vdev_label_t))) == NULL) |
| 889 | return (-1); |
| 890 | |
| 891 | for (l = 0; l < VDEV_LABELS; l++) { |
| 892 | if (pread64(fd, label, sizeof (vdev_label_t), |
| 893 | label_offset(size, l)) != sizeof (vdev_label_t)) |
| 894 | continue; |
| 895 | |
| 896 | if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist, |
| 897 | sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) |
| 898 | continue; |
| 899 | |
| 900 | if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, |
| 901 | &state) != 0 || state > POOL_STATE_L2CACHE) { |
| 902 | nvlist_free(*config); |
| 903 | continue; |
| 904 | } |
| 905 | |
| 906 | if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && |
| 907 | (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, |
| 908 | &txg) != 0 || txg == 0)) { |
| 909 | nvlist_free(*config); |
| 910 | continue; |
| 911 | } |
| 912 | |
| 913 | free(label); |
| 914 | return (0); |
| 915 | } |
| 916 | |
| 917 | free(label); |
| 918 | *config = NULL; |
| 919 | return (0); |
| 920 | } |
| 921 | |
| 922 | typedef struct rdsk_node { |
| 923 | char *rn_name; |
| 924 | int rn_dfd; |
| 925 | libzfs_handle_t *rn_hdl; |
| 926 | nvlist_t *rn_config; |
| 927 | avl_tree_t *rn_avl; |
| 928 | avl_node_t rn_node; |
| 929 | boolean_t rn_nozpool; |
| 930 | } rdsk_node_t; |
| 931 | |
| 932 | static int |
| 933 | slice_cache_compare(const void *arg1, const void *arg2) |
| 934 | { |
| 935 | const char *nm1 = ((rdsk_node_t *)arg1)->rn_name; |
| 936 | const char *nm2 = ((rdsk_node_t *)arg2)->rn_name; |
| 937 | char *nm1slice, *nm2slice; |
| 938 | int rv; |
| 939 | |
| 940 | /* |
| 941 | * slices zero and two are the most likely to provide results, |
| 942 | * so put those first |
| 943 | */ |
| 944 | nm1slice = strstr(nm1, "s0" ); |
| 945 | nm2slice = strstr(nm2, "s0" ); |
| 946 | if (nm1slice && !nm2slice) { |
| 947 | return (-1); |
| 948 | } |
| 949 | if (!nm1slice && nm2slice) { |
| 950 | return (1); |
| 951 | } |
| 952 | nm1slice = strstr(nm1, "s2" ); |
| 953 | nm2slice = strstr(nm2, "s2" ); |
| 954 | if (nm1slice && !nm2slice) { |
| 955 | return (-1); |
| 956 | } |
| 957 | if (!nm1slice && nm2slice) { |
| 958 | return (1); |
| 959 | } |
| 960 | |
| 961 | rv = strcmp(nm1, nm2); |
| 962 | if (rv == 0) |
| 963 | return (0); |
| 964 | return (rv > 0 ? 1 : -1); |
| 965 | } |
| 966 | |
| 967 | #ifdef illumos |
| 968 | static void |
| 969 | check_one_slice(avl_tree_t *r, char *diskname, uint_t partno, |
| 970 | diskaddr_t size, uint_t blksz) |
| 971 | { |
| 972 | rdsk_node_t tmpnode; |
| 973 | rdsk_node_t *node; |
| 974 | char sname[MAXNAMELEN]; |
| 975 | |
| 976 | tmpnode.rn_name = &sname[0]; |
| 977 | (void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u" , |
| 978 | diskname, partno); |
| 979 | /* |
| 980 | * protect against division by zero for disk labels that |
| 981 | * contain a bogus sector size |
| 982 | */ |
| 983 | if (blksz == 0) |
| 984 | blksz = DEV_BSIZE; |
| 985 | /* too small to contain a zpool? */ |
| 986 | if ((size < (SPA_MINDEVSIZE / blksz)) && |
| 987 | (node = avl_find(r, &tmpnode, NULL))) |
| 988 | node->rn_nozpool = B_TRUE; |
| 989 | } |
| 990 | #endif /* illumos */ |
| 991 | |
| 992 | static void |
| 993 | nozpool_all_slices(avl_tree_t *r, const char *sname) |
| 994 | { |
| 995 | #ifdef illumos |
| 996 | char diskname[MAXNAMELEN]; |
| 997 | char *ptr; |
| 998 | int i; |
| 999 | |
| 1000 | (void) strncpy(diskname, sname, MAXNAMELEN); |
| 1001 | if (((ptr = strrchr(diskname, 's')) == NULL) && |
| 1002 | ((ptr = strrchr(diskname, 'p')) == NULL)) |
| 1003 | return; |
| 1004 | ptr[0] = 's'; |
| 1005 | ptr[1] = '\0'; |
| 1006 | for (i = 0; i < NDKMAP; i++) |
| 1007 | check_one_slice(r, diskname, i, 0, 1); |
| 1008 | ptr[0] = 'p'; |
| 1009 | for (i = 0; i <= FD_NUMPART; i++) |
| 1010 | check_one_slice(r, diskname, i, 0, 1); |
