| 1 | /* | 
| 2 |  * CDDL HEADER START | 
| 3 |  * | 
| 4 |  * The contents of this file are subject to the terms of the | 
| 5 |  * Common Development and Distribution License, Version 1.0 only | 
| 6 |  * (the "License").  You may not use this file except in compliance | 
| 7 |  * with the License. | 
| 8 |  * | 
| 9 |  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE | 
| 10 |  * or http://www.opensolaris.org/os/licensing. | 
| 11 |  * See the License for the specific language governing permissions | 
| 12 |  * and limitations under the License. | 
| 13 |  * | 
| 14 |  * When distributing Covered Code, include this CDDL HEADER in each | 
| 15 |  * file and include the License file at usr/src/OPENSOLARIS.LICENSE. | 
| 16 |  * If applicable, add the following below this CDDL HEADER, with the | 
| 17 |  * fields enclosed by brackets "[]" replaced with your own identifying | 
| 18 |  * information: Portions Copyright [yyyy] [name of copyright owner] | 
| 19 |  * | 
| 20 |  * CDDL HEADER END | 
| 21 |  */ | 
| 22 |  | 
| 23 | #ifdef HAVE_NBTOOL_CONFIG_H | 
| 24 | #include "nbtool_config.h" | 
| 25 | #endif | 
| 26 | /* | 
| 27 |  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved. | 
| 28 |  * Use is subject to license terms. | 
| 29 |  */ | 
| 30 | /* | 
| 31 |  * Copyright (c) 2013, Joyent, Inc.  All rights reserved. | 
| 32 |  */ | 
| 33 |  | 
| 34 | #include <ctf_impl.h> | 
| 35 | #include <sys/mman.h> | 
| 36 | #include <sys/zmod.h> | 
| 37 |  | 
| 38 | static const ctf_dmodel_t _libctf_models[] = { | 
| 39 | 	{ "ILP32" , CTF_MODEL_ILP32, 4, 1, 2, 4, 4 }, | 
| 40 | 	{ "LP64" , CTF_MODEL_LP64, 8, 1, 2, 4, 8 }, | 
| 41 | 	{ NULL, 0, 0, 0, 0, 0, 0 } | 
| 42 | }; | 
| 43 |  | 
| 44 | const char _CTF_SECTION[] = ".SUNW_ctf" ; | 
| 45 | const char _CTF_NULLSTR[] = "" ; | 
| 46 |  | 
| 47 | int _libctf_version = CTF_VERSION;	/* library client version */ | 
| 48 | int _libctf_debug = 0;			/* debugging messages enabled */ | 
| 49 |  | 
| 50 | static ushort_t | 
| 51 | get_kind_v1(ushort_t info) | 
| 52 | { | 
| 53 | 	return (CTF_INFO_KIND_V1(info)); | 
| 54 | } | 
| 55 |  | 
| 56 | static ushort_t | 
| 57 | get_kind_v2(ushort_t info) | 
| 58 | { | 
| 59 | 	return (CTF_INFO_KIND(info)); | 
| 60 | } | 
| 61 |  | 
| 62 | static ushort_t | 
| 63 | get_root_v1(ushort_t info) | 
| 64 | { | 
| 65 | 	return (CTF_INFO_ISROOT_V1(info)); | 
| 66 | } | 
| 67 |  | 
| 68 | static ushort_t | 
| 69 | get_root_v2(ushort_t info) | 
| 70 | { | 
| 71 | 	return (CTF_INFO_ISROOT(info)); | 
| 72 | } | 
| 73 |  | 
| 74 | static ushort_t | 
| 75 | get_vlen_v1(ushort_t info) | 
| 76 | { | 
| 77 | 	return (CTF_INFO_VLEN_V1(info)); | 
| 78 | } | 
| 79 |  | 
| 80 | static ushort_t | 
| 81 | get_vlen_v2(ushort_t info) | 
| 82 | { | 
| 83 | 	return (CTF_INFO_VLEN(info)); | 
| 84 | } | 
| 85 |  | 
| 86 | static const ctf_fileops_t ctf_fileops[] = { | 
| 87 | 	{ NULL, NULL, NULL }, | 
| 88 | 	{ get_kind_v1, get_root_v1, get_vlen_v1 }, | 
| 89 | 	{ get_kind_v2, get_root_v2, get_vlen_v2 }, | 
| 90 | }; | 
| 91 |  | 
| 92 | /* | 
| 93 |  * Convert a 32-bit ELF symbol into GElf (Elf64) and return a pointer to it. | 
| 94 |  */ | 
| 95 | static Elf64_Sym * | 
| 96 | sym_to_gelf(const Elf32_Sym *src, Elf64_Sym *dst) | 
| 97 | { | 
| 98 | 	dst->st_name = src->st_name; | 
| 99 | 	dst->st_value = src->st_value; | 
| 100 | 	dst->st_size = src->st_size; | 
| 101 | 	dst->st_info = src->st_info; | 
| 102 | 	dst->st_other = src->st_other; | 
| 103 | 	dst->st_shndx = src->st_shndx; | 
| 104 |  | 
| 105 | 	return (dst); | 
| 106 | } | 
| 107 |  | 
| 108 | /* | 
| 109 |  * Initialize the symtab translation table by filling each entry with the | 
| 110 |  * offset of the CTF type or function data corresponding to each STT_FUNC or | 
| 111 |  * STT_OBJECT entry in the symbol table. | 
| 112 |  */ | 
| 113 | static int | 
| 114 | init_symtab(ctf_file_t *fp, const ctf_header_t *hp, | 
| 115 |     const ctf_sect_t *sp, const ctf_sect_t *strp) | 
| 116 | { | 
| 117 | 	const uchar_t *symp = sp->cts_data; | 
| 118 | 	uint_t *xp = fp->ctf_sxlate; | 
| 119 | 	uint_t *xend = xp + fp->ctf_nsyms; | 
| 120 |  | 
| 121 | 	uint_t objtoff = hp->cth_objtoff; | 
| 122 | 	uint_t funcoff = hp->cth_funcoff; | 
| 123 |  | 
| 124 | 	ushort_t info, vlen; | 
| 125 | 	Elf64_Sym sym, *gsp; | 
| 126 | 	const char *name; | 
| 127 |  | 
| 128 | 	/* | 
| 129 | 	 * The CTF data object and function type sections are ordered to match | 
| 130 | 	 * the relative order of the respective symbol types in the symtab. | 
| 131 | 	 * If no type information is available for a symbol table entry, a | 
| 132 | 	 * pad is inserted in the CTF section.  As a further optimization, | 
| 133 | 	 * anonymous or undefined symbols are omitted from the CTF data. | 
| 134 | 	 */ | 
| 135 | 	for (; xp < xend; xp++, symp += sp->cts_entsize) { | 
| 136 | 		if (sp->cts_entsize == sizeof (Elf32_Sym)) | 
| 137 | 			gsp = sym_to_gelf((Elf32_Sym *)(uintptr_t)symp, &sym); | 
| 138 | 		else | 
| 139 | 			gsp = (Elf64_Sym *)(uintptr_t)symp; | 
| 140 |  | 
| 141 | 		if (gsp->st_name < strp->cts_size) | 
