| 1 | /* |
| 2 | * CDDL HEADER START |
| 3 | * |
| 4 | * The contents of this file are subject to the terms of the |
| 5 | * Common Development and Distribution License (the "License"). |
| 6 | * You may not use this file except in compliance with the License. |
| 7 | * |
| 8 | * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE |
| 9 | * or http://www.opensolaris.org/os/licensing. |
| 10 | * See the License for the specific language governing permissions |
| 11 | * and limitations under the License. |
| 12 | * |
| 13 | * When distributing Covered Code, include this CDDL HEADER in each |
| 14 | * file and include the License file at usr/src/OPENSOLARIS.LICENSE. |
| 15 | * If applicable, add the following below this CDDL HEADER, with the |
| 16 | * fields enclosed by brackets "[]" replaced with your own identifying |
| 17 | * information: Portions Copyright [yyyy] [name of copyright owner] |
| 18 | * |
| 19 | * CDDL HEADER END |
| 20 | */ |
| 21 | /* |
| 22 | * Copyright 2009 Sun Microsystems, Inc. All rights reserved. |
| 23 | * Use is subject to license terms. |
| 24 | */ |
| 25 | |
| 26 | /* |
| 27 | * Copyright (c) 2014 by Delphix. All rights reserved. |
| 28 | * Copyright 2015 Nexenta Systems, Inc. All rights reserved. |
| 29 | */ |
| 30 | |
| 31 | /* |
| 32 | * AVL - generic AVL tree implementation for kernel use |
| 33 | * |
| 34 | * A complete description of AVL trees can be found in many CS textbooks. |
| 35 | * |
| 36 | * Here is a very brief overview. An AVL tree is a binary search tree that is |
| 37 | * almost perfectly balanced. By "almost" perfectly balanced, we mean that at |
| 38 | * any given node, the left and right subtrees are allowed to differ in height |
| 39 | * by at most 1 level. |
| 40 | * |
| 41 | * This relaxation from a perfectly balanced binary tree allows doing |
| 42 | * insertion and deletion relatively efficiently. Searching the tree is |
| 43 | * still a fast operation, roughly O(log(N)). |
| 44 | * |
| 45 | * The key to insertion and deletion is a set of tree manipulations called |
| 46 | * rotations, which bring unbalanced subtrees back into the semi-balanced state. |
| 47 | * |
| 48 | * This implementation of AVL trees has the following peculiarities: |
| 49 | * |
| 50 | * - The AVL specific data structures are physically embedded as fields |
| 51 | * in the "using" data structures. To maintain generality the code |
| 52 | * must constantly translate between "avl_node_t *" and containing |
| 53 | * data structure "void *"s by adding/subtracting the avl_offset. |
| 54 | * |
| 55 | * - Since the AVL data is always embedded in other structures, there is |
| 56 | * no locking or memory allocation in the AVL routines. This must be |
| 57 | * provided for by the enclosing data structure's semantics. Typically, |
| 58 | * avl_insert()/_add()/_remove()/avl_insert_here() require some kind of |
| 59 | * exclusive write lock. Other operations require a read lock. |
| 60 | * |
| 61 | * - The implementation uses iteration instead of explicit recursion, |
| 62 | * since it is intended to run on limited size kernel stacks. Since |
| 63 | * there is no recursion stack present to move "up" in the tree, |
| 64 | * there is an explicit "parent" link in the avl_node_t. |
| 65 | * |
| 66 | * - The left/right children pointers of a node are in an array. |
| 67 | * In the code, variables (instead of constants) are used to represent |
| 68 | * left and right indices. The implementation is written as if it only |
| 69 | * dealt with left handed manipulations. By changing the value assigned |
| 70 | * to "left", the code also works for right handed trees. The |
| 71 | * following variables/terms are frequently used: |
| 72 | * |
| 73 | * int left; // 0 when dealing with left children, |
| 74 | * // 1 for dealing with right children |
| 75 | * |
| 76 | * int left_heavy; // -1 when left subtree is taller at some node, |
| 77 | * // +1 when right subtree is taller |
| 78 | * |
| 79 | * int right; // will be the opposite of left (0 or 1) |
| 80 | * int right_heavy;// will be the opposite of left_heavy (-1 or 1) |
| 81 | * |
| 82 | * int direction; // 0 for "<" (ie. left child); 1 for ">" (right) |
| 83 | * |
| 84 | * Though it is a little more confusing to read the code, the approach |
| 85 | * allows using half as much code (and hence cache footprint) for tree |
| 86 | * manipulations and eliminates many conditional branches. |
| 87 | * |
| 88 | * - The avl_index_t is an opaque "cookie" used to find nodes at or |
