| 1 | /* |
| 2 | * CDDL HEADER START |
| 3 | * |
| 4 | * The contents of this file are subject to the terms of the |
| 5 | * Common Development and Distribution License, Version 1.0 only |
| 6 | * (the "License"). You may not use this file except in compliance |
| 7 | * with the License. |
| 8 | * |
| 9 | * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE |
| 10 | * or http://www.opensolaris.org/os/licensing. |
| 11 | * See the License for the specific language governing permissions |
| 12 | * and limitations under the License. |
| 13 | * |
| 14 | * When distributing Covered Code, include this CDDL HEADER in each |
| 15 | * file and include the License file at usr/src/OPENSOLARIS.LICENSE. |
| 16 | * If applicable, add the following below this CDDL HEADER, with the |
| 17 | * fields enclosed by brackets "[]" replaced with your own identifying |
| 18 | * information: Portions Copyright [yyyy] [name of copyright owner] |
| 19 | * |
| 20 | * CDDL HEADER END |
| 21 | */ |
| 22 | |
| 23 | #ifdef HAVE_NBTOOL_CONFIG_H |
| 24 | #include "nbtool_config.h" |
| 25 | #endif |
| 26 | /* |
| 27 | * Copyright 2006 Sun Microsystems, Inc. All rights reserved. |
| 28 | * Use is subject to license terms. |
| 29 | */ |
| 30 | /* |
| 31 | * Copyright (c) 2013, Joyent, Inc. All rights reserved. |
| 32 | */ |
| 33 | |
| 34 | #include <ctf_impl.h> |
| 35 | #include <sys/mman.h> |
| 36 | #include <sys/zmod.h> |
| 37 | |
| 38 | static const ctf_dmodel_t _libctf_models[] = { |
| 39 | { "ILP32" , CTF_MODEL_ILP32, 4, 1, 2, 4, 4 }, |
| 40 | { "LP64" , CTF_MODEL_LP64, 8, 1, 2, 4, 8 }, |
| 41 | { NULL, 0, 0, 0, 0, 0, 0 } |
| 42 | }; |
| 43 | |
| 44 | const char _CTF_SECTION[] = ".SUNW_ctf" ; |
| 45 | const char _CTF_NULLSTR[] = "" ; |
| 46 | |
| 47 | int _libctf_version = CTF_VERSION; /* library client version */ |
| 48 | int _libctf_debug = 0; /* debugging messages enabled */ |
| 49 | |
| 50 | static ushort_t |
| 51 | get_kind_v1(ushort_t info) |
| 52 | { |
| 53 | return (CTF_INFO_KIND_V1(info)); |
| 54 | } |
| 55 | |
| 56 | static ushort_t |
| 57 | get_kind_v2(ushort_t info) |
| 58 | { |
| 59 | return (CTF_INFO_KIND(info)); |
| 60 | } |
| 61 | |
| 62 | static ushort_t |
| 63 | get_root_v1(ushort_t info) |
| 64 | { |
| 65 | return (CTF_INFO_ISROOT_V1(info)); |
| 66 | } |
| 67 | |
| 68 | static ushort_t |
| 69 | get_root_v2(ushort_t info) |
| 70 | { |
| 71 | return (CTF_INFO_ISROOT(info)); |
| 72 | } |
| 73 | |
| 74 | static ushort_t |
| 75 | get_vlen_v1(ushort_t info) |
| 76 | { |
| 77 | return (CTF_INFO_VLEN_V1(info)); |
| 78 | } |
| 79 | |
| 80 | static ushort_t |
| 81 | get_vlen_v2(ushort_t info) |
| 82 | { |
| 83 | return (CTF_INFO_VLEN(info)); |
| 84 | } |
| 85 | |
| 86 | static const ctf_fileops_t ctf_fileops[] = { |
| 87 | { NULL, NULL, NULL }, |
| 88 | { get_kind_v1, get_root_v1, get_vlen_v1 }, |
| 89 | { get_kind_v2, get_root_v2, get_vlen_v2 }, |
| 90 | }; |
| 91 | |
| 92 | /* |
| 93 | * Convert a 32-bit ELF symbol into GElf (Elf64) and return a pointer to it. |
| 94 | */ |
| 95 | static Elf64_Sym * |
| 96 | sym_to_gelf(const Elf32_Sym *src, Elf64_Sym *dst) |
| 97 | { |
| 98 | dst->st_name = src->st_name; |
| 99 | dst->st_value = src->st_value; |
| 100 | dst->st_size = src->st_size; |
| 101 | dst->st_info = src->st_info; |
| 102 | dst->st_other = src->st_other; |
| 103 | dst->st_shndx = src->st_shndx; |
| 104 | |
| 105 | return (dst); |
| 106 | } |
| 107 | |
| 108 | /* |
| 109 | * Initialize the symtab translation table by filling each entry with the |
| 110 | * offset of the CTF type or function data corresponding to each STT_FUNC or |
| 111 | * STT_OBJECT entry in the symbol table. |
| 112 | */ |
| 113 | static int |
| 114 | init_symtab(ctf_file_t *fp, const ctf_header_t *hp, |
| 115 | const ctf_sect_t *sp, const ctf_sect_t *strp) |
| 116 | { |
| 117 | const uchar_t *symp = sp->cts_data; |
| 118 | uint_t *xp = fp->ctf_sxlate; |
| 119 | uint_t *xend = xp + fp->ctf_nsyms; |
| 120 | |
| 121 | uint_t objtoff = hp->cth_objtoff; |
| 122 | uint_t funcoff = hp->cth_funcoff; |
| 123 | |
| 124 | ushort_t info, vlen; |
| 125 | Elf64_Sym sym, *gsp; |
| 126 | const char *name; |
| 127 | |
| 128 | /* |
| 129 | * The CTF data object and function type sections are ordered to match |
| 130 | * the relative order of the respective symbol types in the symtab. |
| 131 | * If no type information is available for a symbol table entry, a |
| 132 | * pad is inserted in the CTF section. As a further optimization, |
| 133 | * anonymous or undefined symbols are omitted from the CTF data. |
| 134 | */ |
| 135 | for (; xp < xend; xp++, symp += sp->cts_entsize) { |
| 136 | if (sp->cts_entsize == sizeof (Elf32_Sym)) |
| 137 | gsp = sym_to_gelf((Elf32_Sym *)(uintptr_t)symp, &sym); |
| 138 | else |