| 1011 | #endif /* illumos */ |
| 1012 | } |
| 1013 | |
| 1014 | #ifdef illumos |
| 1015 | static void |
| 1016 | check_slices(avl_tree_t *r, int fd, const char *sname) |
| 1017 | { |
| 1018 | struct extvtoc vtoc; |
| 1019 | struct dk_gpt *gpt; |
| 1020 | char diskname[MAXNAMELEN]; |
| 1021 | char *ptr; |
| 1022 | int i; |
| 1023 | |
| 1024 | (void) strncpy(diskname, sname, MAXNAMELEN); |
| 1025 | if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1])) |
| 1026 | return; |
| 1027 | ptr[1] = '\0'; |
| 1028 | |
| 1029 | if (read_extvtoc(fd, &vtoc) >= 0) { |
| 1030 | for (i = 0; i < NDKMAP; i++) |
| 1031 | check_one_slice(r, diskname, i, |
| 1032 | vtoc.v_part[i].p_size, vtoc.v_sectorsz); |
| 1033 | } else if (efi_alloc_and_read(fd, &gpt) >= 0) { |
| 1034 | /* |
| 1035 | * on x86 we'll still have leftover links that point |
| 1036 | * to slices s[9-15], so use NDKMAP instead |
| 1037 | */ |
| 1038 | for (i = 0; i < NDKMAP; i++) |
| 1039 | check_one_slice(r, diskname, i, |
| 1040 | gpt->efi_parts[i].p_size, gpt->efi_lbasize); |
| 1041 | /* nodes p[1-4] are never used with EFI labels */ |
| 1042 | ptr[0] = 'p'; |
| 1043 | for (i = 1; i <= FD_NUMPART; i++) |
| 1044 | check_one_slice(r, diskname, i, 0, 1); |
| 1045 | efi_free(gpt); |
| 1046 | } |
| 1047 | } |
| 1048 | #endif /* illumos */ |
| 1049 | |
| 1050 | static void |
| 1051 | zpool_open_func(void *arg) |
| 1052 | { |
| 1053 | rdsk_node_t *rn = arg; |
| 1054 | struct stat64 statbuf; |
| 1055 | nvlist_t *config; |
| 1056 | int fd; |
| 1057 | |
| 1058 | if (rn->rn_nozpool) |
| 1059 | return; |
| 1060 | if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) { |
| 1061 | /* symlink to a device that's no longer there */ |
| 1062 | if (errno == ENOENT) |
| 1063 | nozpool_all_slices(rn->rn_avl, rn->rn_name); |
| 1064 | return; |
| 1065 | } |
| 1066 | /* |
| 1067 | * Ignore failed stats. We only want regular |
| 1068 | * files, character devs and block devs. |
| 1069 | */ |
| 1070 | if (fstat64(fd, &statbuf) != 0 || |
| 1071 | (!S_ISREG(statbuf.st_mode) && |
| 1072 | !S_ISCHR(statbuf.st_mode) && |
| 1073 | !S_ISBLK(statbuf.st_mode))) { |
| 1074 | (void) close(fd); |
| 1075 | return; |
| 1076 | } |
| 1077 | /* this file is too small to hold a zpool */ |
| 1078 | #ifdef illumos |
| 1079 | if (S_ISREG(statbuf.st_mode) && |
| 1080 | statbuf.st_size < SPA_MINDEVSIZE) { |
| 1081 | (void) close(fd); |
| 1082 | return; |
| 1083 | } else if (!S_ISREG(statbuf.st_mode)) { |
| 1084 | /* |
| 1085 | * Try to read the disk label first so we don't have to |
| 1086 | * open a bunch of minor nodes that can't have a zpool. |
| 1087 | */ |
| 1088 | check_slices(rn->rn_avl, fd, rn->rn_name); |
| 1089 | } |
| 1090 | #endif /* illumos */ |
| 1091 | #ifdef __FreeBSD__ |
| 1092 | if (statbuf.st_size < SPA_MINDEVSIZE) { |
| 1093 | (void) close(fd); |
| 1094 | return; |
| 1095 | } |
| 1096 | #endif /* __FreeBSD__ */ |
| 1097 | #ifdef __NetBSD__ |
| 1098 | off_t size; |
| 1099 | |
| 1100 | if (native_ioctl(fd, DIOCGMEDIASIZE, &size) < 0 || |
| 1101 | size < SPA_MINDEVSIZE) { |
| 1102 | (void) close(fd); |
| 1103 | return; |
| 1104 | } |
| 1105 | #endif |
| 1106 | |
| 1107 | if ((zpool_read_label(fd, &config)) != 0) { |
| 1108 | (void) close(fd); |
| 1109 | (void) no_memory(rn->rn_hdl); |
| 1110 | return; |
| 1111 | } |
| 1112 | (void) close(fd); |
| 1113 | |
| 1114 | rn->rn_config = config; |
| 1115 | } |
| 1116 | |
| 1117 | /* |
| 1118 | * Given a file descriptor, clear (zero) the label information. |
| 1119 | */ |
| 1120 | int |
| 1121 | zpool_clear_label(int fd) |
| 1122 | { |
| 1123 | struct stat64 statbuf; |
| 1124 | int l; |
| 1125 | vdev_label_t *label; |
| 1126 | uint64_t size; |
| 1127 | |
| 1128 | if (fstat64(fd, &statbuf) == -1) |
| 1129 | return (0); |
| 1130 | size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); |