| 142 | 			name = (const char *)strp->cts_data + gsp->st_name; | 
| 143 | 		else | 
| 144 | 			name = _CTF_NULLSTR; | 
| 145 |  | 
| 146 | 		if (gsp->st_name == 0 || gsp->st_shndx == SHN_UNDEF || | 
| 147 | 		    strcmp(name, "_START_" ) == 0 || | 
| 148 | 		    strcmp(name, "_END_" ) == 0) { | 
| 149 | 			*xp = -1u; | 
| 150 | 			continue; | 
| 151 | 		} | 
| 152 |  | 
| 153 | 		switch (ELF64_ST_TYPE(gsp->st_info)) { | 
| 154 | 		case STT_OBJECT: | 
| 155 | 			if (objtoff >= hp->cth_funcoff || | 
| 156 | 			    (gsp->st_shndx == SHN_ABS && gsp->st_value == 0)) { | 
| 157 | 				*xp = -1u; | 
| 158 | 				break; | 
| 159 | 			} | 
| 160 |  | 
| 161 | 			*xp = objtoff; | 
| 162 | 			objtoff += sizeof (ushort_t); | 
| 163 | 			break; | 
| 164 |  | 
| 165 | 		case STT_FUNC: | 
| 166 | 			if (funcoff >= hp->cth_typeoff) { | 
| 167 | 				*xp = -1u; | 
| 168 | 				break; | 
| 169 | 			} | 
| 170 |  | 
| 171 | 			*xp = funcoff; | 
| 172 |  | 
| 173 | 			info = *(ushort_t *)((uintptr_t)fp->ctf_buf + funcoff); | 
| 174 | 			vlen = LCTF_INFO_VLEN(fp, info); | 
| 175 |  | 
| 176 | 			/* | 
| 177 | 			 * If we encounter a zero pad at the end, just skip it. | 
| 178 | 			 * Otherwise skip over the function and its return type | 
| 179 | 			 * (+2) and the argument list (vlen). | 
| 180 | 			 */ | 
| 181 | 			if (LCTF_INFO_KIND(fp, info) == CTF_K_UNKNOWN && | 
| 182 | 			    vlen == 0) | 
| 183 | 				funcoff += sizeof (ushort_t); /* skip pad */ | 
| 184 | 			else | 
| 185 | 				funcoff += sizeof (ushort_t) * (vlen + 2); | 
| 186 | 			break; | 
| 187 |  | 
| 188 | 		default: | 
| 189 | 			*xp = -1u; | 
| 190 | 			break; | 
| 191 | 		} | 
| 192 | 	} | 
| 193 |  | 
| 194 | 	ctf_dprintf("loaded %lu symtab entries\n" , fp->ctf_nsyms); | 
| 195 | 	return (0); | 
| 196 | } | 
| 197 |  | 
| 198 | /* | 
| 199 |  * Initialize the type ID translation table with the byte offset of each type, | 
| 200 |  * and initialize the hash tables of each named type. | 
| 201 |  */ | 
| 202 | static int | 
| 203 | init_types(ctf_file_t *fp, const ctf_header_t *cth) | 
| 204 | { | 
| 205 | 	/* LINTED - pointer alignment */ | 
| 206 | 	const ctf_type_t *tbuf = (const ctf_type_t *)(fp->ctf_buf + cth->cth_typeoff); | 
| 207 | 	/* LINTED - pointer alignment */ | 
| 208 | 	const ctf_type_t *tend = (const ctf_type_t *)(fp->ctf_buf + cth->cth_stroff); | 
| 209 |  | 
| 210 | 	ulong_t pop[CTF_K_MAX + 1] = { 0 }; | 
| 211 | 	const ctf_type_t *tp; | 
| 212 | 	ctf_hash_t *hp; | 
| 213 | 	ushort_t id, dst; | 
| 214 | 	uint_t *xp; | 
| 215 |  | 
| 216 | 	/* | 
| 217 | 	 * We initially determine whether the container is a child or a parent | 
| 218 | 	 * based on the value of cth_parname.  To support containers that pre- | 
| 219 | 	 * date cth_parname, we also scan the types themselves for references | 
| 220 | 	 * to values in the range reserved for child types in our first pass. | 
| 221 | 	 */ | 
| 222 | 	int child = cth->cth_parname != 0; | 
| 223 | 	int nlstructs = 0, nlunions = 0; | 
| 224 | 	int err; | 
| 225 |  | 
| 226 | 	/* | 
| 227 | 	 * We make two passes through the entire type section.  In this first | 
| 228 | 	 * pass, we count the number of each type and the total number of types. | 
| 229 | 	 */ | 
| 230 | 	for (tp = tbuf; tp < tend; fp->ctf_typemax++) { | 
| 231 | 		ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info); | 
| 232 | 		ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info); | 
| 233 | 		ssize_t size, increment; | 
| 234 |  | 
| 235 | 		size_t vbytes; | 
| 236 | 		uint_t n; | 
| 237 |  | 
| 238 | 		(void) ctf_get_ctt_size(fp, tp, &size, &increment); | 
| 239 |  | 
| 240 | 		switch (kind) { | 
| 241 | 		case CTF_K_INTEGER: | 
| 242 | 		case CTF_K_FLOAT: | 
| 243 | 			vbytes = sizeof (uint_t); | 
| 244 | 			break; | 
| 245 | 		case CTF_K_ARRAY: | 
| 246 | 			vbytes = sizeof (ctf_array_t); | 
| 247 | 			break; | 
| 248 | 		case CTF_K_FUNCTION: | 
| 249 | 			vbytes = sizeof (ushort_t) * (vlen + (vlen & 1)); | 
| 250 | 			break; | 
| 251 | 		case CTF_K_STRUCT: | 
| 252 | 		case CTF_K_UNION: | 
| 253 | 			if (fp->ctf_version == CTF_VERSION_1 || | 
| 254 | 			    size < CTF_LSTRUCT_THRESH) { | 
| 255 | 				ctf_member_t *mp = (ctf_member_t *) | 
| 256 | 				    ((uintptr_t)tp + increment); | 
| 257 |  | 
| 258 | 				vbytes = sizeof (ctf_member_t) * vlen; | 
| 259 | 				for (n = vlen; n != 0; n--, mp++) | 
| 260 | 					child |= CTF_TYPE_ISCHILD(mp->ctm_type); | 
| 261 | 			} else { | 
| 262 | 				ctf_lmember_t *lmp = (ctf_lmember_t *) | 
| 263 | 				    ((uintptr_t)tp + increment); | 
| 264 |  | 
| 265 | 				vbytes = sizeof (ctf_lmember_t) * vlen; | 
| 266 | 				for (n = vlen; n != 0; n--, lmp++) | 
| 267 | 					child |= | 
| 268 | 					    CTF_TYPE_ISCHILD(lmp->ctlm_type); | 
| 269 | 			} | 
| 270 | 			break; | 
| 271 | 		case CTF_K_ENUM: | 
| 272 | 			vbytes = sizeof (ctf_enum_t) * vlen; | 
| 273 | 			break; | 
| 274 | 		case CTF_K_FORWARD: | 
| 275 | 			/* | 
| 276 | 			 * For forward declarations, ctt_type is the CTF_K_* | 
| 277 | 			 * kind for the tag, so bump that population count too. | 
| 278 | 			 * If ctt_type is unknown, treat the tag as a struct. | 