| 139 | gsp = (Elf64_Sym *)(uintptr_t)symp; |
| 140 | |
| 141 | if (gsp->st_name < strp->cts_size) |
| 142 | name = (const char *)strp->cts_data + gsp->st_name; |
| 143 | else |
| 144 | name = _CTF_NULLSTR; |
| 145 | |
| 146 | if (gsp->st_name == 0 || gsp->st_shndx == SHN_UNDEF || |
| 147 | strcmp(name, "_START_" ) == 0 || |
| 148 | strcmp(name, "_END_" ) == 0) { |
| 149 | *xp = -1u; |
| 150 | continue; |
| 151 | } |
| 152 | |
| 153 | switch (ELF64_ST_TYPE(gsp->st_info)) { |
| 154 | case STT_OBJECT: |
| 155 | if (objtoff >= hp->cth_funcoff || |
| 156 | (gsp->st_shndx == SHN_ABS && gsp->st_value == 0)) { |
| 157 | *xp = -1u; |
| 158 | break; |
| 159 | } |
| 160 | |
| 161 | *xp = objtoff; |
| 162 | objtoff += sizeof (ushort_t); |
| 163 | break; |
| 164 | |
| 165 | case STT_FUNC: |
| 166 | if (funcoff >= hp->cth_typeoff) { |
| 167 | *xp = -1u; |
| 168 | break; |
| 169 | } |
| 170 | |
| 171 | *xp = funcoff; |
| 172 | |
| 173 | info = *(ushort_t *)((uintptr_t)fp->ctf_buf + funcoff); |
| 174 | vlen = LCTF_INFO_VLEN(fp, info); |
| 175 | |
| 176 | /* |
| 177 | * If we encounter a zero pad at the end, just skip it. |
| 178 | * Otherwise skip over the function and its return type |
| 179 | * (+2) and the argument list (vlen). |
| 180 | */ |
| 181 | if (LCTF_INFO_KIND(fp, info) == CTF_K_UNKNOWN && |
| 182 | vlen == 0) |
| 183 | funcoff += sizeof (ushort_t); /* skip pad */ |
| 184 | else |
| 185 | funcoff += sizeof (ushort_t) * (vlen + 2); |
| 186 | break; |
| 187 | |
| 188 | default: |
| 189 | *xp = -1u; |
| 190 | break; |
| 191 | } |
| 192 | } |
| 193 | |
| 194 | ctf_dprintf("loaded %lu symtab entries\n" , fp->ctf_nsyms); |
| 195 | return (0); |
| 196 | } |
| 197 | |
| 198 | /* |
| 199 | * Initialize the type ID translation table with the byte offset of each type, |
| 200 | * and initialize the hash tables of each named type. |
| 201 | */ |
| 202 | static int |
| 203 | init_types(ctf_file_t *fp, const ctf_header_t *cth) |
| 204 | { |
| 205 | /* LINTED - pointer alignment */ |
| 206 | const ctf_type_t *tbuf = (const ctf_type_t *)(fp->ctf_buf + cth->cth_typeoff); |
| 207 | /* LINTED - pointer alignment */ |
| 208 | const ctf_type_t *tend = (const ctf_type_t *)(fp->ctf_buf + cth->cth_stroff); |
| 209 | |
| 210 | ulong_t pop[CTF_K_MAX + 1] = { 0 }; |
| 211 | const ctf_type_t *tp; |
| 212 | ctf_hash_t *hp; |
| 213 | ushort_t id, dst; |
| 214 | uint_t *xp; |
| 215 | |
| 216 | /* |
| 217 | * We initially determine whether the container is a child or a parent |
| 218 | * based on the value of cth_parname. To support containers that pre- |
| 219 | * date cth_parname, we also scan the types themselves for references |
| 220 | * to values in the range reserved for child types in our first pass. |
| 221 | */ |
| 222 | int child = cth->cth_parname != 0; |
| 223 | int nlstructs = 0, nlunions = 0; |
| 224 | int err; |
| 225 | |
| 226 | /* |
| 227 | * We make two passes through the entire type section. In this first |
| 228 | * pass, we count the number of each type and the total number of types. |
| 229 | */ |
| 230 | for (tp = tbuf; tp < tend; fp->ctf_typemax++) { |
| 231 | ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info); |
| 232 | ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info); |
| 233 | ssize_t size, increment; |
| 234 | |
| 235 | size_t vbytes; |
| 236 | uint_t n; |
| 237 | |
| 238 | (void) ctf_get_ctt_size(fp, tp, &size, &increment); |
| 239 | |
| 240 | switch (kind) { |
| 241 | case CTF_K_INTEGER: |
| 242 | case CTF_K_FLOAT: |
| 243 | vbytes = sizeof (uint_t); |
| 244 | break; |
| 245 | case CTF_K_ARRAY: |
| 246 | vbytes = sizeof (ctf_array_t); |
| 247 | break; |
| 248 | case CTF_K_FUNCTION: |
| 249 | vbytes = sizeof (ushort_t) * (vlen + (vlen & 1)); |
| 250 | break; |
| 251 | case CTF_K_STRUCT: |
| 252 | case CTF_K_UNION: |
| 253 | if (fp->ctf_version == CTF_VERSION_1 || |
| 254 | size < CTF_LSTRUCT_THRESH) { |
| 255 | ctf_member_t *mp = (ctf_member_t *) |
| 256 | ((uintptr_t)tp + increment); |
| 257 | |
| 258 | vbytes = sizeof (ctf_member_t) * vlen; |
| 259 | for (n = vlen; n != 0; n--, mp++) |
| 260 | child |= CTF_TYPE_ISCHILD(mp->ctm_type); |
| 261 | } else { |
| 262 | ctf_lmember_t *lmp = (ctf_lmember_t *) |
| 263 | ((uintptr_t)tp + increment); |
| 264 | |
| 265 | vbytes = sizeof (ctf_lmember_t) * vlen; |
| 266 | for (n = vlen; n != 0; n--, lmp++) |
| 267 | child |= |
| 268 | CTF_TYPE_ISCHILD(lmp->ctlm_type); |
| 269 | } |
| 270 | break; |
| 271 | case CTF_K_ENUM: |
| 272 | vbytes = sizeof (ctf_enum_t) * vlen; |
| 273 | break; |
| 274 | case CTF_K_FORWARD: |
| 275 | /* |
| 276 | * For forward declarations, ctt_type is the CTF_K_* |
| 277 | * kind for the tag, so bump that population count too. |
| 278 | * If ctt_type is unknown, treat the tag as a struct. |