| 89 | * adjacent to where a new value would be inserted in the tree. The value |
| 90 | * is a modified "avl_node_t *". The bottom bit (normally 0 for a |
| 91 | * pointer) is set to indicate if that the new node has a value greater |
| 92 | * than the value of the indicated "avl_node_t *". |
| 93 | * |
| 94 | * Note - in addition to userland (e.g. libavl and libutil) and the kernel |
| 95 | * (e.g. genunix), avl.c is compiled into ld.so and kmdb's genunix module, |
| 96 | * which each have their own compilation environments and subsequent |
| 97 | * requirements. Each of these environments must be considered when adding |
| 98 | * dependencies from avl.c. |
| 99 | */ |
| 100 | |
| 101 | #include <sys/types.h> |
| 102 | #include <sys/param.h> |
| 103 | #include <sys/stdint.h> |
| 104 | #include <sys/debug.h> |
| 105 | #include <sys/avl.h> |
| 106 | |
| 107 | /* |
| 108 | * Small arrays to translate between balance (or diff) values and child indices. |
| 109 | * |
| 110 | * Code that deals with binary tree data structures will randomly use |
| 111 | * left and right children when examining a tree. C "if()" statements |
| 112 | * which evaluate randomly suffer from very poor hardware branch prediction. |
| 113 | * In this code we avoid some of the branch mispredictions by using the |
| 114 | * following translation arrays. They replace random branches with an |
| 115 | * additional memory reference. Since the translation arrays are both very |
| 116 | * small the data should remain efficiently in cache. |
| 117 | */ |
| 118 | static const int avl_child2balance[2] = {-1, 1}; |
| 119 | static const int avl_balance2child[] = {0, 0, 1}; |
| 120 | |
| 121 | |
| 122 | /* |
| 123 | * Walk from one node to the previous valued node (ie. an infix walk |
| 124 | * towards the left). At any given node we do one of 2 things: |
| 125 | * |
| 126 | * - If there is a left child, go to it, then to it's rightmost descendant. |
| 127 | * |
| 128 | * - otherwise we return through parent nodes until we've come from a right |
| 129 | * child. |
| 130 | * |
| 131 | * Return Value: |
| 132 | * NULL - if at the end of the nodes |
| 133 | * otherwise next node |
| 134 | */ |
| 135 | void * |
| 136 | avl_walk(avl_tree_t *tree, void *oldnode, int left) |
| 137 | { |
| 138 | size_t off = tree->avl_offset; |
| 139 | avl_node_t *node = AVL_DATA2NODE(oldnode, off); |
| 140 | int right = 1 - left; |
| 141 | int was_child; |
| 142 | |
| 143 | |
| 144 | /* |
| 145 | * nowhere to walk to if tree is empty |
| 146 | */ |
| 147 | if (node == NULL) |
| 148 | return (NULL); |
| 149 | |
| 150 | /* |
| 151 | * Visit the previous valued node. There are two possibilities: |
| 152 | * |
| 153 | * If this node has a left child, go down one left, then all |
| 154 | * the way right. |
| 155 | */ |
| 156 | if (node->avl_child[left] != NULL) { |
| 157 | for (node = node->avl_child[left]; |
| 158 | node->avl_child[right] != NULL; |
| 159 | node = node->avl_child[right]) |
| 160 | ; |
| 161 | /* |
| 162 | * Otherwise, return thru left children as far as we can. |
| 163 | */ |
| 164 | } else { |
| 165 | for (;;) { |
| 166 | was_child = AVL_XCHILD(node); |
| 167 | node = AVL_XPARENT(node); |
| 168 | if (node == NULL) |
| 169 | return (NULL); |
| 170 | if (was_child == right) |
| 171 | break; |
| 172 | } |
| 173 | } |
| 174 | |
| 175 | return (AVL_NODE2DATA(node, off)); |
| 176 | } |
| 177 | |
| 178 | /* |
| 179 | * Return the lowest valued node in a tree or NULL. |
| 180 | * (leftmost child from root of tree) |
| 181 | */ |
| 182 | void * |
| 183 | avl_first(avl_tree_t *tree) |
| 184 | { |
| 185 | avl_node_t *node; |
| 186 | avl_node_t *prev = NULL; |
| 187 | size_t off = tree->avl_offset; |
| 188 | |
| 189 | for (node = tree->avl_root; node != NULL; node = node->avl_child[0]) |
| 190 | prev = node; |
| 191 | |
| 192 | if (prev != NULL) |
| 193 | return (AVL_NODE2DATA(prev, off)); |
| 194 | return (NULL); |
| 195 | } |
| 196 | |
| 197 | /* |
| 198 | * Return the highest valued node in a tree or NULL. |
| 199 | * (rightmost child from root of tree) |
| 200 | */ |
| 201 | void * |
| 202 | avl_last(avl_tree_t *tree) |
| 203 | { |
| 204 | avl_node_t *node; |
| 205 | avl_node_t *prev = NULL; |
| 206 | size_t off = tree->avl_offset; |
| 207 | |
| 208 | for (node = tree->avl_root; node != NULL; node = node->avl_child[1]) |
| 209 | prev = node; |
| 210 | |
| 211 | if (prev != NULL) |
| 212 | return (AVL_NODE2DATA(prev, off)); |
| 213 | return (NULL); |
| 214 | } |
| 215 | |
| 216 | /* |
| 217 | * Access the node immediately before or after an insertion point. |