| 279 | 			 */ | 
| 280 | 			if (tp->ctt_type == CTF_K_UNKNOWN || | 
| 281 | 			    tp->ctt_type >= CTF_K_MAX) | 
| 282 | 				pop[CTF_K_STRUCT]++; | 
| 283 | 			else | 
| 284 | 				pop[tp->ctt_type]++; | 
| 285 | 			/*FALLTHRU*/ | 
| 286 | 		case CTF_K_UNKNOWN: | 
| 287 | 			vbytes = 0; | 
| 288 | 			break; | 
| 289 | 		case CTF_K_POINTER: | 
| 290 | 		case CTF_K_TYPEDEF: | 
| 291 | 		case CTF_K_VOLATILE: | 
| 292 | 		case CTF_K_CONST: | 
| 293 | 		case CTF_K_RESTRICT: | 
| 294 | 			child |= CTF_TYPE_ISCHILD(tp->ctt_type); | 
| 295 | 			vbytes = 0; | 
| 296 | 			break; | 
| 297 | 		default: | 
| 298 | 			ctf_dprintf("detected invalid CTF kind -- %u\n" , kind); | 
| 299 | 			return (ECTF_CORRUPT); | 
| 300 | 		} | 
| 301 | 		tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes); | 
| 302 | 		pop[kind]++; | 
| 303 | 	} | 
| 304 |  | 
| 305 | 	/* | 
| 306 | 	 * If we detected a reference to a child type ID, then we know this | 
| 307 | 	 * container is a child and may have a parent's types imported later. | 
| 308 | 	 */ | 
| 309 | 	if (child) { | 
| 310 | 		ctf_dprintf("CTF container %p is a child\n" , (void *)fp); | 
| 311 | 		fp->ctf_flags |= LCTF_CHILD; | 
| 312 | 	} else | 
| 313 | 		ctf_dprintf("CTF container %p is a parent\n" , (void *)fp); | 
| 314 |  | 
| 315 | 	/* | 
| 316 | 	 * Now that we've counted up the number of each type, we can allocate | 
| 317 | 	 * the hash tables, type translation table, and pointer table. | 
| 318 | 	 */ | 
| 319 | 	if ((err = ctf_hash_create(&fp->ctf_structs, pop[CTF_K_STRUCT])) != 0) | 
| 320 | 		return (err); | 
| 321 |  | 
| 322 | 	if ((err = ctf_hash_create(&fp->ctf_unions, pop[CTF_K_UNION])) != 0) | 
| 323 | 		return (err); | 
| 324 |  | 
| 325 | 	if ((err = ctf_hash_create(&fp->ctf_enums, pop[CTF_K_ENUM])) != 0) | 
| 326 | 		return (err); | 
| 327 |  | 
| 328 | 	if ((err = ctf_hash_create(&fp->ctf_names, | 
| 329 | 	    pop[CTF_K_INTEGER] + pop[CTF_K_FLOAT] + pop[CTF_K_FUNCTION] + | 
| 330 | 	    pop[CTF_K_TYPEDEF] + pop[CTF_K_POINTER] + pop[CTF_K_VOLATILE] + | 
| 331 | 	    pop[CTF_K_CONST] + pop[CTF_K_RESTRICT])) != 0) | 
| 332 | 		return (err); | 
| 333 |  | 
| 334 | 	fp->ctf_txlate = ctf_alloc(sizeof (uint_t) * (fp->ctf_typemax + 1)); | 
| 335 | 	fp->ctf_ptrtab = ctf_alloc(sizeof (ushort_t) * (fp->ctf_typemax + 1)); | 
| 336 |  | 
| 337 | 	if (fp->ctf_txlate == NULL || fp->ctf_ptrtab == NULL) | 
| 338 | 		return (EAGAIN); /* memory allocation failed */ | 
| 339 |  | 
| 340 | 	xp = fp->ctf_txlate; | 
| 341 | 	*xp++ = 0; /* type id 0 is used as a sentinel value */ | 
| 342 |  | 
| 343 | 	bzero(fp->ctf_txlate, sizeof (uint_t) * (fp->ctf_typemax + 1)); | 
| 344 | 	bzero(fp->ctf_ptrtab, sizeof (ushort_t) * (fp->ctf_typemax + 1)); | 
| 345 |  | 
| 346 | 	/* | 
| 347 | 	 * In the second pass through the types, we fill in each entry of the | 
| 348 | 	 * type and pointer tables and add names to the appropriate hashes. | 
| 349 | 	 */ | 
| 350 | 	for (id = 1, tp = tbuf; tp < tend; xp++, id++) { | 
| 351 | 		ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info); | 
| 352 | 		ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info); | 
| 353 | 		ssize_t size, increment; | 
| 354 |  | 
| 355 | 		const char *name; | 
| 356 | 		size_t vbytes; | 
| 357 | 		ctf_helem_t *hep; | 
| 358 | 		ctf_encoding_t cte; | 
| 359 |  | 
| 360 | 		(void) ctf_get_ctt_size(fp, tp, &size, &increment); | 
| 361 | 		name = ctf_strptr(fp, tp->ctt_name); | 
| 362 |  | 
| 363 | 		switch (kind) { | 
| 364 | 		case CTF_K_INTEGER: | 
| 365 | 		case CTF_K_FLOAT: | 
| 366 | 			/* | 
| 367 | 			 * Only insert a new integer base type definition if | 
| 368 | 			 * this type name has not been defined yet.  We re-use | 
| 369 | 			 * the names with different encodings for bit-fields. | 
| 370 | 			 */ | 
| 371 | 			if ((hep = ctf_hash_lookup(&fp->ctf_names, fp, | 
| 372 | 			    name, strlen(name))) == NULL) { | 
| 373 | 				err = ctf_hash_insert(&fp->ctf_names, fp, | 
| 374 | 				    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); | 
| 375 | 				if (err != 0 && err != ECTF_STRTAB) | 
| 376 | 					return (err); | 
| 377 | 			} else if (ctf_type_encoding(fp, hep->h_type, | 
| 378 | 			    &cte) == 0 && cte.cte_bits == 0) { | 
| 379 | 				/* | 
| 380 | 				 * Work-around SOS8 stabs bug: replace existing | 
| 381 | 				 * intrinsic w/ same name if it was zero bits. | 
| 382 | 				 */ | 
| 383 | 				hep->h_type = CTF_INDEX_TO_TYPE(id, child); | 
| 384 | 			} | 
| 385 | 			vbytes = sizeof (uint_t); | 
| 386 | 			break; | 
| 387 |  | 
| 388 | 		case CTF_K_ARRAY: | 
| 389 | 			vbytes = sizeof (ctf_array_t); | 
| 390 | 			break; | 
| 391 |  | 
| 392 | 		case CTF_K_FUNCTION: | 
| 393 | 			err = ctf_hash_insert(&fp->ctf_names, fp, | 
| 394 | 			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); | 
| 395 | 			if (err != 0 && err != ECTF_STRTAB) | 
| 396 | 				return (err); | 
| 397 | 			vbytes = sizeof (ushort_t) * (vlen + (vlen & 1)); | 
| 398 | 			break; | 
| 399 |  | 
| 400 | 		case CTF_K_STRUCT: | 
| 401 | 			err = ctf_hash_define(&fp->ctf_structs, fp, | 