| 1131 | |
| 1132 | if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL) |
| 1133 | return (-1); |
| 1134 | |
| 1135 | for (l = 0; l < VDEV_LABELS; l++) { |
| 1136 | if (pwrite64(fd, label, sizeof (vdev_label_t), |
| 1137 | label_offset(size, l)) != sizeof (vdev_label_t)) { |
| 1138 | free(label); |
| 1139 | return (-1); |
| 1140 | } |
| 1141 | } |
| 1142 | |
| 1143 | free(label); |
| 1144 | return (0); |
| 1145 | } |
| 1146 | |
| 1147 | /* |
| 1148 | * Given a list of directories to search, find all pools stored on disk. This |
| 1149 | * includes partial pools which are not available to import. If no args are |
| 1150 | * given (argc is 0), then the default directory (/dev/dsk) is searched. |
| 1151 | * poolname or guid (but not both) are provided by the caller when trying |
| 1152 | * to import a specific pool. |
| 1153 | */ |
| 1154 | static nvlist_t * |
| 1155 | zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg) |
| 1156 | { |
| 1157 | int i, dirs = iarg->paths; |
| 1158 | struct dirent64 *dp; |
| 1159 | char path[MAXPATHLEN]; |
| 1160 | char *end, **dir = iarg->path; |
| 1161 | size_t pathleft; |
| 1162 | nvlist_t *ret = NULL; |
| 1163 | static char *default_dir = "/dev" ; |
| 1164 | pool_list_t pools = { 0 }; |
| 1165 | pool_entry_t *pe, *penext; |
| 1166 | vdev_entry_t *ve, *venext; |
| 1167 | config_entry_t *ce, *cenext; |
| 1168 | name_entry_t *ne, *nenext; |
| 1169 | avl_tree_t slice_cache; |
| 1170 | rdsk_node_t *slice; |
| 1171 | void *cookie; |
| 1172 | |
| 1173 | if (dirs == 0) { |
| 1174 | dirs = 1; |
| 1175 | dir = &default_dir; |
| 1176 | } |
| 1177 | |
| 1178 | /* |
| 1179 | * Go through and read the label configuration information from every |
| 1180 | * possible device, organizing the information according to pool GUID |
| 1181 | * and toplevel GUID. |
| 1182 | */ |
| 1183 | for (i = 0; i < dirs; i++) { |
| 1184 | tpool_t *t; |
| 1185 | char rdsk[MAXPATHLEN]; |
| 1186 | int dfd; |
| 1187 | boolean_t config_failed = B_FALSE; |
| 1188 | DIR *dirp; |
| 1189 | |
| 1190 | /* use realpath to normalize the path */ |
| 1191 | if (realpath(dir[i], path) == 0) { |
| 1192 | (void) zfs_error_fmt(hdl, EZFS_BADPATH, |
| 1193 | dgettext(TEXT_DOMAIN, "cannot open '%s'" ), dir[i]); |
| 1194 | goto error; |
| 1195 | } |
| 1196 | end = &path[strlen(path)]; |
| 1197 | *end++ = '/'; |
| 1198 | *end = 0; |
| 1199 | pathleft = &path[sizeof (path)] - end; |
| 1200 | |
| 1201 | #ifdef illumos |
| 1202 | /* |
| 1203 | * Using raw devices instead of block devices when we're |
| 1204 | * reading the labels skips a bunch of slow operations during |
| 1205 | * close(2) processing, so we replace /dev/dsk with /dev/rdsk. |
| 1206 | */ |
| 1207 | if (strcmp(path, ZFS_DISK_ROOTD) == 0) |
| 1208 | (void) strlcpy(rdsk, ZFS_RDISK_ROOTD, sizeof (rdsk)); |
| 1209 | else |
| 1210 | #endif |
| 1211 | (void) strlcpy(rdsk, path, sizeof (rdsk)); |
| 1212 | |
| 1213 | if ((dfd = open64(rdsk, O_RDONLY)) < 0 || |
| 1214 | (dirp = fdopendir(dfd)) == NULL) { |
| 1215 | if (dfd >= 0) |
| 1216 | (void) close(dfd); |
| 1217 | zfs_error_aux(hdl, strerror(errno)); |
| 1218 | (void) zfs_error_fmt(hdl, EZFS_BADPATH, |
| 1219 | dgettext(TEXT_DOMAIN, "cannot open '%s'" ), |
| 1220 | rdsk); |
| 1221 | goto error; |
| 1222 | } |
| 1223 | |
| 1224 | avl_create(&slice_cache, slice_cache_compare, |
| 1225 | sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node)); |
| 1226 | |
| 1227 | #ifdef __FreeBSD__ |
| 1228 | if (strcmp(rdsk, "/dev/" ) == 0) { |
| 1229 | struct gmesh mesh; |
| 1230 | struct gclass *mp; |
| 1231 | struct ggeom *gp; |
| 1232 | struct gprovider *pp; |
| 1233 | |
| 1234 | errno = geom_gettree(&mesh); |
| 1235 | if (errno != 0) { |
| 1236 | zfs_error_aux(hdl, strerror(errno)); |
| 1237 | (void) zfs_error_fmt(hdl, EZFS_BADPATH, |