| 218 | * |
| 219 | * "avl_index_t" is a (avl_node_t *) with the bottom bit indicating a child |
| 220 | * |
| 221 | * Return value: |
| 222 | * NULL: no node in the given direction |
| 223 | * "void *" of the found tree node |
| 224 | */ |
| 225 | void * |
| 226 | avl_nearest(avl_tree_t *tree, avl_index_t where, int direction) |
| 227 | { |
| 228 | int child = AVL_INDEX2CHILD(where); |
| 229 | avl_node_t *node = AVL_INDEX2NODE(where); |
| 230 | void *data; |
| 231 | size_t off = tree->avl_offset; |
| 232 | |
| 233 | if (node == NULL) { |
| 234 | ASSERT(tree->avl_root == NULL); |
| 235 | return (NULL); |
| 236 | } |
| 237 | data = AVL_NODE2DATA(node, off); |
| 238 | if (child != direction) |
| 239 | return (data); |
| 240 | |
| 241 | return (avl_walk(tree, data, direction)); |
| 242 | } |
| 243 | |
| 244 | |
| 245 | /* |
| 246 | * Search for the node which contains "value". The algorithm is a |
| 247 | * simple binary tree search. |
| 248 | * |
| 249 | * return value: |
| 250 | * NULL: the value is not in the AVL tree |
| 251 | * *where (if not NULL) is set to indicate the insertion point |
| 252 | * "void *" of the found tree node |
| 253 | */ |
| 254 | void * |
| 255 | avl_find(avl_tree_t *tree, const void *value, avl_index_t *where) |
| 256 | { |
| 257 | avl_node_t *node; |
| 258 | avl_node_t *prev = NULL; |
| 259 | int child = 0; |
| 260 | int diff; |
| 261 | size_t off = tree->avl_offset; |
| 262 | |
| 263 | for (node = tree->avl_root; node != NULL; |
| 264 | node = node->avl_child[child]) { |
| 265 | |
| 266 | prev = node; |
| 267 | |
| 268 | diff = tree->avl_compar(value, AVL_NODE2DATA(node, off)); |
| 269 | ASSERT(-1 <= diff && diff <= 1); |
| 270 | if (diff == 0) { |
| 271 | #ifdef DEBUG |
| 272 | if (where != NULL) |
| 273 | *where = 0; |
| 274 | #endif |
| 275 | return (AVL_NODE2DATA(node, off)); |
| 276 | } |
| 277 | child = avl_balance2child[1 + diff]; |
| 278 | |
| 279 | } |
| 280 | |
| 281 | if (where != NULL) |
| 282 | *where = AVL_MKINDEX(prev, child); |
| 283 | |
| 284 | return (NULL); |
| 285 | } |
| 286 | |
| 287 | |
| 288 | /* |
| 289 | * Perform a rotation to restore balance at the subtree given by depth. |
| 290 | * |
| 291 | * This routine is used by both insertion and deletion. The return value |
| 292 | * indicates: |
| 293 | * 0 : subtree did not change height |
| 294 | * !0 : subtree was reduced in height |
| 295 | * |
| 296 | * The code is written as if handling left rotations, right rotations are |
| 297 | * symmetric and handled by swapping values of variables right/left[_heavy] |
| 298 | * |
| 299 | * On input balance is the "new" balance at "node". This value is either |
| 300 | * -2 or +2. |
| 301 | */ |
| 302 | static int |
| 303 | avl_rotation(avl_tree_t *tree, avl_node_t *node, int balance) |
| 304 | { |
| 305 | int left = !(balance < 0); /* when balance = -2, left will be 0 */ |
| 306 | int right = 1 - left; |
| 307 | int left_heavy = balance >> 1; |
| 308 | int right_heavy = -left_heavy; |
| 309 | avl_node_t *parent = AVL_XPARENT(node); |
| 310 | avl_node_t *child = node->avl_child[left]; |
| 311 | avl_node_t *cright; |
| 312 | avl_node_t *gchild; |
| 313 | avl_node_t *gright; |
| 314 | avl_node_t *gleft; |
| 315 | int which_child = AVL_XCHILD(node); |
| 316 | int child_bal = AVL_XBALANCE(child); |
| 317 | |
| 318 | /* BEGIN CSTYLED */ |
| 319 | /* |
| 320 | * case 1 : node is overly left heavy, the left child is balanced or |
| 321 | * also left heavy. This requires the following rotation. |
| 322 | * |
| 323 | * (node bal:-2) |
| 324 | * / \ |
| 325 | * / \ |
| 326 | * (child bal:0 or -1) |
| 327 | * / \ |
| 328 | * / \ |
| 329 | * cright |
| 330 | * |
| 331 | * becomes: |
| 332 | * |
| 333 | * (child bal:1 or 0) |
| 334 | * / \ |
| 335 | * / \ |
| 336 | * (node bal:-1 or 0) |
| 337 | * / \ |
| 338 | * / \ |
| 339 | * cright |
| 340 | * |
| 341 | * we detect this situation by noting that child's balance is not |
| 342 | * right_heavy. |
| 343 | */ |
| 344 | /* END CSTYLED */ |
| 345 | if (child_bal != right_heavy) { |
| 346 | |
| 347 | /* |
| 348 | * compute new balance of nodes |
| 349 | * |
| 350 | * If child used to be left heavy (now balanced) we reduced |
| 351 | * the height of this sub-tree -- used in "return...;" below |
| 352 | */ |
| 353 | child_bal += right_heavy; /* adjust towards right */ |
| 354 | |
| 355 | /* |
| 356 | * move "cright" to be node's left child |
| 357 | */ |
| 358 | cright = child->avl_child[right]; |
| 359 | node->avl_child[left] = cright; |
| 360 | if (cright != NULL) { |