| 402 | 			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); | 
| 403 |  | 
| 404 | 			if (err != 0 && err != ECTF_STRTAB) | 
| 405 | 				return (err); | 
| 406 |  | 
| 407 | 			if (fp->ctf_version == CTF_VERSION_1 || | 
| 408 | 			    size < CTF_LSTRUCT_THRESH) | 
| 409 | 				vbytes = sizeof (ctf_member_t) * vlen; | 
| 410 | 			else { | 
| 411 | 				vbytes = sizeof (ctf_lmember_t) * vlen; | 
| 412 | 				nlstructs++; | 
| 413 | 			} | 
| 414 | 			break; | 
| 415 |  | 
| 416 | 		case CTF_K_UNION: | 
| 417 | 			err = ctf_hash_define(&fp->ctf_unions, fp, | 
| 418 | 			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); | 
| 419 |  | 
| 420 | 			if (err != 0 && err != ECTF_STRTAB) | 
| 421 | 				return (err); | 
| 422 |  | 
| 423 | 			if (fp->ctf_version == CTF_VERSION_1 || | 
| 424 | 			    size < CTF_LSTRUCT_THRESH) | 
| 425 | 				vbytes = sizeof (ctf_member_t) * vlen; | 
| 426 | 			else { | 
| 427 | 				vbytes = sizeof (ctf_lmember_t) * vlen; | 
| 428 | 				nlunions++; | 
| 429 | 			} | 
| 430 | 			break; | 
| 431 |  | 
| 432 | 		case CTF_K_ENUM: | 
| 433 | 			err = ctf_hash_define(&fp->ctf_enums, fp, | 
| 434 | 			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); | 
| 435 |  | 
| 436 | 			if (err != 0 && err != ECTF_STRTAB) | 
| 437 | 				return (err); | 
| 438 |  | 
| 439 | 			vbytes = sizeof (ctf_enum_t) * vlen; | 
| 440 | 			break; | 
| 441 |  | 
| 442 | 		case CTF_K_TYPEDEF: | 
| 443 | 			err = ctf_hash_insert(&fp->ctf_names, fp, | 
| 444 | 			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); | 
| 445 | 			if (err != 0 && err != ECTF_STRTAB) | 
| 446 | 				return (err); | 
| 447 | 			vbytes = 0; | 
| 448 | 			break; | 
| 449 |  | 
| 450 | 		case CTF_K_FORWARD: | 
| 451 | 			/* | 
| 452 | 			 * Only insert forward tags into the given hash if the | 
| 453 | 			 * type or tag name is not already present. | 
| 454 | 			 */ | 
| 455 | 			switch (tp->ctt_type) { | 
| 456 | 			case CTF_K_STRUCT: | 
| 457 | 				hp = &fp->ctf_structs; | 
| 458 | 				break; | 
| 459 | 			case CTF_K_UNION: | 
| 460 | 				hp = &fp->ctf_unions; | 
| 461 | 				break; | 
| 462 | 			case CTF_K_ENUM: | 
| 463 | 				hp = &fp->ctf_enums; | 
| 464 | 				break; | 
| 465 | 			default: | 
| 466 | 				hp = &fp->ctf_structs; | 
| 467 | 			} | 
| 468 |  | 
| 469 | 			if (ctf_hash_lookup(hp, fp, | 
| 470 | 			    name, strlen(name)) == NULL) { | 
| 471 | 				err = ctf_hash_insert(hp, fp, | 
| 472 | 				    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); | 
| 473 | 				if (err != 0 && err != ECTF_STRTAB) | 
| 474 | 					return (err); | 
| 475 | 			} | 
| 476 | 			vbytes = 0; | 
| 477 | 			break; | 
| 478 |  | 
| 479 | 		case CTF_K_POINTER: | 
| 480 | 			/* | 
| 481 | 			 * If the type referenced by the pointer is in this CTF | 
| 482 | 			 * container, then store the index of the pointer type | 
| 483 | 			 * in fp->ctf_ptrtab[ index of referenced type ]. | 
| 484 | 			 */ | 
| 485 | 			if (CTF_TYPE_ISCHILD(tp->ctt_type) == child && | 
| 486 | 			    CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax) | 
| 487 | 				fp->ctf_ptrtab[ | 
| 488 | 				    CTF_TYPE_TO_INDEX(tp->ctt_type)] = id; | 
| 489 | 			/*FALLTHRU*/ | 
| 490 |  | 
| 491 | 		case CTF_K_VOLATILE: | 
| 492 | 		case CTF_K_CONST: | 
| 493 | 		case CTF_K_RESTRICT: | 
| 494 | 			err = ctf_hash_insert(&fp->ctf_names, fp, | 
| 495 | 			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); | 
| 496 | 			if (err != 0 && err != ECTF_STRTAB) | 
| 497 | 				return (err); | 
| 498 | 			/*FALLTHRU*/ | 
| 499 |  | 
| 500 | 		default: | 
| 501 | 			vbytes = 0; | 
| 502 | 			break; | 
| 503 | 		} | 
| 504 |  | 
| 505 | 		*xp = (uint_t)((uintptr_t)tp - (uintptr_t)fp->ctf_buf); | 
| 506 | 		tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes); | 
| 507 | 	} | 
| 508 |  | 
| 509 | 	ctf_dprintf("%lu total types processed\n" , fp->ctf_typemax); | 
| 510 | 	ctf_dprintf("%u enum names hashed\n" , ctf_hash_size(&fp->ctf_enums)); | 
| 511 | 	ctf_dprintf("%u struct names hashed (%d long)\n" , | 
| 512 | 	    ctf_hash_size(&fp->ctf_structs), nlstructs); | 
| 513 | 	ctf_dprintf("%u union names hashed (%d long)\n" , | 
| 514 | 	    ctf_hash_size(&fp->ctf_unions), nlunions); | 
| 515 | 	ctf_dprintf("%u base type names hashed\n" , | 
| 516 | 	    ctf_hash_size(&fp->ctf_names)); | 
| 517 |  | 
| 518 | 	/* | 
| 519 | 	 * Make an additional pass through the pointer table to find pointers | 
| 520 | 	 * that point to anonymous typedef nodes.  If we find one, modify the | 
| 521 | 	 * pointer table so that the pointer is also known to point to the | 
| 522 | 	 * node that is referenced by the anonymous typedef node. | 
| 523 | 	 */ | 
| 524 | 	for (id = 1; id <= fp->ctf_typemax; id++) { | 
| 525 | 		if ((dst = fp->ctf_ptrtab[id]) != 0) { | 
| 526 | 			tp = LCTF_INDEX_TO_TYPEPTR(fp, id); | 
| 527 |  | 
| 528 | 			if (LCTF_INFO_KIND(fp, tp->ctt_info) == CTF_K_TYPEDEF && | 
| 529 | 			    strcmp(ctf_strptr(fp, tp->ctt_name), "" ) == 0 && | 
| 530 | 			    CTF_TYPE_ISCHILD(tp->ctt_type) == child && | 
| 531 | 			    CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax) | 
| 532 | 				fp->ctf_ptrtab[ | 