| 279 | */ |
| 280 | if (tp->ctt_type == CTF_K_UNKNOWN || |
| 281 | tp->ctt_type >= CTF_K_MAX) |
| 282 | pop[CTF_K_STRUCT]++; |
| 283 | else |
| 284 | pop[tp->ctt_type]++; |
| 285 | /*FALLTHRU*/ |
| 286 | case CTF_K_UNKNOWN: |
| 287 | vbytes = 0; |
| 288 | break; |
| 289 | case CTF_K_POINTER: |
| 290 | case CTF_K_TYPEDEF: |
| 291 | case CTF_K_VOLATILE: |
| 292 | case CTF_K_CONST: |
| 293 | case CTF_K_RESTRICT: |
| 294 | child |= CTF_TYPE_ISCHILD(tp->ctt_type); |
| 295 | vbytes = 0; |
| 296 | break; |
| 297 | default: |
| 298 | ctf_dprintf("detected invalid CTF kind -- %u\n" , kind); |
| 299 | return (ECTF_CORRUPT); |
| 300 | } |
| 301 | tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes); |
| 302 | pop[kind]++; |
| 303 | } |
| 304 | |
| 305 | /* |
| 306 | * If we detected a reference to a child type ID, then we know this |
| 307 | * container is a child and may have a parent's types imported later. |
| 308 | */ |
| 309 | if (child) { |
| 310 | ctf_dprintf("CTF container %p is a child\n" , (void *)fp); |
| 311 | fp->ctf_flags |= LCTF_CHILD; |
| 312 | } else |
| 313 | ctf_dprintf("CTF container %p is a parent\n" , (void *)fp); |
| 314 | |
| 315 | /* |
| 316 | * Now that we've counted up the number of each type, we can allocate |
| 317 | * the hash tables, type translation table, and pointer table. |
| 318 | */ |
| 319 | if ((err = ctf_hash_create(&fp->ctf_structs, pop[CTF_K_STRUCT])) != 0) |
| 320 | return (err); |
| 321 | |
| 322 | if ((err = ctf_hash_create(&fp->ctf_unions, pop[CTF_K_UNION])) != 0) |
| 323 | return (err); |
| 324 | |
| 325 | if ((err = ctf_hash_create(&fp->ctf_enums, pop[CTF_K_ENUM])) != 0) |
| 326 | return (err); |
| 327 | |
| 328 | if ((err = ctf_hash_create(&fp->ctf_names, |
| 329 | pop[CTF_K_INTEGER] + pop[CTF_K_FLOAT] + pop[CTF_K_FUNCTION] + |
| 330 | pop[CTF_K_TYPEDEF] + pop[CTF_K_POINTER] + pop[CTF_K_VOLATILE] + |
| 331 | pop[CTF_K_CONST] + pop[CTF_K_RESTRICT])) != 0) |
| 332 | return (err); |
| 333 | |
| 334 | fp->ctf_txlate = ctf_alloc(sizeof (uint_t) * (fp->ctf_typemax + 1)); |
| 335 | fp->ctf_ptrtab = ctf_alloc(sizeof (ushort_t) * (fp->ctf_typemax + 1)); |
| 336 | |
| 337 | if (fp->ctf_txlate == NULL || fp->ctf_ptrtab == NULL) |
| 338 | return (EAGAIN); /* memory allocation failed */ |
| 339 | |
| 340 | xp = fp->ctf_txlate; |
| 341 | *xp++ = 0; /* type id 0 is used as a sentinel value */ |
| 342 | |
| 343 | bzero(fp->ctf_txlate, sizeof (uint_t) * (fp->ctf_typemax + 1)); |
| 344 | bzero(fp->ctf_ptrtab, sizeof (ushort_t) * (fp->ctf_typemax + 1)); |
| 345 | |
| 346 | /* |
| 347 | * In the second pass through the types, we fill in each entry of the |
| 348 | * type and pointer tables and add names to the appropriate hashes. |
| 349 | */ |
| 350 | for (id = 1, tp = tbuf; tp < tend; xp++, id++) { |
| 351 | ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info); |
| 352 | ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info); |
| 353 | ssize_t size, increment; |
| 354 | |
| 355 | const char *name; |
| 356 | size_t vbytes; |
| 357 | ctf_helem_t *hep; |
| 358 | ctf_encoding_t cte; |
| 359 | |
| 360 | (void) ctf_get_ctt_size(fp, tp, &size, &increment); |
| 361 | name = ctf_strptr(fp, tp->ctt_name); |
| 362 | |
| 363 | switch (kind) { |
| 364 | case CTF_K_INTEGER: |
| 365 | case CTF_K_FLOAT: |
| 366 | /* |
| 367 | * Only insert a new integer base type definition if |
| 368 | * this type name has not been defined yet. We re-use |
| 369 | * the names with different encodings for bit-fields. |
| 370 | */ |
| 371 | if ((hep = ctf_hash_lookup(&fp->ctf_names, fp, |
| 372 | name, strlen(name))) == NULL) { |
| 373 | err = ctf_hash_insert(&fp->ctf_names, fp, |
| 374 | CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); |
| 375 | if (err != 0 && err != ECTF_STRTAB) |
| 376 | return (err); |
| 377 | } else if (ctf_type_encoding(fp, hep->h_type, |
| 378 | &cte) == 0 && cte.cte_bits == 0) { |
| 379 | /* |
| 380 | * Work-around SOS8 stabs bug: replace existing |
| 381 | * intrinsic w/ same name if it was zero bits. |
| 382 | */ |
| 383 | hep->h_type = CTF_INDEX_TO_TYPE(id, child); |
| 384 | } |
| 385 | vbytes = sizeof (uint_t); |
| 386 | break; |
| 387 | |
| 388 | case CTF_K_ARRAY: |
| 389 | vbytes = sizeof (ctf_array_t); |
| 390 | break; |
| 391 | |
| 392 | case CTF_K_FUNCTION: |
| 393 | err = ctf_hash_insert(&fp->ctf_names, fp, |
| 394 | CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); |
| 395 | if (err != 0 && err != ECTF_STRTAB) |
| 396 | return (err); |
| 397 | vbytes = sizeof (ushort_t) * (vlen + (vlen & 1)); |
| 398 | break; |
| 399 | |
| 400 | case CTF_K_STRUCT: |
| 401 | err = ctf_hash_define(&fp->ctf_structs, fp, |
| 402 | CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); |