| 361 | AVL_SETPARENT(cright, node); |
| 362 | AVL_SETCHILD(cright, left); |
| 363 | } |
| 364 | |
| 365 | /* |
| 366 | * move node to be child's right child |
| 367 | */ |
| 368 | child->avl_child[right] = node; |
| 369 | AVL_SETBALANCE(node, -child_bal); |
| 370 | AVL_SETCHILD(node, right); |
| 371 | AVL_SETPARENT(node, child); |
| 372 | |
| 373 | /* |
| 374 | * update the pointer into this subtree |
| 375 | */ |
| 376 | AVL_SETBALANCE(child, child_bal); |
| 377 | AVL_SETCHILD(child, which_child); |
| 378 | AVL_SETPARENT(child, parent); |
| 379 | if (parent != NULL) |
| 380 | parent->avl_child[which_child] = child; |
| 381 | else |
| 382 | tree->avl_root = child; |
| 383 | |
| 384 | return (child_bal == 0); |
| 385 | } |
| 386 | |
| 387 | /* BEGIN CSTYLED */ |
| 388 | /* |
| 389 | * case 2 : When node is left heavy, but child is right heavy we use |
| 390 | * a different rotation. |
| 391 | * |
| 392 | * (node b:-2) |
| 393 | * / \ |
| 394 | * / \ |
| 395 | * / \ |
| 396 | * (child b:+1) |
| 397 | * / \ |
| 398 | * / \ |
| 399 | * (gchild b: != 0) |
| 400 | * / \ |
| 401 | * / \ |
| 402 | * gleft gright |
| 403 | * |
| 404 | * becomes: |
| 405 | * |
| 406 | * (gchild b:0) |
| 407 | * / \ |
| 408 | * / \ |
| 409 | * / \ |
| 410 | * (child b:?) (node b:?) |
| 411 | * / \ / \ |
| 412 | * / \ / \ |
| 413 | * gleft gright |
| 414 | * |
| 415 | * computing the new balances is more complicated. As an example: |
| 416 | * if gchild was right_heavy, then child is now left heavy |
| 417 | * else it is balanced |
| 418 | */ |
| 419 | /* END CSTYLED */ |
| 420 | gchild = child->avl_child[right]; |
| 421 | gleft = gchild->avl_child[left]; |
| 422 | gright = gchild->avl_child[right]; |
| 423 | |
| 424 | /* |
| 425 | * move gright to left child of node and |
| 426 | * |
| 427 | * move gleft to right child of node |
| 428 | */ |
| 429 | node->avl_child[left] = gright; |
| 430 | if (gright != NULL) { |
| 431 | AVL_SETPARENT(gright, node); |
| 432 | AVL_SETCHILD(gright, left); |
| 433 | } |
| 434 | |
| 435 | child->avl_child[right] = gleft; |
| 436 | if (gleft != NULL) { |
| 437 | AVL_SETPARENT(gleft, child); |
| 438 | AVL_SETCHILD(gleft, right); |
| 439 | } |
| 440 | |
| 441 | /* |
| 442 | * move child to left child of gchild and |
| 443 | * |
| 444 | * move node to right child of gchild and |
| 445 | * |
| 446 | * fixup parent of all this to point to gchild |
| 447 | */ |
| 448 | balance = AVL_XBALANCE(gchild); |
| 449 | gchild->avl_child[left] = child; |
| 450 | AVL_SETBALANCE(child, (balance == right_heavy ? left_heavy : 0)); |
| 451 | AVL_SETPARENT(child, gchild); |
| 452 | AVL_SETCHILD(child, left); |
| 453 | |
| 454 | gchild->avl_child[right] = node; |
| 455 | AVL_SETBALANCE(node, (balance == left_heavy ? right_heavy : 0)); |
| 456 | AVL_SETPARENT(node, gchild); |
| 457 | AVL_SETCHILD(node, right); |
| 458 | |
| 459 | AVL_SETBALANCE(gchild, 0); |
| 460 | AVL_SETPARENT(gchild, parent); |
| 461 | AVL_SETCHILD(gchild, which_child); |
| 462 | if (parent != NULL) |
| 463 | parent->avl_child[which_child] = gchild; |
| 464 | else |
| 465 | tree->avl_root = gchild; |
| 466 | |
| 467 | return (1); /* the new tree is always shorter */ |
| 468 | } |
| 469 | |
| 470 | |
| 471 | /* |
| 472 | * Insert a new node into an AVL tree at the specified (from avl_find()) place. |
| 473 | * |
| 474 | * Newly inserted nodes are always leaf nodes in the tree, since avl_find() |
| 475 | * searches out to the leaf positions. The avl_index_t indicates the node |
| 476 | * which will be the parent of the new node. |
| 477 | * |
| 478 | * After the node is inserted, a single rotation further up the tree may |
| 479 | * be necessary to maintain an acceptable AVL balance. |
| 480 | */ |
| 481 | void |
| 482 | avl_insert(avl_tree_t *tree, void *new_data, avl_index_t where) |
| 483 | { |
| 484 | avl_node_t *node; |
| 485 | avl_node_t *parent = AVL_INDEX2NODE(where); |
| 486 | int old_balance; |
| 487 | int new_balance; |
| 488 | int which_child = AVL_INDEX2CHILD(where); |
| 489 | size_t off = tree->avl_offset; |
| 490 | |
| 491 | ASSERT(tree); |
| 492 | #ifdef _LP64 |
| 493 | ASSERT(((uintptr_t)new_data & 0x7) == 0); |
| 494 | #endif |
| 495 | |
| 496 | node = AVL_DATA2NODE(new_data, off); |
| 497 | |
| 498 | /* |
| 499 | * First, add the node to the tree at the indicated position. |
| 500 | */ |
| 501 | ++tree->avl_numnodes; |
| 502 | |
| 503 | node->avl_child[0] = NULL; |
| 504 | node->avl_child[1] = NULL; |
| 505 | |
| 506 | AVL_SETCHILD(node, which_child); |
| 507 | AVL_SETBALANCE(node, 0); |