| 533 | 				    CTF_TYPE_TO_INDEX(tp->ctt_type)] = dst; | 
| 534 | 		} | 
| 535 | 	} | 
| 536 |  | 
| 537 | 	return (0); | 
| 538 | } | 
| 539 |  | 
| 540 | /* | 
| 541 |  * Decode the specified CTF buffer and optional symbol table and create a new | 
| 542 |  * CTF container representing the symbolic debugging information.  This code | 
| 543 |  * can be used directly by the debugger, or it can be used as the engine for | 
| 544 |  * ctf_fdopen() or ctf_open(), below. | 
| 545 |  */ | 
| 546 | ctf_file_t * | 
| 547 | ctf_bufopen(const ctf_sect_t *ctfsect, const ctf_sect_t *symsect, | 
| 548 |     const ctf_sect_t *strsect, int *errp) | 
| 549 | { | 
| 550 | 	const ctf_preamble_t *pp; | 
| 551 | 	ctf_header_t hp; | 
| 552 | 	ctf_file_t *fp; | 
| 553 | 	void *buf, *base; | 
| 554 | 	size_t size, hdrsz; | 
| 555 | 	int err; | 
| 556 |  | 
| 557 | 	if (ctfsect == NULL || ((symsect == NULL) != (strsect == NULL))) | 
| 558 | 		return (ctf_set_open_errno(errp, EINVAL)); | 
| 559 |  | 
| 560 | 	if (symsect != NULL && symsect->cts_entsize != sizeof (Elf32_Sym) && | 
| 561 | 	    symsect->cts_entsize != sizeof (Elf64_Sym)) | 
| 562 | 		return (ctf_set_open_errno(errp, ECTF_SYMTAB)); | 
| 563 |  | 
| 564 | 	if (symsect != NULL && symsect->cts_data == NULL) | 
| 565 | 		return (ctf_set_open_errno(errp, ECTF_SYMBAD)); | 
| 566 |  | 
| 567 | 	if (strsect != NULL && strsect->cts_data == NULL) | 
| 568 | 		return (ctf_set_open_errno(errp, ECTF_STRBAD)); | 
| 569 |  | 
| 570 | 	if (ctfsect->cts_size < sizeof (ctf_preamble_t)) | 
| 571 | 		return (ctf_set_open_errno(errp, ECTF_NOCTFBUF)); | 
| 572 |  | 
| 573 | 	pp = (const ctf_preamble_t *)ctfsect->cts_data; | 
| 574 |  | 
| 575 | 	ctf_dprintf("ctf_bufopen: magic=0x%x version=%u\n" , | 
| 576 | 	    pp->ctp_magic, pp->ctp_version); | 
| 577 |  | 
| 578 | 	/* | 
| 579 | 	 * Validate each part of the CTF header (either V1 or V2). | 
| 580 | 	 * First, we validate the preamble (common to all versions).  At that | 
| 581 | 	 * point, we know specific header version, and can validate the | 
| 582 | 	 * version-specific parts including section offsets and alignments. | 
| 583 | 	 */ | 
| 584 | 	if (pp->ctp_magic != CTF_MAGIC) | 
| 585 | 		return (ctf_set_open_errno(errp, ECTF_NOCTFBUF)); | 
| 586 |  | 
| 587 | 	if (pp->ctp_version == CTF_VERSION_2) { | 
| 588 | 		if (ctfsect->cts_size < sizeof (ctf_header_t)) | 
| 589 | 			return (ctf_set_open_errno(errp, ECTF_NOCTFBUF)); | 
| 590 |  | 
| 591 | 		bcopy(ctfsect->cts_data, &hp, sizeof (hp)); | 
| 592 | 		hdrsz = sizeof (ctf_header_t); | 
| 593 |  | 
| 594 | 	} else if (pp->ctp_version == CTF_VERSION_1) { | 
| 595 | 		const ctf_header_v1_t *h1p = | 
| 596 | 		    (const ctf_header_v1_t *)ctfsect->cts_data; | 
| 597 |  | 
| 598 | 		if (ctfsect->cts_size < sizeof (ctf_header_v1_t)) | 
| 599 | 			return (ctf_set_open_errno(errp, ECTF_NOCTFBUF)); | 
| 600 |  | 
| 601 | 		bzero(&hp, sizeof (hp)); | 
| 602 | 		hp.cth_preamble = h1p->cth_preamble; | 
| 603 | 		hp.cth_objtoff = h1p->cth_objtoff; | 
| 604 | 		hp.cth_funcoff = h1p->cth_funcoff; | 
| 605 | 		hp.cth_typeoff = h1p->cth_typeoff; | 
| 606 | 		hp.cth_stroff = h1p->cth_stroff; | 
| 607 | 		hp.cth_strlen = h1p->cth_strlen; | 
| 608 |  | 
| 609 | 		hdrsz = sizeof (ctf_header_v1_t); | 
| 610 | 	} else | 
| 611 | 		return (ctf_set_open_errno(errp, ECTF_CTFVERS)); | 
| 612 |  | 
| 613 | 	size = hp.cth_stroff + hp.cth_strlen; | 
| 614 |  | 
| 615 | 	ctf_dprintf("ctf_bufopen: uncompressed size=%lu\n" , (ulong_t)size); | 
| 616 |  | 
| 617 | 	if (hp.cth_lbloff > size || hp.cth_objtoff > size || | 
| 618 | 	    hp.cth_funcoff > size || hp.cth_typeoff > size || | 
| 619 | 	    hp.cth_stroff > size) | 
| 620 | 		return (ctf_set_open_errno(errp, ECTF_CORRUPT)); | 
| 621 |  | 
| 622 | 	if (hp.cth_lbloff > hp.cth_objtoff || | 
| 623 | 	    hp.cth_objtoff > hp.cth_funcoff || | 
| 624 | 	    hp.cth_funcoff > hp.cth_typeoff || | 
| 625 | 	    hp.cth_typeoff > hp.cth_stroff) | 
| 626 | 		return (ctf_set_open_errno(errp, ECTF_CORRUPT)); | 
| 627 |  | 
| 628 | 	if ((hp.cth_lbloff & 3) || (hp.cth_objtoff & 1) || | 
| 629 | 	    (hp.cth_funcoff & 1) || (hp.cth_typeoff & 3)) | 
| 630 | 		return (ctf_set_open_errno(errp, ECTF_CORRUPT)); | 
| 631 |  | 
| 632 | 	/* | 
| 633 | 	 * Once everything is determined to be valid, attempt to decompress | 
| 634 | 	 * the CTF data buffer if it is compressed.  Otherwise we just put | 
| 635 | 	 * the data section's buffer pointer into ctf_buf, below. | 
| 636 | 	 */ | 
| 637 | 	if (hp.cth_flags & CTF_F_COMPRESS) { | 
| 638 | 		size_t srclen, dstlen; | 
| 639 | 		const void *src; | 
| 640 | 		int rc = Z_OK; | 
| 641 |  | 
| 642 | 		if (ctf_zopen(errp) == NULL) | 
| 643 | 			return (NULL); /* errp is set for us */ | 
| 644 |  | 
| 645 | 		if ((base = ctf_data_alloc(size + hdrsz)) == MAP_FAILED) | 
| 646 | 			return (ctf_set_open_errno(errp, ECTF_ZALLOC)); | 
| 647 |  | 
| 648 | 		bcopy(ctfsect->cts_data, base, hdrsz); | 
| 649 | 		((ctf_preamble_t *)base)->ctp_flags &= ~CTF_F_COMPRESS; | 
| 650 | 		buf = (uchar_t *)base + hdrsz; | 
| 651 |  | 