| 1238 | dgettext(TEXT_DOMAIN, "cannot get GEOM tree" )); |
| 1239 | goto error; |
| 1240 | } |
| 1241 | |
| 1242 | LIST_FOREACH(mp, &mesh.lg_class, lg_class) { |
| 1243 | LIST_FOREACH(gp, &mp->lg_geom, lg_geom) { |
| 1244 | LIST_FOREACH(pp, &gp->lg_provider, lg_provider) { |
| 1245 | slice = zfs_alloc(hdl, sizeof (rdsk_node_t)); |
| 1246 | slice->rn_name = zfs_strdup(hdl, pp->lg_name); |
| 1247 | slice->rn_avl = &slice_cache; |
| 1248 | slice->rn_dfd = dfd; |
| 1249 | slice->rn_hdl = hdl; |
| 1250 | slice->rn_nozpool = B_FALSE; |
| 1251 | avl_add(&slice_cache, slice); |
| 1252 | } |
| 1253 | } |
| 1254 | } |
| 1255 | |
| 1256 | geom_deletetree(&mesh); |
| 1257 | goto skipdir; |
| 1258 | } |
| 1259 | #endif |
| 1260 | #ifdef __NetBSD__ |
| 1261 | if (strcmp(rdsk, "/dev/" ) == 0) { |
| 1262 | static const char mib_name[] = "hw.disknames" ; |
| 1263 | size_t len; |
| 1264 | char *disknames, *last, *name; |
| 1265 | char part; |
| 1266 | |
| 1267 | part = getrawpartition(); |
| 1268 | if (sysctlbyname(mib_name, NULL, &len, NULL, 0) == -1) { |
| 1269 | zfs_error_aux(hdl, strerror(errno)); |
| 1270 | (void) zfs_error_fmt(hdl, EZFS_BADPATH, |
| 1271 | dgettext(TEXT_DOMAIN, "cannot get hw.disknames list" )); |
| 1272 | |
| 1273 | avl_destroy(&slice_cache); |
| 1274 | (void) closedir(dirp); |
| 1275 | goto error; |
| 1276 | } |
| 1277 | disknames = zfs_alloc(hdl, len + 2); |
| 1278 | (void)sysctlbyname(mib_name, disknames, &len, NULL, 0); |
| 1279 | |
| 1280 | |
| 1281 | for ((name = strtok_r(disknames, " " , &last)); name; |
| 1282 | (name = strtok_r(NULL, " " , &last))) { |
| 1283 | slice = zfs_alloc(hdl, sizeof (rdsk_node_t)); |
| 1284 | slice->rn_name = zfs_asprintf(hdl, "%s%c" , name, 'a' + part); |
| 1285 | slice->rn_avl = &slice_cache; |
| 1286 | slice->rn_dfd = dfd; |
| 1287 | slice->rn_hdl = hdl; |
| 1288 | slice->rn_nozpool = B_FALSE; |
| 1289 | avl_add(&slice_cache, slice); |
| 1290 | } |
| 1291 | free(disknames); |
| 1292 | |
| 1293 | goto skipdir; |
| 1294 | } |
| 1295 | #endif |
| 1296 | |
| 1297 | /* |
| 1298 | * This is not MT-safe, but we have no MT consumers of libzfs |
| 1299 | */ |
| 1300 | while ((dp = readdir64(dirp)) != NULL) { |
| 1301 | const char *name = dp->d_name; |
| 1302 | if (name[0] == '.' && |
| 1303 | (name[1] == 0 || (name[1] == '.' && name[2] == 0))) |
| 1304 | continue; |
| 1305 | |
| 1306 | slice = zfs_alloc(hdl, sizeof (rdsk_node_t)); |
| 1307 | slice->rn_name = zfs_strdup(hdl, name); |
| 1308 | slice->rn_avl = &slice_cache; |
| 1309 | slice->rn_dfd = dfd; |
| 1310 | slice->rn_hdl = hdl; |
| 1311 | slice->rn_nozpool = B_FALSE; |
| 1312 | avl_add(&slice_cache, slice); |
| 1313 | } |
| 1314 | skipdir: |
| 1315 | /* |
| 1316 | * create a thread pool to do all of this in parallel; |
| 1317 | * rn_nozpool is not protected, so this is racy in that |
| 1318 | * multiple tasks could decide that the same slice can |
| 1319 | * not hold a zpool, which is benign. Also choose |
| 1320 | * double the number of processors; we hold a lot of |
| 1321 | * locks in the kernel, so going beyond this doesn't |
| 1322 | * buy us much. |
| 1323 | */ |
| 1324 | t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN), |
| 1325 | 0, NULL); |
| 1326 | for (slice = avl_first(&slice_cache); slice; |
| 1327 | (slice = avl_walk(&slice_cache, slice, |
| 1328 | AVL_AFTER))) |
| 1329 | (void) tpool_dispatch(t, zpool_open_func, slice); |
| 1330 | tpool_wait(t); |
| 1331 | tpool_destroy(t); |
| 1332 | |
| 1333 | cookie = NULL; |
| 1334 | while ((slice = avl_destroy_nodes(&slice_cache, |
| 1335 | &cookie)) != NULL) { |
| 1336 | if (slice->rn_config != NULL && !config_failed) { |
| 1337 | nvlist_t *config = slice->rn_config; |
| 1338 | boolean_t matched = B_TRUE; |
| 1339 | |
| 1340 | if (iarg->poolname != NULL) { |
| 1341 | char *pname; |
| 1342 | |