| 403 | |
| 404 | if (err != 0 && err != ECTF_STRTAB) |
| 405 | return (err); |
| 406 | |
| 407 | if (fp->ctf_version == CTF_VERSION_1 || |
| 408 | size < CTF_LSTRUCT_THRESH) |
| 409 | vbytes = sizeof (ctf_member_t) * vlen; |
| 410 | else { |
| 411 | vbytes = sizeof (ctf_lmember_t) * vlen; |
| 412 | nlstructs++; |
| 413 | } |
| 414 | break; |
| 415 | |
| 416 | case CTF_K_UNION: |
| 417 | err = ctf_hash_define(&fp->ctf_unions, fp, |
| 418 | CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); |
| 419 | |
| 420 | if (err != 0 && err != ECTF_STRTAB) |
| 421 | return (err); |
| 422 | |
| 423 | if (fp->ctf_version == CTF_VERSION_1 || |
| 424 | size < CTF_LSTRUCT_THRESH) |
| 425 | vbytes = sizeof (ctf_member_t) * vlen; |
| 426 | else { |
| 427 | vbytes = sizeof (ctf_lmember_t) * vlen; |
| 428 | nlunions++; |
| 429 | } |
| 430 | break; |
| 431 | |
| 432 | case CTF_K_ENUM: |
| 433 | err = ctf_hash_define(&fp->ctf_enums, fp, |
| 434 | CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); |
| 435 | |
| 436 | if (err != 0 && err != ECTF_STRTAB) |
| 437 | return (err); |
| 438 | |
| 439 | vbytes = sizeof (ctf_enum_t) * vlen; |
| 440 | break; |
| 441 | |
| 442 | case CTF_K_TYPEDEF: |
| 443 | err = ctf_hash_insert(&fp->ctf_names, fp, |
| 444 | CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); |
| 445 | if (err != 0 && err != ECTF_STRTAB) |
| 446 | return (err); |
| 447 | vbytes = 0; |
| 448 | break; |
| 449 | |
| 450 | case CTF_K_FORWARD: |
| 451 | /* |
| 452 | * Only insert forward tags into the given hash if the |
| 453 | * type or tag name is not already present. |
| 454 | */ |
| 455 | switch (tp->ctt_type) { |
| 456 | case CTF_K_STRUCT: |
| 457 | hp = &fp->ctf_structs; |
| 458 | break; |
| 459 | case CTF_K_UNION: |
| 460 | hp = &fp->ctf_unions; |
| 461 | break; |
| 462 | case CTF_K_ENUM: |
| 463 | hp = &fp->ctf_enums; |
| 464 | break; |
| 465 | default: |
| 466 | hp = &fp->ctf_structs; |
| 467 | } |
| 468 | |
| 469 | if (ctf_hash_lookup(hp, fp, |
| 470 | name, strlen(name)) == NULL) { |
| 471 | err = ctf_hash_insert(hp, fp, |
| 472 | CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); |
| 473 | if (err != 0 && err != ECTF_STRTAB) |
| 474 | return (err); |
| 475 | } |
| 476 | vbytes = 0; |
| 477 | break; |
| 478 | |
| 479 | case CTF_K_POINTER: |
| 480 | /* |
| 481 | * If the type referenced by the pointer is in this CTF |
| 482 | * container, then store the index of the pointer type |
| 483 | * in fp->ctf_ptrtab[ index of referenced type ]. |
| 484 | */ |
| 485 | if (CTF_TYPE_ISCHILD(tp->ctt_type) == child && |
| 486 | CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax) |
| 487 | fp->ctf_ptrtab[ |
| 488 | CTF_TYPE_TO_INDEX(tp->ctt_type)] = id; |
| 489 | /*FALLTHRU*/ |
| 490 | |
| 491 | case CTF_K_VOLATILE: |
| 492 | case CTF_K_CONST: |
| 493 | case CTF_K_RESTRICT: |
| 494 | err = ctf_hash_insert(&fp->ctf_names, fp, |
| 495 | CTF_INDEX_TO_TYPE(id, child), tp->ctt_name); |
| 496 | if (err != 0 && err != ECTF_STRTAB) |
| 497 | return (err); |
| 498 | /*FALLTHRU*/ |
| 499 | |
| 500 | default: |
| 501 | vbytes = 0; |
| 502 | break; |
| 503 | } |
| 504 | |
| 505 | *xp = (uint_t)((uintptr_t)tp - (uintptr_t)fp->ctf_buf); |
| 506 | tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes); |
| 507 | } |
| 508 | |
| 509 | ctf_dprintf("%lu total types processed\n" , fp->ctf_typemax); |
| 510 | ctf_dprintf("%u enum names hashed\n" , ctf_hash_size(&fp->ctf_enums)); |
| 511 | ctf_dprintf("%u struct names hashed (%d long)\n" , |
| 512 | ctf_hash_size(&fp->ctf_structs), nlstructs); |
| 513 | ctf_dprintf("%u union names hashed (%d long)\n" , |
| 514 | ctf_hash_size(&fp->ctf_unions), nlunions); |
| 515 | ctf_dprintf("%u base type names hashed\n" , |
| 516 | ctf_hash_size(&fp->ctf_names)); |
| 517 | |
| 518 | /* |
| 519 | * Make an additional pass through the pointer table to find pointers |
| 520 | * that point to anonymous typedef nodes. If we find one, modify the |
| 521 | * pointer table so that the pointer is also known to point to the |
| 522 | * node that is referenced by the anonymous typedef node. |
| 523 | */ |
| 524 | for (id = 1; id <= fp->ctf_typemax; id++) { |
| 525 | if ((dst = fp->ctf_ptrtab[id]) != 0) { |
| 526 | tp = LCTF_INDEX_TO_TYPEPTR(fp, id); |
| 527 | |
| 528 | if (LCTF_INFO_KIND(fp, tp->ctt_info) == CTF_K_TYPEDEF && |
| 529 | strcmp(ctf_strptr(fp, tp->ctt_name), "" ) == 0 && |
| 530 | CTF_TYPE_ISCHILD(tp->ctt_type) == child && |
| 531 | CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax) |
| 532 | fp->ctf_ptrtab[ |
| 533 | CTF_TYPE_TO_INDEX(tp->ctt_type)] = dst; |
| 534 | } |
| 535 | } |
| 536 | |
| 537 | return (0); |
| 538 | } |
| 539 | |
| 540 | /* |
| 541 | * Decode the specified CTF buffer and optional symbol table and create a new |