| 508 | AVL_SETPARENT(node, parent); |
| 509 | if (parent != NULL) { |
| 510 | ASSERT(parent->avl_child[which_child] == NULL); |
| 511 | parent->avl_child[which_child] = node; |
| 512 | } else { |
| 513 | ASSERT(tree->avl_root == NULL); |
| 514 | tree->avl_root = node; |
| 515 | } |
| 516 | /* |
| 517 | * Now, back up the tree modifying the balance of all nodes above the |
| 518 | * insertion point. If we get to a highly unbalanced ancestor, we |
| 519 | * need to do a rotation. If we back out of the tree we are done. |
| 520 | * If we brought any subtree into perfect balance (0), we are also done. |
| 521 | */ |
| 522 | for (;;) { |
| 523 | node = parent; |
| 524 | if (node == NULL) |
| 525 | return; |
| 526 | |
| 527 | /* |
| 528 | * Compute the new balance |
| 529 | */ |
| 530 | old_balance = AVL_XBALANCE(node); |
| 531 | new_balance = old_balance + avl_child2balance[which_child]; |
| 532 | |
| 533 | /* |
| 534 | * If we introduced equal balance, then we are done immediately |
| 535 | */ |
| 536 | if (new_balance == 0) { |
| 537 | AVL_SETBALANCE(node, 0); |
| 538 | return; |
| 539 | } |
| 540 | |
| 541 | /* |
| 542 | * If both old and new are not zero we went |
| 543 | * from -1 to -2 balance, do a rotation. |
| 544 | */ |
| 545 | if (old_balance != 0) |
| 546 | break; |
| 547 | |
| 548 | AVL_SETBALANCE(node, new_balance); |
| 549 | parent = AVL_XPARENT(node); |
| 550 | which_child = AVL_XCHILD(node); |
| 551 | } |
| 552 | |
| 553 | /* |
| 554 | * perform a rotation to fix the tree and return |
| 555 | */ |
| 556 | (void) avl_rotation(tree, node, new_balance); |
| 557 | } |
| 558 | |
| 559 | /* |
| 560 | * Insert "new_data" in "tree" in the given "direction" either after or |
| 561 | * before (AVL_AFTER, AVL_BEFORE) the data "here". |
| 562 | * |
| 563 | * Insertions can only be done at empty leaf points in the tree, therefore |
| 564 | * if the given child of the node is already present we move to either |
| 565 | * the AVL_PREV or AVL_NEXT and reverse the insertion direction. Since |
| 566 | * every other node in the tree is a leaf, this always works. |
| 567 | * |
| 568 | * To help developers using this interface, we assert that the new node |
| 569 | * is correctly ordered at every step of the way in DEBUG kernels. |
| 570 | */ |
| 571 | void |
| 572 | avl_insert_here( |
| 573 | avl_tree_t *tree, |
| 574 | void *new_data, |
| 575 | void *here, |
| 576 | int direction) |
| 577 | { |
| 578 | avl_node_t *node; |
| 579 | int child = direction; /* rely on AVL_BEFORE == 0, AVL_AFTER == 1 */ |
| 580 | #ifdef DEBUG |
| 581 | int diff; |
| 582 | #endif |
| 583 | |
| 584 | ASSERT(tree != NULL); |
| 585 | ASSERT(new_data != NULL); |
| 586 | ASSERT(here != NULL); |
| 587 | ASSERT(direction == AVL_BEFORE || direction == AVL_AFTER); |
| 588 | |
| 589 | /* |
| 590 | * If corresponding child of node is not NULL, go to the neighboring |
| 591 | * node and reverse the insertion direction. |
| 592 | */ |
| 593 | node = AVL_DATA2NODE(here, tree->avl_offset); |
| 594 | |
| 595 | #ifdef DEBUG |
| 596 | diff = tree->avl_compar(new_data, here); |
| 597 | ASSERT(-1 <= diff && diff <= 1); |
| 598 | ASSERT(diff != 0); |
| 599 | ASSERT(diff > 0 ? child == 1 : child == 0); |
| 600 | #endif |
| 601 | |
| 602 | if (node->avl_child[child] != NULL) { |
| 603 | node = node->avl_child[child]; |
| 604 | child = 1 - child; |
| 605 | while (node->avl_child[child] != NULL) { |
| 606 | #ifdef DEBUG |
| 607 | diff = tree->avl_compar(new_data, |
| 608 | AVL_NODE2DATA(node, tree->avl_offset)); |
| 609 | ASSERT(-1 <= diff && diff <= 1); |
| 610 | ASSERT(diff != 0); |
| 611 | ASSERT(diff > 0 ? child == 1 : child == 0); |
| 612 | #endif |
| 613 | node = node->avl_child[child]; |
| 614 | } |
| 615 | #ifdef DEBUG |
| 616 | diff = tree->avl_compar(new_data, |
| 617 | AVL_NODE2DATA(node, tree->avl_offset)); |
| 618 | ASSERT(-1 <= diff && diff <= 1); |
| 619 | ASSERT(diff != 0); |
| 620 | ASSERT(diff > 0 ? child == 1 : child == 0); |
| 621 | #endif |
| 622 | } |
| 623 | ASSERT(node->avl_child[child] == NULL); |
| 624 | |
| 625 | avl_insert(tree, new_data, AVL_MKINDEX(node, child)); |
| 626 | } |
| 627 | |
| 628 | /* |
| 629 | * Add a new node to an AVL tree. |
| 630 | */ |
| 631 | void |
| 632 | avl_add(avl_tree_t *tree, void *new_node) |
| 633 | { |
| 634 | avl_index_t where; |
| 635 | |
| 636 | /* |
| 637 | * This is unfortunate. We want to call panic() here, even for |
| 638 | * non-DEBUG kernels. In userland, however, we can't depend on anything |
| 639 | * in libc or else the rtld build process gets confused. |