| 1343 | matched = nvlist_lookup_string(config, |
| 1344 | ZPOOL_CONFIG_POOL_NAME, |
| 1345 | &pname) == 0 && |
| 1346 | strcmp(iarg->poolname, pname) == 0; |
| 1347 | } else if (iarg->guid != 0) { |
| 1348 | uint64_t this_guid; |
| 1349 | |
| 1350 | matched = nvlist_lookup_uint64(config, |
| 1351 | ZPOOL_CONFIG_POOL_GUID, |
| 1352 | &this_guid) == 0 && |
| 1353 | iarg->guid == this_guid; |
| 1354 | } |
| 1355 | if (!matched) { |
| 1356 | nvlist_free(config); |
| 1357 | } else { |
| 1358 | /* |
| 1359 | * use the non-raw path for the config |
| 1360 | */ |
| 1361 | (void) strlcpy(end, slice->rn_name, |
| 1362 | pathleft); |
| 1363 | if (add_config(hdl, &pools, path, |
| 1364 | config) != 0) |
| 1365 | config_failed = B_TRUE; |
| 1366 | } |
| 1367 | } |
| 1368 | free(slice->rn_name); |
| 1369 | free(slice); |
| 1370 | } |
| 1371 | avl_destroy(&slice_cache); |
| 1372 | |
| 1373 | (void) closedir(dirp); |
| 1374 | |
| 1375 | if (config_failed) |
| 1376 | goto error; |
| 1377 | } |
| 1378 | |
| 1379 | ret = get_configs(hdl, &pools, iarg->can_be_active); |
| 1380 | |
| 1381 | error: |
| 1382 | for (pe = pools.pools; pe != NULL; pe = penext) { |
| 1383 | penext = pe->pe_next; |
| 1384 | for (ve = pe->pe_vdevs; ve != NULL; ve = venext) { |
| 1385 | venext = ve->ve_next; |
| 1386 | for (ce = ve->ve_configs; ce != NULL; ce = cenext) { |
| 1387 | cenext = ce->ce_next; |
| 1388 | nvlist_free(ce->ce_config); |
| 1389 | free(ce); |
| 1390 | } |
| 1391 | free(ve); |
| 1392 | } |
| 1393 | free(pe); |
| 1394 | } |
| 1395 | |
| 1396 | for (ne = pools.names; ne != NULL; ne = nenext) { |
| 1397 | nenext = ne->ne_next; |
| 1398 | free(ne->ne_name); |
| 1399 | free(ne); |
| 1400 | } |
| 1401 | |
| 1402 | return (ret); |
| 1403 | } |
| 1404 | |
| 1405 | nvlist_t * |
| 1406 | zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv) |
| 1407 | { |
| 1408 | importargs_t iarg = { 0 }; |
| 1409 | |
| 1410 | iarg.paths = argc; |
| 1411 | iarg.path = argv; |
| 1412 | |
| 1413 | return (zpool_find_import_impl(hdl, &iarg)); |
| 1414 | } |
| 1415 | |
| 1416 | /* |
| 1417 | * Given a cache file, return the contents as a list of importable pools. |
| 1418 | * poolname or guid (but not both) are provided by the caller when trying |
| 1419 | * to import a specific pool. |
| 1420 | */ |
| 1421 | nvlist_t * |
| 1422 | zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile, |
| 1423 | char *poolname, uint64_t guid) |
| 1424 | { |
| 1425 | char *buf; |
| 1426 | int fd; |
| 1427 | struct stat64 statbuf; |
| 1428 | nvlist_t *raw, *src, *dst; |
| 1429 | nvlist_t *pools; |
| 1430 | nvpair_t *elem; |
| 1431 | char *name; |
| 1432 | uint64_t this_guid; |
| 1433 | boolean_t active; |
| 1434 | |
| 1435 | verify(poolname == NULL || guid == 0); |
| 1436 | |
| 1437 | if ((fd = open(cachefile, O_RDONLY)) < 0) { |
| 1438 | zfs_error_aux(hdl, "%s" , strerror(errno)); |
| 1439 | (void) zfs_error(hdl, EZFS_BADCACHE, |
| 1440 | dgettext(TEXT_DOMAIN, "failed to open cache file" )); |
| 1441 | return (NULL); |
| 1442 | } |
| 1443 | |
| 1444 | if (fstat64(fd, &statbuf) != 0) { |
| 1445 | zfs_error_aux(hdl, "%s" , strerror(errno)); |
| 1446 | (void) close(fd); |
| 1447 | (void) zfs_error(hdl, EZFS_BADCACHE, |
| 1448 | dgettext(TEXT_DOMAIN, "failed to get size of cache file" )); |
| 1449 | return (NULL); |
| 1450 | } |
| 1451 | |
| 1452 | if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) { |
| 1453 | (void) close(fd); |
| 1454 | return (NULL); |
| 1455 | } |
| 1456 | |
| 1457 | if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { |
| 1458 | (void) close(fd); |
| 1459 | free(buf); |
| 1460 | (void) zfs_error(hdl, EZFS_BADCACHE, |
| 1461 | dgettext(TEXT_DOMAIN, |
| 1462 | "failed to read cache file contents" )); |
| 1463 | return (NULL); |
| 1464 | } |
| 1465 | |
| 1466 | (void) close(fd); |