| 542 | * CTF container representing the symbolic debugging information. This code |
| 543 | * can be used directly by the debugger, or it can be used as the engine for |
| 544 | * ctf_fdopen() or ctf_open(), below. |
| 545 | */ |
| 546 | ctf_file_t * |
| 547 | ctf_bufopen(const ctf_sect_t *ctfsect, const ctf_sect_t *symsect, |
| 548 | const ctf_sect_t *strsect, int *errp) |
| 549 | { |
| 550 | const ctf_preamble_t *pp; |
| 551 | ctf_header_t hp; |
| 552 | ctf_file_t *fp; |
| 553 | void *buf, *base; |
| 554 | size_t size, hdrsz; |
| 555 | int err; |
| 556 | |
| 557 | if (ctfsect == NULL || ((symsect == NULL) != (strsect == NULL))) |
| 558 | return (ctf_set_open_errno(errp, EINVAL)); |
| 559 | |
| 560 | if (symsect != NULL && symsect->cts_entsize != sizeof (Elf32_Sym) && |
| 561 | symsect->cts_entsize != sizeof (Elf64_Sym)) |
| 562 | return (ctf_set_open_errno(errp, ECTF_SYMTAB)); |
| 563 | |
| 564 | if (symsect != NULL && symsect->cts_data == NULL) |
| 565 | return (ctf_set_open_errno(errp, ECTF_SYMBAD)); |
| 566 | |
| 567 | if (strsect != NULL && strsect->cts_data == NULL) |
| 568 | return (ctf_set_open_errno(errp, ECTF_STRBAD)); |
| 569 | |
| 570 | if (ctfsect->cts_size < sizeof (ctf_preamble_t)) |
| 571 | return (ctf_set_open_errno(errp, ECTF_NOCTFBUF)); |
| 572 | |
| 573 | pp = (const ctf_preamble_t *)ctfsect->cts_data; |
| 574 | |
| 575 | ctf_dprintf("ctf_bufopen: magic=0x%x version=%u\n" , |
| 576 | pp->ctp_magic, pp->ctp_version); |
| 577 | |
| 578 | /* |
| 579 | * Validate each part of the CTF header (either V1 or V2). |
| 580 | * First, we validate the preamble (common to all versions). At that |
| 581 | * point, we know specific header version, and can validate the |
| 582 | * version-specific parts including section offsets and alignments. |
| 583 | */ |
| 584 | if (pp->ctp_magic != CTF_MAGIC) |
| 585 | return (ctf_set_open_errno(errp, ECTF_NOCTFBUF)); |
| 586 | |
| 587 | if (pp->ctp_version == CTF_VERSION_2) { |
| 588 | if (ctfsect->cts_size < sizeof (ctf_header_t)) |
| 589 | return (ctf_set_open_errno(errp, ECTF_NOCTFBUF)); |
| 590 | |
| 591 | bcopy(ctfsect->cts_data, &hp, sizeof (hp)); |
| 592 | hdrsz = sizeof (ctf_header_t); |
| 593 | |
| 594 | } else if (pp->ctp_version == CTF_VERSION_1) { |
| 595 | const ctf_header_v1_t *h1p = |
| 596 | (const ctf_header_v1_t *)ctfsect->cts_data; |
| 597 | |
| 598 | if (ctfsect->cts_size < sizeof (ctf_header_v1_t)) |
| 599 | return (ctf_set_open_errno(errp, ECTF_NOCTFBUF)); |
| 600 | |
| 601 | bzero(&hp, sizeof (hp)); |
| 602 | hp.cth_preamble = h1p->cth_preamble; |
| 603 | hp.cth_objtoff = h1p->cth_objtoff; |
| 604 | hp.cth_funcoff = h1p->cth_funcoff; |
| 605 | hp.cth_typeoff = h1p->cth_typeoff; |
| 606 | hp.cth_stroff = h1p->cth_stroff; |
| 607 | hp.cth_strlen = h1p->cth_strlen; |
| 608 | |
| 609 | hdrsz = sizeof (ctf_header_v1_t); |
| 610 | } else |
| 611 | return (ctf_set_open_errno(errp, ECTF_CTFVERS)); |
| 612 | |
| 613 | size = hp.cth_stroff + hp.cth_strlen; |
| 614 | |
| 615 | ctf_dprintf("ctf_bufopen: uncompressed size=%lu\n" , (ulong_t)size); |
| 616 | |
| 617 | if (hp.cth_lbloff > size || hp.cth_objtoff > size || |
| 618 | hp.cth_funcoff > size || hp.cth_typeoff > size || |
| 619 | hp.cth_stroff > size) |
| 620 | return (ctf_set_open_errno(errp, ECTF_CORRUPT)); |
| 621 | |
| 622 | if (hp.cth_lbloff > hp.cth_objtoff || |
| 623 | hp.cth_objtoff > hp.cth_funcoff || |
| 624 | hp.cth_funcoff > hp.cth_typeoff || |
| 625 | hp.cth_typeoff > hp.cth_stroff) |
| 626 | return (ctf_set_open_errno(errp, ECTF_CORRUPT)); |
| 627 | |
| 628 | if ((hp.cth_lbloff & 3) || (hp.cth_objtoff & 1) || |
| 629 | (hp.cth_funcoff & 1) || (hp.cth_typeoff & 3)) |
| 630 | return (ctf_set_open_errno(errp, ECTF_CORRUPT)); |
| 631 | |
| 632 | /* |
| 633 | * Once everything is determined to be valid, attempt to decompress |
| 634 | * the CTF data buffer if it is compressed. Otherwise we just put |
| 635 | * the data section's buffer pointer into ctf_buf, below. |
| 636 | */ |
| 637 | if (hp.cth_flags & CTF_F_COMPRESS) { |
| 638 | size_t srclen, dstlen; |
| 639 | const void *src; |
| 640 | int rc = Z_OK; |
| 641 | |
| 642 | if (ctf_zopen(errp) == NULL) |
| 643 | return (NULL); /* errp is set for us */ |
| 644 | |
| 645 | if ((base = ctf_data_alloc(size + hdrsz)) == MAP_FAILED) |
| 646 | return (ctf_set_open_errno(errp, ECTF_ZALLOC)); |
| 647 | |
| 648 | bcopy(ctfsect->cts_data, base, hdrsz); |
| 649 | ((ctf_preamble_t *)base)->ctp_flags &= ~CTF_F_COMPRESS; |
| 650 | buf = (uchar_t *)base + hdrsz; |
| 651 | |
| 652 | src = (uchar_t *)ctfsect->cts_data + hdrsz; |
| 653 | srclen = ctfsect->cts_size - hdrsz; |
| 654 | dstlen = size; |
| 655 | |
| 656 | if ((rc = z_uncompress(buf, &dstlen, src, srclen)) != Z_OK) { |