| 640 | * Thankfully, rtld provides us with its own assfail() so we can use |
| 641 | * that here. We use assfail() directly to get a nice error message |
| 642 | * in the core - much like what panic() does for crashdumps. |
| 643 | */ |
| 644 | if (avl_find(tree, new_node, &where) != NULL) |
| 645 | #ifdef _KERNEL |
| 646 | panic("avl_find() succeeded inside avl_add()" ); |
| 647 | #else |
| 648 | (void) assfail("avl_find() succeeded inside avl_add()" , |
| 649 | __FILE__, __LINE__); |
| 650 | #endif |
| 651 | avl_insert(tree, new_node, where); |
| 652 | } |
| 653 | |
| 654 | /* |
| 655 | * Delete a node from the AVL tree. Deletion is similar to insertion, but |
| 656 | * with 2 complications. |
| 657 | * |
| 658 | * First, we may be deleting an interior node. Consider the following subtree: |
| 659 | * |
| 660 | * d c c |
| 661 | * / \ / \ / \ |
| 662 | * b e b e b e |
| 663 | * / \ / \ / |
| 664 | * a c a a |
| 665 | * |
| 666 | * When we are deleting node (d), we find and bring up an adjacent valued leaf |
| 667 | * node, say (c), to take the interior node's place. In the code this is |
| 668 | * handled by temporarily swapping (d) and (c) in the tree and then using |
| 669 | * common code to delete (d) from the leaf position. |
| 670 | * |
| 671 | * Secondly, an interior deletion from a deep tree may require more than one |
| 672 | * rotation to fix the balance. This is handled by moving up the tree through |
| 673 | * parents and applying rotations as needed. The return value from |
| 674 | * avl_rotation() is used to detect when a subtree did not change overall |
| 675 | * height due to a rotation. |
| 676 | */ |
| 677 | void |
| 678 | avl_remove(avl_tree_t *tree, void *data) |
| 679 | { |
| 680 | avl_node_t *delete; |
| 681 | avl_node_t *parent; |
| 682 | avl_node_t *node; |
| 683 | avl_node_t tmp; |
| 684 | int old_balance; |
| 685 | int new_balance; |
| 686 | int left; |
| 687 | int right; |
| 688 | int which_child; |
| 689 | size_t off = tree->avl_offset; |
| 690 | |
| 691 | ASSERT(tree); |
| 692 | |
| 693 | delete = AVL_DATA2NODE(data, off); |
| 694 | |
| 695 | /* |
| 696 | * Deletion is easiest with a node that has at most 1 child. |
| 697 | * We swap a node with 2 children with a sequentially valued |
| 698 | * neighbor node. That node will have at most 1 child. Note this |
| 699 | * has no effect on the ordering of the remaining nodes. |
| 700 | * |
| 701 | * As an optimization, we choose the greater neighbor if the tree |
| 702 | * is right heavy, otherwise the left neighbor. This reduces the |
| 703 | * number of rotations needed. |
| 704 | */ |
| 705 | if (delete->avl_child[0] != NULL && delete->avl_child[1] != NULL) { |
| 706 | |
| 707 | /* |
| 708 | * choose node to swap from whichever side is taller |
| 709 | */ |
| 710 | old_balance = AVL_XBALANCE(delete); |
| 711 | left = avl_balance2child[old_balance + 1]; |
| 712 | right = 1 - left; |
| 713 | |
| 714 | /* |
| 715 | * get to the previous value'd node |
| 716 | * (down 1 left, as far as possible right) |
| 717 | */ |
| 718 | for (node = delete->avl_child[left]; |
| 719 | node->avl_child[right] != NULL; |
| 720 | node = node->avl_child[right]) |
| 721 | ; |
| 722 | |
| 723 | /* |
| 724 | * create a temp placeholder for 'node' |
| 725 | * move 'node' to delete's spot in the tree |
| 726 | */ |
| 727 | tmp = *node; |
| 728 | |
| 729 | *node = *delete; |
| 730 | if (node->avl_child[left] == node) |
| 731 | node->avl_child[left] = &tmp; |
| 732 | |
| 733 | parent = AVL_XPARENT(node); |
| 734 | if (parent != NULL) |
| 735 | parent->avl_child[AVL_XCHILD(node)] = node; |
| 736 | else |
| 737 | tree->avl_root = node; |
| 738 | AVL_SETPARENT(node->avl_child[left], node); |
| 739 | AVL_SETPARENT(node->avl_child[right], node); |
| 740 | |
| 741 | /* |
| 742 | * Put tmp where node used to be (just temporary). |
| 743 | * It always has a parent and at most 1 child. |
| 744 | */ |
| 745 | delete = &tmp; |
| 746 | parent = AVL_XPARENT(delete); |
| 747 | parent->avl_child[AVL_XCHILD(delete)] = delete; |
| 748 | which_child = (delete->avl_child[1] != 0); |
| 749 | if (delete->avl_child[which_child] != NULL) |
| 750 | AVL_SETPARENT(delete->avl_child[which_child], delete); |
| 751 | } |
| 752 | |
| 753 | |
| 754 | /* |
| 755 | * Here we know "delete" is at least partially a leaf node. It can |
| 756 | * be easily removed from the tree. |
| 757 | */ |
| 758 | ASSERT(tree->avl_numnodes > 0); |
| 759 | --tree->avl_numnodes; |
| 760 | parent = AVL_XPARENT(delete); |
| 761 | which_child = AVL_XCHILD(delete); |