| 652 | 		src = (uchar_t *)ctfsect->cts_data + hdrsz; | 
| 653 | 		srclen = ctfsect->cts_size - hdrsz; | 
| 654 | 		dstlen = size; | 
| 655 |  | 
| 656 | 		if ((rc = z_uncompress(buf, &dstlen, src, srclen)) != Z_OK) { | 
| 657 | 			ctf_dprintf("zlib inflate err: %s\n" , z_strerror(rc)); | 
| 658 | 			ctf_data_free(base, size + hdrsz); | 
| 659 | 			return (ctf_set_open_errno(errp, ECTF_DECOMPRESS)); | 
| 660 | 		} | 
| 661 |  | 
| 662 | 		if (dstlen != size) { | 
| 663 | 			ctf_dprintf("zlib inflate short -- got %lu of %lu "  | 
| 664 | 			    "bytes\n" , (ulong_t)dstlen, (ulong_t)size); | 
| 665 | 			ctf_data_free(base, size + hdrsz); | 
| 666 | 			return (ctf_set_open_errno(errp, ECTF_CORRUPT)); | 
| 667 | 		} | 
| 668 |  | 
| 669 | 		ctf_data_protect(base, size + hdrsz); | 
| 670 |  | 
| 671 | 	} else { | 
| 672 | 		base = (void *)ctfsect->cts_data; | 
| 673 | 		buf = (uchar_t *)base + hdrsz; | 
| 674 | 	} | 
| 675 |  | 
| 676 | 	/* | 
| 677 | 	 * Once we have uncompressed and validated the CTF data buffer, we can | 
| 678 | 	 * proceed with allocating a ctf_file_t and initializing it. | 
| 679 | 	 */ | 
| 680 | 	if ((fp = ctf_alloc(sizeof (ctf_file_t))) == NULL) | 
| 681 | 		return (ctf_set_open_errno(errp, EAGAIN)); | 
| 682 |  | 
| 683 | 	bzero(fp, sizeof (ctf_file_t)); | 
| 684 | 	fp->ctf_version = hp.cth_version; | 
| 685 | 	fp->ctf_fileops = &ctf_fileops[hp.cth_version]; | 
| 686 | 	bcopy(ctfsect, &fp->ctf_data, sizeof (ctf_sect_t)); | 
| 687 |  | 
| 688 | 	if (symsect != NULL) { | 
| 689 | 		bcopy(symsect, &fp->ctf_symtab, sizeof (ctf_sect_t)); | 
| 690 | 		bcopy(strsect, &fp->ctf_strtab, sizeof (ctf_sect_t)); | 
| 691 | 	} | 
| 692 |  | 
| 693 | 	if (fp->ctf_data.cts_name != NULL) | 
| 694 | 		fp->ctf_data.cts_name = ctf_strdup(fp->ctf_data.cts_name); | 
| 695 | 	if (fp->ctf_symtab.cts_name != NULL) | 
| 696 | 		fp->ctf_symtab.cts_name = ctf_strdup(fp->ctf_symtab.cts_name); | 
| 697 | 	if (fp->ctf_strtab.cts_name != NULL) | 
| 698 | 		fp->ctf_strtab.cts_name = ctf_strdup(fp->ctf_strtab.cts_name); | 
| 699 |  | 
| 700 | 	if (fp->ctf_data.cts_name == NULL) | 
| 701 | 		fp->ctf_data.cts_name = __UNCONST(_CTF_NULLSTR); | 
| 702 | 	if (fp->ctf_symtab.cts_name == NULL) | 
| 703 | 		fp->ctf_symtab.cts_name = __UNCONST(_CTF_NULLSTR); | 
| 704 | 	if (fp->ctf_strtab.cts_name == NULL) | 
| 705 | 		fp->ctf_strtab.cts_name = __UNCONST(_CTF_NULLSTR); | 
| 706 |  | 
| 707 | 	fp->ctf_str[CTF_STRTAB_0].cts_strs = (const char *)buf + hp.cth_stroff; | 
| 708 | 	fp->ctf_str[CTF_STRTAB_0].cts_len = hp.cth_strlen; | 
| 709 |  | 
| 710 | 	if (strsect != NULL) { | 
| 711 | 		fp->ctf_str[CTF_STRTAB_1].cts_strs = strsect->cts_data; | 
| 712 | 		fp->ctf_str[CTF_STRTAB_1].cts_len = strsect->cts_size; | 
| 713 | 	} | 
| 714 |  | 
| 715 | 	fp->ctf_base = base; | 
| 716 | 	fp->ctf_buf = buf; | 
| 717 | 	fp->ctf_size = size + hdrsz; | 
| 718 |  | 
| 719 | 	/* | 
| 720 | 	 * If we have a parent container name and label, store the relocated | 
| 721 | 	 * string pointers in the CTF container for easy access later. | 
| 722 | 	 */ | 
| 723 | 	if (hp.cth_parlabel != 0) | 
| 724 | 		fp->ctf_parlabel = ctf_strptr(fp, hp.cth_parlabel); | 
| 725 | 	if (hp.cth_parname != 0) | 
| 726 | 		fp->ctf_parname = ctf_strptr(fp, hp.cth_parname); | 
| 727 |  | 
| 728 | 	ctf_dprintf("ctf_bufopen: parent name %s (label %s)\n" , | 
| 729 | 	    fp->ctf_parname ? fp->ctf_parname : "<NULL>" , | 
| 730 | 	    fp->ctf_parlabel ? fp->ctf_parlabel : "<NULL>" ); | 
| 731 |  | 
| 732 | 	/* | 
| 733 | 	 * If we have a symbol table section, allocate and initialize | 
| 734 | 	 * the symtab translation table, pointed to by ctf_sxlate. | 
| 735 | 	 */ | 
| 736 | 	if (symsect != NULL) { | 
| 737 | 		fp->ctf_nsyms = symsect->cts_size / symsect->cts_entsize; | 
| 738 | 		fp->ctf_sxlate = ctf_alloc(fp->ctf_nsyms * sizeof (uint_t)); | 
| 739 |  | 
| 740 | 		if (fp->ctf_sxlate == NULL) { | 
| 741 | 			(void) ctf_set_open_errno(errp, EAGAIN); | 
| 742 | 			goto bad; | 
| 743 | 		} | 
| 744 |  | 
| 745 | 		if ((err = init_symtab(fp, &hp, symsect, strsect)) != 0) { | 
| 746 | 			(void) ctf_set_open_errno(errp, err); | 
| 747 | 			goto bad; | 
| 748 | 		} | 
| 749 | 	} | 
| 750 |  | 
| 751 | 	if ((err = init_types(fp, &hp)) != 0) { | 
| 752 | 		(void) ctf_set_open_errno(errp, err); | 
| 753 | 		goto bad; | 
| 754 | 	} | 
| 755 |  | 
| 756 | 	/* | 
| 757 | 	 * Initialize the ctf_lookup_by_name top-level dictionary.  We keep an | 
| 758 | 	 * array of type name prefixes and the corresponding ctf_hash to use. | 
| 759 | 	 * NOTE: This code must be kept in sync with the code in ctf_update(). | 
| 760 | 	 */ | 
| 761 | 	fp->ctf_lookups[0].ctl_prefix = "struct" ; | 
| 762 | 	fp->ctf_lookups[0].ctl_len = strlen(fp->ctf_lookups[0].ctl_prefix); | 
| 763 | 	fp->ctf_lookups[0].ctl_hash = &fp->ctf_structs; | 
| 764 | 	fp->ctf_lookups[1].ctl_prefix = "union" ; | 
| 765 | 	fp->ctf_lookups[1].ctl_len = strlen(fp->ctf_lookups[1].ctl_prefix); | 
| 766 | 	fp->ctf_lookups[1].ctl_hash = &fp->ctf_unions; | 
| 767 | 	fp->ctf_lookups[2].ctl_prefix = "enum" ; | 
| 768 | 	fp->ctf_lookups[2].ctl_len = strlen(fp->ctf_lookups[2].ctl_prefix); | 