| 657 | ctf_dprintf("zlib inflate err: %s\n" , z_strerror(rc)); |
| 658 | ctf_data_free(base, size + hdrsz); |
| 659 | return (ctf_set_open_errno(errp, ECTF_DECOMPRESS)); |
| 660 | } |
| 661 | |
| 662 | if (dstlen != size) { |
| 663 | ctf_dprintf("zlib inflate short -- got %lu of %lu " |
| 664 | "bytes\n" , (ulong_t)dstlen, (ulong_t)size); |
| 665 | ctf_data_free(base, size + hdrsz); |
| 666 | return (ctf_set_open_errno(errp, ECTF_CORRUPT)); |
| 667 | } |
| 668 | |
| 669 | ctf_data_protect(base, size + hdrsz); |
| 670 | |
| 671 | } else { |
| 672 | base = (void *)ctfsect->cts_data; |
| 673 | buf = (uchar_t *)base + hdrsz; |
| 674 | } |
| 675 | |
| 676 | /* |
| 677 | * Once we have uncompressed and validated the CTF data buffer, we can |
| 678 | * proceed with allocating a ctf_file_t and initializing it. |
| 679 | */ |
| 680 | if ((fp = ctf_alloc(sizeof (ctf_file_t))) == NULL) |
| 681 | return (ctf_set_open_errno(errp, EAGAIN)); |
| 682 | |
| 683 | bzero(fp, sizeof (ctf_file_t)); |
| 684 | fp->ctf_version = hp.cth_version; |
| 685 | fp->ctf_fileops = &ctf_fileops[hp.cth_version]; |
| 686 | bcopy(ctfsect, &fp->ctf_data, sizeof (ctf_sect_t)); |
| 687 | |
| 688 | if (symsect != NULL) { |
| 689 | bcopy(symsect, &fp->ctf_symtab, sizeof (ctf_sect_t)); |
| 690 | bcopy(strsect, &fp->ctf_strtab, sizeof (ctf_sect_t)); |
| 691 | } |
| 692 | |
| 693 | if (fp->ctf_data.cts_name != NULL) |
| 694 | fp->ctf_data.cts_name = ctf_strdup(fp->ctf_data.cts_name); |
| 695 | if (fp->ctf_symtab.cts_name != NULL) |
| 696 | fp->ctf_symtab.cts_name = ctf_strdup(fp->ctf_symtab.cts_name); |
| 697 | if (fp->ctf_strtab.cts_name != NULL) |
| 698 | fp->ctf_strtab.cts_name = ctf_strdup(fp->ctf_strtab.cts_name); |
| 699 | |
| 700 | if (fp->ctf_data.cts_name == NULL) |
| 701 | fp->ctf_data.cts_name = __UNCONST(_CTF_NULLSTR); |
| 702 | if (fp->ctf_symtab.cts_name == NULL) |
| 703 | fp->ctf_symtab.cts_name = __UNCONST(_CTF_NULLSTR); |
| 704 | if (fp->ctf_strtab.cts_name == NULL) |
| 705 | fp->ctf_strtab.cts_name = __UNCONST(_CTF_NULLSTR); |
| 706 | |
| 707 | fp->ctf_str[CTF_STRTAB_0].cts_strs = (const char *)buf + hp.cth_stroff; |
| 708 | fp->ctf_str[CTF_STRTAB_0].cts_len = hp.cth_strlen; |
| 709 | |
| 710 | if (strsect != NULL) { |
| 711 | fp->ctf_str[CTF_STRTAB_1].cts_strs = strsect->cts_data; |
| 712 | fp->ctf_str[CTF_STRTAB_1].cts_len = strsect->cts_size; |
| 713 | } |
| 714 | |
| 715 | fp->ctf_base = base; |
| 716 | fp->ctf_buf = buf; |
| 717 | fp->ctf_size = size + hdrsz; |
| 718 | |
| 719 | /* |
| 720 | * If we have a parent container name and label, store the relocated |
| 721 | * string pointers in the CTF container for easy access later. |
| 722 | */ |
| 723 | if (hp.cth_parlabel != 0) |
| 724 | fp->ctf_parlabel = ctf_strptr(fp, hp.cth_parlabel); |
| 725 | if (hp.cth_parname != 0) |
| 726 | fp->ctf_parname = ctf_strptr(fp, hp.cth_parname); |
| 727 | |
| 728 | ctf_dprintf("ctf_bufopen: parent name %s (label %s)\n" , |
| 729 | fp->ctf_parname ? fp->ctf_parname : "<NULL>" , |
| 730 | fp->ctf_parlabel ? fp->ctf_parlabel : "<NULL>" ); |
| 731 | |
| 732 | /* |
| 733 | * If we have a symbol table section, allocate and initialize |
| 734 | * the symtab translation table, pointed to by ctf_sxlate. |
| 735 | */ |
| 736 | if (symsect != NULL) { |
| 737 | fp->ctf_nsyms = symsect->cts_size / symsect->cts_entsize; |
| 738 | fp->ctf_sxlate = ctf_alloc(fp->ctf_nsyms * sizeof (uint_t)); |
| 739 | |
| 740 | if (fp->ctf_sxlate == NULL) { |
| 741 | (void) ctf_set_open_errno(errp, EAGAIN); |
| 742 | goto bad; |
| 743 | } |
| 744 | |
| 745 | if ((err = init_symtab(fp, &hp, symsect, strsect)) != 0) { |
| 746 | (void) ctf_set_open_errno(errp, err); |
| 747 | goto bad; |
| 748 | } |
| 749 | } |
| 750 | |
| 751 | if ((err = init_types(fp, &hp)) != 0) { |
| 752 | (void) ctf_set_open_errno(errp, err); |
| 753 | goto bad; |
| 754 | } |
| 755 | |
| 756 | /* |
| 757 | * Initialize the ctf_lookup_by_name top-level dictionary. We keep an |
| 758 | * array of type name prefixes and the corresponding ctf_hash to use. |
| 759 | * NOTE: This code must be kept in sync with the code in ctf_update(). |
| 760 | */ |
| 761 | fp->ctf_lookups[0].ctl_prefix = "struct" ; |
| 762 | fp->ctf_lookups[0].ctl_len = strlen(fp->ctf_lookups[0].ctl_prefix); |
| 763 | fp->ctf_lookups[0].ctl_hash = &fp->ctf_structs; |
| 764 | fp->ctf_lookups[1].ctl_prefix = "union" ; |
| 765 | fp->ctf_lookups[1].ctl_len = strlen(fp->ctf_lookups[1].ctl_prefix); |
| 766 | fp->ctf_lookups[1].ctl_hash = &fp->ctf_unions; |
| 767 | fp->ctf_lookups[2].ctl_prefix = "enum" ; |
| 768 | fp->ctf_lookups[2].ctl_len = strlen(fp->ctf_lookups[2].ctl_prefix); |
| 769 | fp->ctf_lookups[2].ctl_hash = &fp->ctf_enums; |
| 770 | fp->ctf_lookups[3].ctl_prefix = _CTF_NULLSTR; |