| 1467 | |
| 1468 | if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) { |
| 1469 | free(buf); |
| 1470 | (void) zfs_error(hdl, EZFS_BADCACHE, |
| 1471 | dgettext(TEXT_DOMAIN, |
| 1472 | "invalid or corrupt cache file contents" )); |
| 1473 | return (NULL); |
| 1474 | } |
| 1475 | |
| 1476 | free(buf); |
| 1477 | |
| 1478 | /* |
| 1479 | * Go through and get the current state of the pools and refresh their |
| 1480 | * state. |
| 1481 | */ |
| 1482 | if (nvlist_alloc(&pools, 0, 0) != 0) { |
| 1483 | (void) no_memory(hdl); |
| 1484 | nvlist_free(raw); |
| 1485 | return (NULL); |
| 1486 | } |
| 1487 | |
| 1488 | elem = NULL; |
| 1489 | while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) { |
| 1490 | src = fnvpair_value_nvlist(elem); |
| 1491 | |
| 1492 | name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME); |
| 1493 | if (poolname != NULL && strcmp(poolname, name) != 0) |
| 1494 | continue; |
| 1495 | |
| 1496 | this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID); |
| 1497 | if (guid != 0 && guid != this_guid) |
| 1498 | continue; |
| 1499 | |
| 1500 | if (pool_active(hdl, name, this_guid, &active) != 0) { |
| 1501 | nvlist_free(raw); |
| 1502 | nvlist_free(pools); |
| 1503 | return (NULL); |
| 1504 | } |
| 1505 | |
| 1506 | if (active) |
| 1507 | continue; |
| 1508 | |
| 1509 | if ((dst = refresh_config(hdl, src)) == NULL) { |
| 1510 | nvlist_free(raw); |
| 1511 | nvlist_free(pools); |
| 1512 | return (NULL); |
| 1513 | } |
| 1514 | |
| 1515 | if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) { |
| 1516 | (void) no_memory(hdl); |
| 1517 | nvlist_free(dst); |
| 1518 | nvlist_free(raw); |
| 1519 | nvlist_free(pools); |
| 1520 | return (NULL); |
| 1521 | } |
| 1522 | nvlist_free(dst); |
| 1523 | } |
| 1524 | |
| 1525 | nvlist_free(raw); |
| 1526 | return (pools); |
| 1527 | } |
| 1528 | |
| 1529 | static int |
| 1530 | name_or_guid_exists(zpool_handle_t *zhp, void *data) |
| 1531 | { |
| 1532 | importargs_t *import = data; |
| 1533 | int found = 0; |
| 1534 | |
| 1535 | if (import->poolname != NULL) { |
| 1536 | char *pool_name; |
| 1537 | |
| 1538 | verify(nvlist_lookup_string(zhp->zpool_config, |
| 1539 | ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0); |
| 1540 | if (strcmp(pool_name, import->poolname) == 0) |
| 1541 | found = 1; |
| 1542 | } else { |
| 1543 | uint64_t pool_guid; |
| 1544 | |
| 1545 | verify(nvlist_lookup_uint64(zhp->zpool_config, |
| 1546 | ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0); |
| 1547 | if (pool_guid == import->guid) |
| 1548 | found = 1; |
| 1549 | } |
| 1550 | |
| 1551 | zpool_close(zhp); |
| 1552 | return (found); |
| 1553 | } |
| 1554 | |
| 1555 | nvlist_t * |
| 1556 | zpool_search_import(libzfs_handle_t *hdl, importargs_t *import) |
| 1557 | { |
| 1558 | verify(import->poolname == NULL || import->guid == 0); |
| 1559 | |
| 1560 | if (import->unique) |
| 1561 | import->exists = zpool_iter(hdl, name_or_guid_exists, import); |
| 1562 | |
| 1563 | if (import->cachefile != NULL) |
| 1564 | return (zpool_find_import_cached(hdl, import->cachefile, |
| 1565 | import->poolname, import->guid)); |
| 1566 | |
| 1567 | return (zpool_find_import_impl(hdl, import)); |
| 1568 | } |
| 1569 | |
| 1570 | boolean_t |
| 1571 | find_guid(nvlist_t *nv, uint64_t guid) |
| 1572 | { |
| 1573 | uint64_t tmp; |
| 1574 | nvlist_t **child; |
| 1575 | uint_t c, children; |
| 1576 | |
| 1577 | verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0); |
| 1578 | if (tmp == guid) |
| 1579 | return (B_TRUE); |
| 1580 | |
| 1581 | if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, |
| 1582 | &child, &children) == 0) { |
| 1583 | for (c = 0; c < children; c++) |
| 1584 | if (find_guid(child[c], guid)) |
| 1585 | return (B_TRUE); |
| 1586 | } |
| 1587 | |
| 1588 | return (B_FALSE); |