| 769 | 	fp->ctf_lookups[2].ctl_hash = &fp->ctf_enums; | 
| 770 | 	fp->ctf_lookups[3].ctl_prefix = _CTF_NULLSTR; | 
| 771 | 	fp->ctf_lookups[3].ctl_len = strlen(fp->ctf_lookups[3].ctl_prefix); | 
| 772 | 	fp->ctf_lookups[3].ctl_hash = &fp->ctf_names; | 
| 773 | 	fp->ctf_lookups[4].ctl_prefix = NULL; | 
| 774 | 	fp->ctf_lookups[4].ctl_len = 0; | 
| 775 | 	fp->ctf_lookups[4].ctl_hash = NULL; | 
| 776 |  | 
| 777 | 	if (symsect != NULL) { | 
| 778 | 		if (symsect->cts_entsize == sizeof (Elf64_Sym)) | 
| 779 | 			(void) ctf_setmodel(fp, CTF_MODEL_LP64); | 
| 780 | 		else | 
| 781 | 			(void) ctf_setmodel(fp, CTF_MODEL_ILP32); | 
| 782 | 	} else | 
| 783 | 		(void) ctf_setmodel(fp, CTF_MODEL_NATIVE); | 
| 784 |  | 
| 785 | 	fp->ctf_refcnt = 1; | 
| 786 | 	return (fp); | 
| 787 |  | 
| 788 | bad: | 
| 789 | 	ctf_close(fp); | 
| 790 | 	return (NULL); | 
| 791 | } | 
| 792 |  | 
| 793 | /* | 
| 794 |  * Dupliate a ctf_file_t and its underlying section information into a new | 
| 795 |  * container. This works by copying the three ctf_sect_t's of the original | 
| 796 |  * container if they exist and passing those into ctf_bufopen. To copy those, we | 
| 797 |  * mmap anonymous memory with ctf_data_alloc and bcopy the data across. It's not | 
| 798 |  * the cheapest thing, but it's what we've got. | 
| 799 |  */ | 
| 800 | ctf_file_t * | 
| 801 | ctf_dup(ctf_file_t *ofp) | 
| 802 | { | 
| 803 | 	ctf_file_t *fp; | 
| 804 | 	ctf_sect_t ctfsect, symsect, strsect; | 
| 805 | 	ctf_sect_t *ctp, *symp, *strp; | 
| 806 | 	void *cbuf, *symbuf, *strbuf; | 
| 807 | 	int err; | 
| 808 |  | 
| 809 | 	cbuf = symbuf = strbuf = NULL; | 
| 810 | 	/* | 
| 811 | 	 * The ctfsect isn't allowed to not exist, but the symbol and string | 
| 812 | 	 * section might not. We only need to copy the data of the section, not | 
| 813 | 	 * the name, as ctf_bufopen will take care of that. | 
| 814 | 	 */ | 
| 815 | 	bcopy(&ofp->ctf_data, &ctfsect, sizeof (ctf_sect_t)); | 
| 816 | 	cbuf = ctf_data_alloc(ctfsect.cts_size); | 
| 817 | 	if (cbuf == NULL) { | 
| 818 | 		(void) ctf_set_errno(ofp, ECTF_MMAP); | 
| 819 | 		return (NULL); | 
| 820 | 	} | 
| 821 |  | 
| 822 | 	bcopy(ctfsect.cts_data, cbuf, ctfsect.cts_size); | 
| 823 | 	ctf_data_protect(cbuf, ctfsect.cts_size); | 
| 824 | 	ctfsect.cts_data = cbuf; | 
| 825 | 	ctfsect.cts_offset = 0; | 
| 826 | 	ctp = &ctfsect; | 
| 827 |  | 
| 828 | 	if (ofp->ctf_symtab.cts_data != NULL) { | 
| 829 | 		bcopy(&ofp->ctf_symtab, &symsect, sizeof (ctf_sect_t)); | 
| 830 | 		symbuf = ctf_data_alloc(symsect.cts_size); | 
| 831 | 		if (symbuf == NULL) { | 
| 832 | 			(void) ctf_set_errno(ofp, ECTF_MMAP); | 
| 833 | 			goto err; | 
| 834 | 		} | 
| 835 | 		bcopy(symsect.cts_data, symbuf, symsect.cts_size); | 
| 836 | 		ctf_data_protect(symbuf, symsect.cts_size); | 
| 837 | 		symsect.cts_data = symbuf; | 
| 838 | 		symsect.cts_offset = 0; | 
| 839 | 		symp = &symsect; | 
| 840 | 	} else { | 
| 841 | 		symp = NULL; | 
| 842 | 	} | 
| 843 |  | 
| 844 | 	if (ofp->ctf_strtab.cts_data != NULL) { | 
| 845 | 		bcopy(&ofp->ctf_strtab, &strsect, sizeof (ctf_sect_t)); | 
| 846 | 		strbuf = ctf_data_alloc(strsect.cts_size); | 
| 847 | 		if (strbuf == NULL) { | 
| 848 | 			(void) ctf_set_errno(ofp, ECTF_MMAP); | 
| 849 | 			goto err; | 
| 850 | 		} | 
| 851 | 		bcopy(strsect.cts_data, strbuf, strsect.cts_size); | 
| 852 | 		ctf_data_protect(strbuf, strsect.cts_size); | 
| 853 | 		strsect.cts_data = strbuf; | 
| 854 | 		strsect.cts_offset = 0; | 
| 855 | 		strp = &strsect; | 
| 856 | 	} else { | 
| 857 | 		strp = NULL; | 
| 858 | 	} | 
| 859 |  | 
| 860 | 	fp = ctf_bufopen(ctp, symp, strp, &err); | 
| 861 | 	if (fp == NULL) { | 
| 862 | 		(void) ctf_set_errno(ofp, err); | 
| 863 | 		goto err; | 
| 864 | 	} | 
| 865 |  | 
| 866 | 	fp->ctf_flags |= LCTF_MMAP; | 
| 867 |  | 
| 868 | 	return (fp); | 
| 869 |  | 
| 870 | err: | 
| 871 | 	ctf_data_free(cbuf, ctfsect.cts_size); | 
| 872 | 	if (symbuf != NULL) | 
| 873 | 		ctf_data_free(symbuf, symsect.cts_size); | 
| 874 | 	if (strbuf != NULL) | 
| 875 | 		ctf_data_free(strbuf, strsect.cts_size); | 
| 876 | 	return (NULL); | 
| 877 | } | 
| 878 |  | 
| 879 | /* | 
| 880 |  * Close the specified CTF container and free associated data structures.  Note | 
| 881 |  * that ctf_close() is a reference counted operation: if the specified file is | 
| 882 |  * the parent of other active containers, its reference count will be greater | 
| 883 |  * than one and it will be freed later when no active children exist. | 
| 884 |  */ | 
| 885 | void | 
| 886 | ctf_close(ctf_file_t *fp) | 
| 887 | { | 
| 888 | 	ctf_dtdef_t *dtd, *ntd; | 
| 889 |  | 
| 890 | 	if (fp == NULL) | 
| 891 | 		return; /* allow ctf_close(NULL) to simplify caller code */ | 
| 892 |  | 
| 893 | 	ctf_dprintf("ctf_close(%p) refcnt=%u\n" , (void *)fp, fp->ctf_refcnt); | 
| 894 |  | 
| 895 | 	if (fp->ctf_refcnt > 1) { | 
| 896 | 		fp->ctf_refcnt--; | 
| 897 | 		return; | 
| 898 | 	} | 
| 899 |  | 
| 900 | 	if (fp->ctf_parent != NULL) | 
| 901 | 		ctf_close(fp->ctf_parent); | 
| 902 |  | 
| 903 | 	/* | 