| 762 | if (delete->avl_child[0] != NULL) |
| 763 | node = delete->avl_child[0]; |
| 764 | else |
| 765 | node = delete->avl_child[1]; |
| 766 | |
| 767 | /* |
| 768 | * Connect parent directly to node (leaving out delete). |
| 769 | */ |
| 770 | if (node != NULL) { |
| 771 | AVL_SETPARENT(node, parent); |
| 772 | AVL_SETCHILD(node, which_child); |
| 773 | } |
| 774 | if (parent == NULL) { |
| 775 | tree->avl_root = node; |
| 776 | return; |
| 777 | } |
| 778 | parent->avl_child[which_child] = node; |
| 779 | |
| 780 | |
| 781 | /* |
| 782 | * Since the subtree is now shorter, begin adjusting parent balances |
| 783 | * and performing any needed rotations. |
| 784 | */ |
| 785 | do { |
| 786 | |
| 787 | /* |
| 788 | * Move up the tree and adjust the balance |
| 789 | * |
| 790 | * Capture the parent and which_child values for the next |
| 791 | * iteration before any rotations occur. |
| 792 | */ |
| 793 | node = parent; |
| 794 | old_balance = AVL_XBALANCE(node); |
| 795 | new_balance = old_balance - avl_child2balance[which_child]; |
| 796 | parent = AVL_XPARENT(node); |
| 797 | which_child = AVL_XCHILD(node); |
| 798 | |
| 799 | /* |
| 800 | * If a node was in perfect balance but isn't anymore then |
| 801 | * we can stop, since the height didn't change above this point |
| 802 | * due to a deletion. |
| 803 | */ |
| 804 | if (old_balance == 0) { |
| 805 | AVL_SETBALANCE(node, new_balance); |
| 806 | break; |
| 807 | } |
| 808 | |
| 809 | /* |
| 810 | * If the new balance is zero, we don't need to rotate |
| 811 | * else |
| 812 | * need a rotation to fix the balance. |
| 813 | * If the rotation doesn't change the height |
| 814 | * of the sub-tree we have finished adjusting. |
| 815 | */ |
| 816 | if (new_balance == 0) |
| 817 | AVL_SETBALANCE(node, new_balance); |
| 818 | else if (!avl_rotation(tree, node, new_balance)) |
| 819 | break; |
| 820 | } while (parent != NULL); |
| 821 | } |
| 822 | |
| 823 | #define AVL_REINSERT(tree, obj) \ |
| 824 | avl_remove((tree), (obj)); \ |
| 825 | avl_add((tree), (obj)) |
| 826 | |
| 827 | boolean_t |
| 828 | avl_update_lt(avl_tree_t *t, void *obj) |
| 829 | { |
| 830 | void *neighbor; |
| 831 | |
| 832 | ASSERT(((neighbor = AVL_NEXT(t, obj)) == NULL) || |
| 833 | (t->avl_compar(obj, neighbor) <= 0)); |
| 834 | |
| 835 | neighbor = AVL_PREV(t, obj); |
| 836 | if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) { |
| 837 | AVL_REINSERT(t, obj); |
| 838 | return (B_TRUE); |
| 839 | } |
| 840 | |
| 841 | return (B_FALSE); |
| 842 | } |
| 843 | |
| 844 | boolean_t |
| 845 | avl_update_gt(avl_tree_t *t, void *obj) |
| 846 | { |
| 847 | void *neighbor; |
| 848 | |
| 849 | ASSERT(((neighbor = AVL_PREV(t, obj)) == NULL) || |
| 850 | (t->avl_compar(obj, neighbor) >= 0)); |
| 851 | |
| 852 | neighbor = AVL_NEXT(t, obj); |
| 853 | if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) { |
| 854 | AVL_REINSERT(t, obj); |
| 855 | return (B_TRUE); |
| 856 | } |
| 857 | |
| 858 | return (B_FALSE); |
| 859 | } |
| 860 | |
| 861 | boolean_t |
| 862 | avl_update(avl_tree_t *t, void *obj) |
| 863 | { |
| 864 | void *neighbor; |
| 865 | |
| 866 | neighbor = AVL_PREV(t, obj); |
| 867 | if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) { |
| 868 | AVL_REINSERT(t, obj); |
| 869 | return (B_TRUE); |
| 870 | } |
| 871 | |
| 872 | neighbor = AVL_NEXT(t, obj); |
| 873 | if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) { |
| 874 | AVL_REINSERT(t, obj); |
| 875 | return (B_TRUE); |
| 876 | } |
| 877 | |
| 878 | return (B_FALSE); |
| 879 | } |
| 880 | |
| 881 | void |
| 882 | avl_swap(avl_tree_t *tree1, avl_tree_t *tree2) |
| 883 | { |
| 884 | avl_node_t *temp_node; |
| 885 | ulong_t temp_numnodes; |
| 886 | |
| 887 | ASSERT3P(tree1->avl_compar, ==, tree2->avl_compar); |
| 888 | ASSERT3U(tree1->avl_offset, ==, tree2->avl_offset); |
| 889 | ASSERT3U(tree1->avl_size, ==, tree2->avl_size); |
| 890 | |
| 891 | temp_node = tree1->avl_root; |
| 892 | temp_numnodes = tree1->avl_numnodes; |
| 893 | tree1->avl_root = tree2->avl_root; |
| 894 | tree1->avl_numnodes = tree2->avl_numnodes; |
| 895 | tree2->avl_root = temp_node; |
| 896 | tree2->avl_numnodes = temp_numnodes; |
| 897 | } |
| 898 | |
| 899 | /* |
| 900 | * initialize a new AVL tree |
| 901 | */ |
| 902 | void |
| 903 | avl_create(avl_tree_t *tree, int (*compar) (const void *, const void *), |
| 904 | size_t size, size_t offset) |
| 905 | { |
| 906 | ASSERT(tree); |
| 907 | ASSERT(compar); |
| 908 | ASSERT(size > 0); |
| 909 | ASSERT(size >= offset + sizeof (avl_node_t)); |