| 1589 | } |
| 1590 | |
| 1591 | typedef struct aux_cbdata { |
| 1592 | const char *cb_type; |
| 1593 | uint64_t cb_guid; |
| 1594 | zpool_handle_t *cb_zhp; |
| 1595 | } aux_cbdata_t; |
| 1596 | |
| 1597 | static int |
| 1598 | find_aux(zpool_handle_t *zhp, void *data) |
| 1599 | { |
| 1600 | aux_cbdata_t *cbp = data; |
| 1601 | nvlist_t **list; |
| 1602 | uint_t i, count; |
| 1603 | uint64_t guid; |
| 1604 | nvlist_t *nvroot; |
| 1605 | |
| 1606 | verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE, |
| 1607 | &nvroot) == 0); |
| 1608 | |
| 1609 | if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type, |
| 1610 | &list, &count) == 0) { |
| 1611 | for (i = 0; i < count; i++) { |
| 1612 | verify(nvlist_lookup_uint64(list[i], |
| 1613 | ZPOOL_CONFIG_GUID, &guid) == 0); |
| 1614 | if (guid == cbp->cb_guid) { |
| 1615 | cbp->cb_zhp = zhp; |
| 1616 | return (1); |
| 1617 | } |
| 1618 | } |
| 1619 | } |
| 1620 | |
| 1621 | zpool_close(zhp); |
| 1622 | return (0); |
| 1623 | } |
| 1624 | |
| 1625 | /* |
| 1626 | * Determines if the pool is in use. If so, it returns true and the state of |
| 1627 | * the pool as well as the name of the pool. Both strings are allocated and |
| 1628 | * must be freed by the caller. |
| 1629 | */ |
| 1630 | int |
| 1631 | zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr, |
| 1632 | boolean_t *inuse) |
| 1633 | { |
| 1634 | nvlist_t *config; |
| 1635 | char *name; |
| 1636 | boolean_t ret; |
| 1637 | uint64_t guid, vdev_guid; |
| 1638 | zpool_handle_t *zhp; |
| 1639 | nvlist_t *pool_config; |
| 1640 | uint64_t stateval, isspare; |
| 1641 | aux_cbdata_t cb = { 0 }; |
| 1642 | boolean_t isactive; |
| 1643 | |
| 1644 | *inuse = B_FALSE; |
| 1645 | |
| 1646 | if (zpool_read_label(fd, &config) != 0) { |
| 1647 | (void) no_memory(hdl); |
| 1648 | return (-1); |
| 1649 | } |
| 1650 | |
| 1651 | if (config == NULL) |
| 1652 | return (0); |
| 1653 | |
| 1654 | verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, |
| 1655 | &stateval) == 0); |
| 1656 | verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, |
| 1657 | &vdev_guid) == 0); |
| 1658 | |
| 1659 | if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) { |
| 1660 | verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, |
| 1661 | &name) == 0); |
| 1662 | verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, |
| 1663 | &guid) == 0); |
| 1664 | } |
| 1665 | |
| 1666 | switch (stateval) { |
| 1667 | case POOL_STATE_EXPORTED: |
| 1668 | /* |
| 1669 | * A pool with an exported state may in fact be imported |
| 1670 | * read-only, so check the in-core state to see if it's |
| 1671 | * active and imported read-only. If it is, set |
| 1672 | * its state to active. |
| 1673 | */ |
| 1674 | if (pool_active(hdl, name, guid, &isactive) == 0 && isactive && |
| 1675 | (zhp = zpool_open_canfail(hdl, name)) != NULL) { |
| 1676 | if (zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL)) |
| 1677 | stateval = POOL_STATE_ACTIVE; |
| 1678 | |
| 1679 | /* |
| 1680 | * All we needed the zpool handle for is the |
| 1681 | * readonly prop check. |
| 1682 | */ |
| 1683 | zpool_close(zhp); |
| 1684 | } |
| 1685 | |
| 1686 | ret = B_TRUE; |
| 1687 | break; |
| 1688 | |
| 1689 | case POOL_STATE_ACTIVE: |
| 1690 | /* |
| 1691 | * For an active pool, we have to determine if it's really part |
| 1692 | * of a currently active pool (in which case the pool will exist |
| 1693 | * and the guid will be the same), or whether it's part of an |
| 1694 | * active pool that was disconnected without being explicitly |
| 1695 | * exported. |
| 1696 | */ |
| 1697 | if (pool_active(hdl, name, guid, &isactive) != 0) { |
| 1698 | nvlist_free(config); |
| 1699 | return (-1); |
| 1700 | } |
| 1701 | |
| 1702 | if (isactive) { |
| 1703 | /* |
| 1704 | * Because the device may have been removed while |