| 904 | 	 * Note, to work properly with reference counting on the dynamic | 
| 905 | 	 * section, we must delete the list in reverse. | 
| 906 | 	 */ | 
| 907 | 	for (dtd = ctf_list_prev(&fp->ctf_dtdefs); dtd != NULL; dtd = ntd) { | 
| 908 | 		ntd = ctf_list_prev(dtd); | 
| 909 | 		ctf_dtd_delete(fp, dtd); | 
| 910 | 	} | 
| 911 |  | 
| 912 | 	ctf_free(fp->ctf_dthash, fp->ctf_dthashlen * sizeof (ctf_dtdef_t *)); | 
| 913 |  | 
| 914 | 	if (fp->ctf_flags & LCTF_MMAP) { | 
| 915 | 		if (fp->ctf_data.cts_data != NULL) | 
| 916 | 			ctf_sect_munmap(&fp->ctf_data); | 
| 917 | 		if (fp->ctf_symtab.cts_data != NULL) | 
| 918 | 			ctf_sect_munmap(&fp->ctf_symtab); | 
| 919 | 		if (fp->ctf_strtab.cts_data != NULL) | 
| 920 | 			ctf_sect_munmap(&fp->ctf_strtab); | 
| 921 | 	} | 
| 922 |  | 
| 923 | 	if (fp->ctf_data.cts_name != _CTF_NULLSTR && | 
| 924 | 	    fp->ctf_data.cts_name != NULL) { | 
| 925 | 		ctf_free(__UNCONST(fp->ctf_data.cts_name), | 
| 926 | 		    strlen(fp->ctf_data.cts_name) + 1); | 
| 927 | 	} | 
| 928 |  | 
| 929 | 	if (fp->ctf_symtab.cts_name != _CTF_NULLSTR && | 
| 930 | 	    fp->ctf_symtab.cts_name != NULL) { | 
| 931 | 		ctf_free(__UNCONST(fp->ctf_symtab.cts_name), | 
| 932 | 		    strlen(fp->ctf_symtab.cts_name) + 1); | 
| 933 | 	} | 
| 934 |  | 
| 935 | 	if (fp->ctf_strtab.cts_name != _CTF_NULLSTR && | 
| 936 | 	    fp->ctf_strtab.cts_name != NULL) { | 
| 937 | 		ctf_free(__UNCONST(fp->ctf_strtab.cts_name), | 
| 938 | 		    strlen(fp->ctf_strtab.cts_name) + 1); | 
| 939 | 	} | 
| 940 |  | 
| 941 | 	if (fp->ctf_base != fp->ctf_data.cts_data && fp->ctf_base != NULL) | 
| 942 | 		ctf_data_free(__UNCONST(fp->ctf_base), fp->ctf_size); | 
| 943 |  | 
| 944 | 	if (fp->ctf_sxlate != NULL) | 
| 945 | 		ctf_free(fp->ctf_sxlate, sizeof (uint_t) * fp->ctf_nsyms); | 
| 946 |  | 
| 947 | 	if (fp->ctf_txlate != NULL) { | 
| 948 | 		ctf_free(fp->ctf_txlate, | 
| 949 | 		    sizeof (uint_t) * (fp->ctf_typemax + 1)); | 
| 950 | 	} | 
| 951 |  | 
| 952 | 	if (fp->ctf_ptrtab != NULL) { | 
| 953 | 		ctf_free(fp->ctf_ptrtab, | 
| 954 | 		    sizeof (ushort_t) * (fp->ctf_typemax + 1)); | 
| 955 | 	} | 
| 956 |  | 
| 957 | 	ctf_hash_destroy(&fp->ctf_structs); | 
| 958 | 	ctf_hash_destroy(&fp->ctf_unions); | 
| 959 | 	ctf_hash_destroy(&fp->ctf_enums); | 
| 960 | 	ctf_hash_destroy(&fp->ctf_names); | 
| 961 |  | 
| 962 | 	ctf_free(fp, sizeof (ctf_file_t)); | 
| 963 | } | 
| 964 |  | 
| 965 | /* | 
| 966 |  * Return the CTF handle for the parent CTF container, if one exists. | 
| 967 |  * Otherwise return NULL to indicate this container has no imported parent. | 
| 968 |  */ | 
| 969 | ctf_file_t * | 
| 970 | ctf_parent_file(ctf_file_t *fp) | 
| 971 | { | 
| 972 | 	return (fp->ctf_parent); | 
| 973 | } | 
| 974 |  | 
| 975 | /* | 
| 976 |  * Return the name of the parent CTF container, if one exists.  Otherwise | 
| 977 |  * return NULL to indicate this container is a root container. | 
| 978 |  */ | 
| 979 | const char * | 
| 980 | ctf_parent_name(ctf_file_t *fp) | 
| 981 | { | 
| 982 | 	return (fp->ctf_parname); | 
| 983 | } | 
| 984 |  | 
| 985 | /* | 
| 986 |  * Import the types from the specified parent container by storing a pointer | 
| 987 |  * to it in ctf_parent and incrementing its reference count.  Only one parent | 
| 988 |  * is allowed: if a parent already exists, it is replaced by the new parent. | 
| 989 |  */ | 
| 990 | int | 
| 991 | ctf_import(ctf_file_t *fp, ctf_file_t *pfp) | 
| 992 | { | 
| 993 | 	if (fp == NULL || fp == pfp || (pfp != NULL && pfp->ctf_refcnt == 0)) | 
| 994 | 		return (ctf_set_errno(fp, EINVAL)); | 
| 995 |  | 
| 996 | 	if (pfp != NULL && pfp->ctf_dmodel != fp->ctf_dmodel) | 
| 997 | 		return (ctf_set_errno(fp, ECTF_DMODEL)); | 
| 998 |  | 
| 999 | 	if (fp->ctf_parent != NULL) | 
| 1000 | 		ctf_close(fp->ctf_parent); | 
| 1001 |  | 
| 1002 | 	if (pfp != NULL) { | 
| 1003 | 		fp->ctf_flags |= LCTF_CHILD; | 
| 1004 | 		pfp->ctf_refcnt++; | 
| 1005 | 	} | 
| 1006 |  | 
| 1007 | 	fp->ctf_parent = pfp; | 
| 1008 | 	return (0); | 
| 1009 | } | 
| 1010 |  | 
| 1011 | /* | 
| 1012 |  * Set the data model constant for the CTF container. | 
| 1013 |  */ | 
| 1014 | int | 
| 1015 | ctf_setmodel(ctf_file_t *fp, int model) | 
| 1016 | { | 
| 1017 | 	const ctf_dmodel_t *dp; | 
| 1018 |  | 
| 1019 | 	for (dp = _libctf_models; dp->ctd_name != NULL; dp++) { | 
| 1020 | 		if (dp->ctd_code == model) { | 
| 1021 | 			fp->ctf_dmodel = dp; | 
| 1022 | 			return (0); | 
| 1023 | 		} | 
| 1024 | 	} | 
| 1025 |  | 
| 1026 | 	return (ctf_set_errno(fp, EINVAL)); | 
| 1027 | } | 
| 1028 |  | 
| 1029 | /* | 
| 1030 |  * Return the data model constant for the CTF container. | 
| 1031 |  */ | 
| 1032 | int | 
| 1033 | ctf_getmodel(ctf_file_t *fp) | 
| 1034 | { | 
| 1035 | 	return (fp->ctf_dmodel->ctd_code); | 
| 1036 | } | 
| 1037 |  | 
| 1038 | void | 
| 1039 | ctf_setspecific(ctf_file_t *fp, void *data) | 
| 1040 | { | 
| 1041 | 	fp->ctf_specific = data; | 
| 1042 | } | 
| 1043 |  | 
| 1044 | void * | 
| 1045 | ctf_getspecific(ctf_file_t *fp) | 
| 1046 | { | 
| 1047 | 	return (fp->ctf_specific); | 
| 1048 | } | 
| 1049 |  |