| 771 | fp->ctf_lookups[3].ctl_len = strlen(fp->ctf_lookups[3].ctl_prefix); |
| 772 | fp->ctf_lookups[3].ctl_hash = &fp->ctf_names; |
| 773 | fp->ctf_lookups[4].ctl_prefix = NULL; |
| 774 | fp->ctf_lookups[4].ctl_len = 0; |
| 775 | fp->ctf_lookups[4].ctl_hash = NULL; |
| 776 | |
| 777 | if (symsect != NULL) { |
| 778 | if (symsect->cts_entsize == sizeof (Elf64_Sym)) |
| 779 | (void) ctf_setmodel(fp, CTF_MODEL_LP64); |
| 780 | else |
| 781 | (void) ctf_setmodel(fp, CTF_MODEL_ILP32); |
| 782 | } else |
| 783 | (void) ctf_setmodel(fp, CTF_MODEL_NATIVE); |
| 784 | |
| 785 | fp->ctf_refcnt = 1; |
| 786 | return (fp); |
| 787 | |
| 788 | bad: |
| 789 | ctf_close(fp); |
| 790 | return (NULL); |
| 791 | } |
| 792 | |
| 793 | /* |
| 794 | * Dupliate a ctf_file_t and its underlying section information into a new |
| 795 | * container. This works by copying the three ctf_sect_t's of the original |
| 796 | * container if they exist and passing those into ctf_bufopen. To copy those, we |
| 797 | * mmap anonymous memory with ctf_data_alloc and bcopy the data across. It's not |
| 798 | * the cheapest thing, but it's what we've got. |
| 799 | */ |
| 800 | ctf_file_t * |
| 801 | ctf_dup(ctf_file_t *ofp) |
| 802 | { |
| 803 | ctf_file_t *fp; |
| 804 | ctf_sect_t ctfsect, symsect, strsect; |
| 805 | ctf_sect_t *ctp, *symp, *strp; |
| 806 | void *cbuf, *symbuf, *strbuf; |
| 807 | int err; |
| 808 | |
| 809 | cbuf = symbuf = strbuf = NULL; |
| 810 | /* |
| 811 | * The ctfsect isn't allowed to not exist, but the symbol and string |
| 812 | * section might not. We only need to copy the data of the section, not |
| 813 | * the name, as ctf_bufopen will take care of that. |
| 814 | */ |
| 815 | bcopy(&ofp->ctf_data, &ctfsect, sizeof (ctf_sect_t)); |
| 816 | cbuf = ctf_data_alloc(ctfsect.cts_size); |
| 817 | if (cbuf == NULL) { |
| 818 | (void) ctf_set_errno(ofp, ECTF_MMAP); |
| 819 | return (NULL); |
| 820 | } |
| 821 | |
| 822 | bcopy(ctfsect.cts_data, cbuf, ctfsect.cts_size); |
| 823 | ctf_data_protect(cbuf, ctfsect.cts_size); |
| 824 | ctfsect.cts_data = cbuf; |
| 825 | ctfsect.cts_offset = 0; |
| 826 | ctp = &ctfsect; |
| 827 | |
| 828 | if (ofp->ctf_symtab.cts_data != NULL) { |
| 829 | bcopy(&ofp->ctf_symtab, &symsect, sizeof (ctf_sect_t)); |
| 830 | symbuf = ctf_data_alloc(symsect.cts_size); |
| 831 | if (symbuf == NULL) { |
| 832 | (void) ctf_set_errno(ofp, ECTF_MMAP); |
| 833 | goto err; |
| 834 | } |
| 835 | bcopy(symsect.cts_data, symbuf, symsect.cts_size); |
| 836 | ctf_data_protect(symbuf, symsect.cts_size); |
| 837 | symsect.cts_data = symbuf; |
| 838 | symsect.cts_offset = 0; |
| 839 | symp = &symsect; |
| 840 | } else { |
| 841 | symp = NULL; |
| 842 | } |
| 843 | |
| 844 | if (ofp->ctf_strtab.cts_data != NULL) { |
| 845 | bcopy(&ofp->ctf_strtab, &strsect, sizeof (ctf_sect_t)); |
| 846 | strbuf = ctf_data_alloc(strsect.cts_size); |
| 847 | if (strbuf == NULL) { |
| 848 | (void) ctf_set_errno(ofp, ECTF_MMAP); |
| 849 | goto err; |
| 850 | } |
| 851 | bcopy(strsect.cts_data, strbuf, strsect.cts_size); |
| 852 | ctf_data_protect(strbuf, strsect.cts_size); |
| 853 | strsect.cts_data = strbuf; |
| 854 | strsect.cts_offset = 0; |
| 855 | strp = &strsect; |
| 856 | } else { |
| 857 | strp = NULL; |
| 858 | } |
| 859 | |
| 860 | fp = ctf_bufopen(ctp, symp, strp, &err); |
| 861 | if (fp == NULL) { |
| 862 | (void) ctf_set_errno(ofp, err); |
| 863 | goto err; |
| 864 | } |
| 865 | |
| 866 | fp->ctf_flags |= LCTF_MMAP; |
| 867 | |
| 868 | return (fp); |
| 869 | |
| 870 | err: |
| 871 | ctf_data_free(cbuf, ctfsect.cts_size); |
| 872 | if (symbuf != NULL) |
| 873 | ctf_data_free(symbuf, symsect.cts_size); |
| 874 | if (strbuf != NULL) |
| 875 | ctf_data_free(strbuf, strsect.cts_size); |
| 876 | return (NULL); |
| 877 | } |
| 878 | |
| 879 | /* |
| 880 | * Close the specified CTF container and free associated data structures. Note |
| 881 | * that ctf_close() is a reference counted operation: if the specified file is |
| 882 | * the parent of other active containers, its reference count will be greater |
| 883 | * than one and it will be freed later when no active children exist. |
| 884 | */ |
| 885 | void |
| 886 | ctf_close(ctf_file_t *fp) |
| 887 | { |
| 888 | ctf_dtdef_t *dtd, *ntd; |
| 889 | |
| 890 | if (fp == NULL) |
| 891 | return; /* allow ctf_close(NULL) to simplify caller code */ |
| 892 | |
| 893 | ctf_dprintf("ctf_close(%p) refcnt=%u\n" , (void *)fp, fp->ctf_refcnt); |
| 894 | |
| 895 | if (fp->ctf_refcnt > 1) { |
| 896 | fp->ctf_refcnt--; |
| 897 | return; |
| 898 | } |
| 899 | |
| 900 | if (fp->ctf_parent != NULL) |
| 901 | ctf_close(fp->ctf_parent); |
| 902 | |
| 903 | /* |
| 904 | * Note, to work properly with reference counting on the dynamic |