| 1705 | * offlined, we only report it as active if the vdev is |
| 1706 | * still present in the config. Otherwise, pretend like |
| 1707 | * it's not in use. |
| 1708 | */ |
| 1709 | if ((zhp = zpool_open_canfail(hdl, name)) != NULL && |
| 1710 | (pool_config = zpool_get_config(zhp, NULL)) |
| 1711 | != NULL) { |
| 1712 | nvlist_t *nvroot; |
| 1713 | |
| 1714 | verify(nvlist_lookup_nvlist(pool_config, |
| 1715 | ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); |
| 1716 | ret = find_guid(nvroot, vdev_guid); |
| 1717 | } else { |
| 1718 | ret = B_FALSE; |
| 1719 | } |
| 1720 | |
| 1721 | /* |
| 1722 | * If this is an active spare within another pool, we |
| 1723 | * treat it like an unused hot spare. This allows the |
| 1724 | * user to create a pool with a hot spare that currently |
| 1725 | * in use within another pool. Since we return B_TRUE, |
| 1726 | * libdiskmgt will continue to prevent generic consumers |
| 1727 | * from using the device. |
| 1728 | */ |
| 1729 | if (ret && nvlist_lookup_uint64(config, |
| 1730 | ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare) |
| 1731 | stateval = POOL_STATE_SPARE; |
| 1732 | |
| 1733 | if (zhp != NULL) |
| 1734 | zpool_close(zhp); |
| 1735 | } else { |
| 1736 | stateval = POOL_STATE_POTENTIALLY_ACTIVE; |
| 1737 | ret = B_TRUE; |
| 1738 | } |
| 1739 | break; |
| 1740 | |
| 1741 | case POOL_STATE_SPARE: |
| 1742 | /* |
| 1743 | * For a hot spare, it can be either definitively in use, or |
| 1744 | * potentially active. To determine if it's in use, we iterate |
| 1745 | * over all pools in the system and search for one with a spare |
| 1746 | * with a matching guid. |
| 1747 | * |
| 1748 | * Due to the shared nature of spares, we don't actually report |
| 1749 | * the potentially active case as in use. This means the user |
| 1750 | * can freely create pools on the hot spares of exported pools, |
| 1751 | * but to do otherwise makes the resulting code complicated, and |
| 1752 | * we end up having to deal with this case anyway. |
| 1753 | */ |
| 1754 | cb.cb_zhp = NULL; |
| 1755 | cb.cb_guid = vdev_guid; |
| 1756 | cb.cb_type = ZPOOL_CONFIG_SPARES; |
| 1757 | if (zpool_iter(hdl, find_aux, &cb) == 1) { |
| 1758 | name = (char *)zpool_get_name(cb.cb_zhp); |
| 1759 | ret = B_TRUE; |
| 1760 | } else { |
| 1761 | ret = B_FALSE; |
| 1762 | } |
| 1763 | break; |
| 1764 | |
| 1765 | case POOL_STATE_L2CACHE: |
| 1766 | |
| 1767 | /* |
| 1768 | * Check if any pool is currently using this l2cache device. |
| 1769 | */ |
| 1770 | cb.cb_zhp = NULL; |
| 1771 | cb.cb_guid = vdev_guid; |
| 1772 | cb.cb_type = ZPOOL_CONFIG_L2CACHE; |
| 1773 | if (zpool_iter(hdl, find_aux, &cb) == 1) { |
| 1774 | name = (char *)zpool_get_name(cb.cb_zhp); |
| 1775 | ret = B_TRUE; |
| 1776 | } else { |
| 1777 | ret = B_FALSE; |
| 1778 | } |
| 1779 | break; |
| 1780 | |
| 1781 | default: |
| 1782 | ret = B_FALSE; |
| 1783 | } |
| 1784 | |
| 1785 | |
| 1786 | if (ret) { |
| 1787 | if ((*namestr = zfs_strdup(hdl, name)) == NULL) { |
| 1788 | if (cb.cb_zhp) |
| 1789 | zpool_close(cb.cb_zhp); |
| 1790 | nvlist_free(config); |
| 1791 | return (-1); |
| 1792 | } |
| 1793 | *state = (pool_state_t)stateval; |
| 1794 | } |
| 1795 | |
| 1796 | if (cb.cb_zhp) |
| 1797 | zpool_close(cb.cb_zhp); |
| 1798 | |
| 1799 | nvlist_free(config); |
| 1800 | *inuse = ret; |
| 1801 | return (0); |
| 1802 | } |
| 1803 | |
| 1804 | #ifdef __NetBSD__ |
| 1805 | /* |
| 1806 | * This needs to be at the end of the file so that we can #undef ioctl |
| 1807 | * without affecting anything else. |
| 1808 | */ |
| 1809 | #undef ioctl |
| 1810 | |
| 1811 | static int |
| 1812 | native_ioctl(int fd, unsigned long cmd, void *arg) |
| 1813 | { |
| 1814 | |
| 1815 | return ioctl(fd, cmd, arg); |
| 1816 | } |
| 1817 | #endif |
| 1818 | |