| 910 | #ifdef _LP64 |
| 911 | ASSERT((offset & 0x7) == 0); |
| 912 | #endif |
| 913 | |
| 914 | tree->avl_compar = compar; |
| 915 | tree->avl_root = NULL; |
| 916 | tree->avl_numnodes = 0; |
| 917 | tree->avl_size = size; |
| 918 | tree->avl_offset = offset; |
| 919 | } |
| 920 | |
| 921 | /* |
| 922 | * Delete a tree. |
| 923 | */ |
| 924 | /* ARGSUSED */ |
| 925 | void |
| 926 | avl_destroy(avl_tree_t *tree) |
| 927 | { |
| 928 | ASSERT(tree); |
| 929 | ASSERT(tree->avl_numnodes == 0); |
| 930 | ASSERT(tree->avl_root == NULL); |
| 931 | } |
| 932 | |
| 933 | |
| 934 | /* |
| 935 | * Return the number of nodes in an AVL tree. |
| 936 | */ |
| 937 | ulong_t |
| 938 | avl_numnodes(avl_tree_t *tree) |
| 939 | { |
| 940 | ASSERT(tree); |
| 941 | return (tree->avl_numnodes); |
| 942 | } |
| 943 | |
| 944 | boolean_t |
| 945 | avl_is_empty(avl_tree_t *tree) |
| 946 | { |
| 947 | ASSERT(tree); |
| 948 | return (tree->avl_numnodes == 0); |
| 949 | } |
| 950 | |
| 951 | #define CHILDBIT (1L) |
| 952 | |
| 953 | /* |
| 954 | * Post-order tree walk used to visit all tree nodes and destroy the tree |
| 955 | * in post order. This is used for destroying a tree without paying any cost |
| 956 | * for rebalancing it. |
| 957 | * |
| 958 | * example: |
| 959 | * |
| 960 | * void *cookie = NULL; |
| 961 | * my_data_t *node; |
| 962 | * |
| 963 | * while ((node = avl_destroy_nodes(tree, &cookie)) != NULL) |
| 964 | * free(node); |
| 965 | * avl_destroy(tree); |
| 966 | * |
| 967 | * The cookie is really an avl_node_t to the current node's parent and |
| 968 | * an indication of which child you looked at last. |
| 969 | * |
| 970 | * On input, a cookie value of CHILDBIT indicates the tree is done. |
| 971 | */ |
| 972 | void * |
| 973 | avl_destroy_nodes(avl_tree_t *tree, void **cookie) |
| 974 | { |
| 975 | avl_node_t *node; |
| 976 | avl_node_t *parent; |
| 977 | int child; |
| 978 | void *first; |
| 979 | size_t off = tree->avl_offset; |
| 980 | |
| 981 | /* |
| 982 | * Initial calls go to the first node or it's right descendant. |
| 983 | */ |
| 984 | if (*cookie == NULL) { |
| 985 | first = avl_first(tree); |
| 986 | |
| 987 | /* |
| 988 | * deal with an empty tree |
| 989 | */ |
| 990 | if (first == NULL) { |
| 991 | *cookie = (void *)CHILDBIT; |
| 992 | return (NULL); |
| 993 | } |
| 994 | |
| 995 | node = AVL_DATA2NODE(first, off); |
| 996 | parent = AVL_XPARENT(node); |
| 997 | goto check_right_side; |
| 998 | } |
| 999 | |
| 1000 | /* |
| 1001 | * If there is no parent to return to we are done. |
| 1002 | */ |
| 1003 | parent = (avl_node_t *)((uintptr_t)(*cookie) & ~CHILDBIT); |
| 1004 | if (parent == NULL) { |
| 1005 | if (tree->avl_root != NULL) { |
| 1006 | ASSERT(tree->avl_numnodes == 1); |
| 1007 | tree->avl_root = NULL; |
| 1008 | tree->avl_numnodes = 0; |
| 1009 | } |
| 1010 | return (NULL); |
| 1011 | } |
| 1012 | |
| 1013 | /* |
| 1014 | * Remove the child pointer we just visited from the parent and tree. |
| 1015 | */ |
| 1016 | child = (uintptr_t)(*cookie) & CHILDBIT; |
| 1017 | parent->avl_child[child] = NULL; |
| 1018 | ASSERT(tree->avl_numnodes > 1); |
| 1019 | --tree->avl_numnodes; |
| 1020 | |
| 1021 | /* |
| 1022 | * If we just did a right child or there isn't one, go up to parent. |
| 1023 | */ |
| 1024 | if (child == 1 || parent->avl_child[1] == NULL) { |
| 1025 | node = parent; |
| 1026 | parent = AVL_XPARENT(parent); |
| 1027 | goto done; |
| 1028 | } |
| 1029 | |
| 1030 | /* |
| 1031 | * Do parent's right child, then leftmost descendent. |
| 1032 | */ |
| 1033 | node = parent->avl_child[1]; |
| 1034 | while (node->avl_child[0] != NULL) { |
| 1035 | parent = node; |
| 1036 | node = node->avl_child[0]; |
| 1037 | } |
| 1038 | |
| 1039 | /* |
| 1040 | * If here, we moved to a left child. It may have one |
| 1041 | * child on the right (when balance == +1). |
| 1042 | */ |
| 1043 | check_right_side: |
| 1044 | if (node->avl_child[1] != NULL) { |
| 1045 | ASSERT(AVL_XBALANCE(node) == 1); |
| 1046 | parent = node; |
| 1047 | node = node->avl_child[1]; |
| 1048 | ASSERT(node->avl_child[0] == NULL && |
| 1049 | node->avl_child[1] == NULL); |
| 1050 | } else { |
| 1051 | ASSERT(AVL_XBALANCE(node) <= 0); |
| 1052 | } |
| 1053 | |
| 1054 | done: |
| 1055 | if (parent == NULL) { |
| 1056 | *cookie = (void *)CHILDBIT; |
| 1057 | ASSERT(node == tree->avl_root); |
| 1058 | } else { |
| 1059 | *cookie = (void *)((uintptr_t)parent | AVL_XCHILD(node)); |
| 1060 | } |
| 1061 | |
| 1062 | return (AVL_NODE2DATA(node, off)); |
| 1063 | } |
| 1064 | |