| 905 | * section, we must delete the list in reverse. |
| 906 | */ |
| 907 | for (dtd = ctf_list_prev(&fp->ctf_dtdefs); dtd != NULL; dtd = ntd) { |
| 908 | ntd = ctf_list_prev(dtd); |
| 909 | ctf_dtd_delete(fp, dtd); |
| 910 | } |
| 911 | |
| 912 | ctf_free(fp->ctf_dthash, fp->ctf_dthashlen * sizeof (ctf_dtdef_t *)); |
| 913 | |
| 914 | if (fp->ctf_flags & LCTF_MMAP) { |
| 915 | if (fp->ctf_data.cts_data != NULL) |
| 916 | ctf_sect_munmap(&fp->ctf_data); |
| 917 | if (fp->ctf_symtab.cts_data != NULL) |
| 918 | ctf_sect_munmap(&fp->ctf_symtab); |
| 919 | if (fp->ctf_strtab.cts_data != NULL) |
| 920 | ctf_sect_munmap(&fp->ctf_strtab); |
| 921 | } |
| 922 | |
| 923 | if (fp->ctf_data.cts_name != _CTF_NULLSTR && |
| 924 | fp->ctf_data.cts_name != NULL) { |
| 925 | ctf_free(__UNCONST(fp->ctf_data.cts_name), |
| 926 | strlen(fp->ctf_data.cts_name) + 1); |
| 927 | } |
| 928 | |
| 929 | if (fp->ctf_symtab.cts_name != _CTF_NULLSTR && |
| 930 | fp->ctf_symtab.cts_name != NULL) { |
| 931 | ctf_free(__UNCONST(fp->ctf_symtab.cts_name), |
| 932 | strlen(fp->ctf_symtab.cts_name) + 1); |
| 933 | } |
| 934 | |
| 935 | if (fp->ctf_strtab.cts_name != _CTF_NULLSTR && |
| 936 | fp->ctf_strtab.cts_name != NULL) { |
| 937 | ctf_free(__UNCONST(fp->ctf_strtab.cts_name), |
| 938 | strlen(fp->ctf_strtab.cts_name) + 1); |
| 939 | } |
| 940 | |
| 941 | if (fp->ctf_base != fp->ctf_data.cts_data && fp->ctf_base != NULL) |
| 942 | ctf_data_free(__UNCONST(fp->ctf_base), fp->ctf_size); |
| 943 | |
| 944 | if (fp->ctf_sxlate != NULL) |
| 945 | ctf_free(fp->ctf_sxlate, sizeof (uint_t) * fp->ctf_nsyms); |
| 946 | |
| 947 | if (fp->ctf_txlate != NULL) { |
| 948 | ctf_free(fp->ctf_txlate, |
| 949 | sizeof (uint_t) * (fp->ctf_typemax + 1)); |
| 950 | } |
| 951 | |
| 952 | if (fp->ctf_ptrtab != NULL) { |
| 953 | ctf_free(fp->ctf_ptrtab, |
| 954 | sizeof (ushort_t) * (fp->ctf_typemax + 1)); |
| 955 | } |
| 956 | |
| 957 | ctf_hash_destroy(&fp->ctf_structs); |
| 958 | ctf_hash_destroy(&fp->ctf_unions); |
| 959 | ctf_hash_destroy(&fp->ctf_enums); |
| 960 | ctf_hash_destroy(&fp->ctf_names); |
| 961 | |
| 962 | ctf_free(fp, sizeof (ctf_file_t)); |
| 963 | } |
| 964 | |
| 965 | /* |
| 966 | * Return the CTF handle for the parent CTF container, if one exists. |
| 967 | * Otherwise return NULL to indicate this container has no imported parent. |
| 968 | */ |
| 969 | ctf_file_t * |
| 970 | ctf_parent_file(ctf_file_t *fp) |
| 971 | { |
| 972 | return (fp->ctf_parent); |
| 973 | } |
| 974 | |
| 975 | /* |
| 976 | * Return the name of the parent CTF container, if one exists. Otherwise |
| 977 | * return NULL to indicate this container is a root container. |
| 978 | */ |
| 979 | const char * |
| 980 | ctf_parent_name(ctf_file_t *fp) |
| 981 | { |
| 982 | return (fp->ctf_parname); |
| 983 | } |
| 984 | |
| 985 | /* |
| 986 | * Import the types from the specified parent container by storing a pointer |
| 987 | * to it in ctf_parent and incrementing its reference count. Only one parent |
| 988 | * is allowed: if a parent already exists, it is replaced by the new parent. |
| 989 | */ |
| 990 | int |
| 991 | ctf_import(ctf_file_t *fp, ctf_file_t *pfp) |
| 992 | { |
| 993 | if (fp == NULL || fp == pfp || (pfp != NULL && pfp->ctf_refcnt == 0)) |
| 994 | return (ctf_set_errno(fp, EINVAL)); |
| 995 | |
| 996 | if (pfp != NULL && pfp->ctf_dmodel != fp->ctf_dmodel) |
| 997 | return (ctf_set_errno(fp, ECTF_DMODEL)); |
| 998 | |
| 999 | if (fp->ctf_parent != NULL) |
| 1000 | ctf_close(fp->ctf_parent); |
| 1001 | |
| 1002 | if (pfp != NULL) { |
| 1003 | fp->ctf_flags |= LCTF_CHILD; |
| 1004 | pfp->ctf_refcnt++; |
| 1005 | } |
| 1006 | |
| 1007 | fp->ctf_parent = pfp; |
| 1008 | return (0); |
| 1009 | } |
| 1010 | |
| 1011 | /* |
| 1012 | * Set the data model constant for the CTF container. |
| 1013 | */ |
| 1014 | int |
| 1015 | ctf_setmodel(ctf_file_t *fp, int model) |
| 1016 | { |
| 1017 | const ctf_dmodel_t *dp; |
| 1018 | |
| 1019 | for (dp = _libctf_models; dp->ctd_name != NULL; dp++) { |
| 1020 | if (dp->ctd_code == model) { |
| 1021 | fp->ctf_dmodel = dp; |
| 1022 | return (0); |
| 1023 | } |
| 1024 | } |
| 1025 | |
| 1026 | return (ctf_set_errno(fp, EINVAL)); |
| 1027 | } |
| 1028 | |
| 1029 | /* |
| 1030 | * Return the data model constant for the CTF container. |
| 1031 | */ |
| 1032 | int |
| 1033 | ctf_getmodel(ctf_file_t *fp) |
| 1034 | { |
| 1035 | return (fp->ctf_dmodel->ctd_code); |
| 1036 | } |
| 1037 | |
| 1038 | void |
| 1039 | ctf_setspecific(ctf_file_t *fp, void *data) |
| 1040 | { |
| 1041 | fp->ctf_specific = data; |
| 1042 | } |
| 1043 | |
| 1044 | void * |
| 1045 | ctf_getspecific(ctf_file_t *fp) |
| 1046 | { |
| 1047 | return (fp->ctf_specific); |
| 1048 | } |
| 1049 | |