| 1 | /* |
| 2 | * dhcpcd - ARP handler |
| 3 | * Copyright (c) 2006-2019 Roy Marples <roy@marples.name> |
| 4 | * All rights reserved |
| 5 | |
| 6 | * Redistribution and use in source and binary forms, with or without |
| 7 | * modification, are permitted provided that the following conditions |
| 8 | * are met: |
| 9 | * 1. Redistributions of source code must retain the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer. |
| 11 | * 2. Redistributions in binary form must reproduce the above copyright |
| 12 | * notice, this list of conditions and the following disclaimer in the |
| 13 | * documentation and/or other materials provided with the distribution. |
| 14 | * |
| 15 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
| 16 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 17 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 18 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| 19 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 20 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 21 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 22 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 23 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 24 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 25 | * SUCH DAMAGE. |
| 26 | */ |
| 27 | |
| 28 | #include <sys/socket.h> |
| 29 | #include <sys/types.h> |
| 30 | |
| 31 | #include <arpa/inet.h> |
| 32 | |
| 33 | #include <net/if.h> |
| 34 | #include <netinet/in.h> |
| 35 | #include <netinet/if_ether.h> |
| 36 | |
| 37 | #include <errno.h> |
| 38 | #include <stdlib.h> |
| 39 | #include <string.h> |
| 40 | #include <unistd.h> |
| 41 | |
| 42 | #define ELOOP_QUEUE 5 |
| 43 | #include "config.h" |
| 44 | #include "arp.h" |
| 45 | #include "bpf.h" |
| 46 | #include "ipv4.h" |
| 47 | #include "common.h" |
| 48 | #include "dhcpcd.h" |
| 49 | #include "eloop.h" |
| 50 | #include "if.h" |
| 51 | #include "if-options.h" |
| 52 | #include "ipv4ll.h" |
| 53 | #include "logerr.h" |
| 54 | |
| 55 | #if defined(ARP) |
| 56 | #define ARP_LEN \ |
| 57 | (sizeof(struct arphdr) + (2 * sizeof(uint32_t)) + (2 * HWADDR_LEN)) |
| 58 | |
| 59 | /* ARP debugging can be quite noisy. Enable this for more noise! */ |
| 60 | //#define ARP_DEBUG |
| 61 | |
| 62 | /* Assert the correct structure size for on wire */ |
| 63 | __CTASSERT(sizeof(struct arphdr) == 8); |
| 64 | |
| 65 | ssize_t |
| 66 | arp_request(const struct interface *ifp, in_addr_t sip, in_addr_t tip) |
| 67 | { |
| 68 | uint8_t arp_buffer[ARP_LEN]; |
| 69 | struct arphdr ar; |
| 70 | size_t len; |
| 71 | uint8_t *p; |
| 72 | const struct iarp_state *state; |
| 73 | |
| 74 | ar.ar_hrd = htons(ifp->family); |
| 75 | ar.ar_pro = htons(ETHERTYPE_IP); |
| 76 | ar.ar_hln = ifp->hwlen; |
| 77 | ar.ar_pln = sizeof(sip); |
| 78 | ar.ar_op = htons(ARPOP_REQUEST); |
| 79 | |
| 80 | p = arp_buffer; |
| 81 | len = 0; |
| 82 | |
| 83 | #define CHECK(fun, b, l) \ |
| 84 | do { \ |
| 85 | if (len + (l) > sizeof(arp_buffer)) \ |
| 86 | goto eexit; \ |
| 87 | fun(p, (b), (l)); \ |
| 88 | p += (l); \ |
| 89 | len += (l); \ |
| 90 | } while (/* CONSTCOND */ 0) |
| 91 | #define APPEND(b, l) CHECK(memcpy, b, l) |
| 92 | #define ZERO(l) CHECK(memset, 0, l) |
| 93 | |
| 94 | APPEND(&ar, sizeof(ar)); |
| 95 | APPEND(ifp->hwaddr, ifp->hwlen); |
| 96 | APPEND(&sip, sizeof(sip)); |
| 97 | ZERO(ifp->hwlen); |
| 98 | APPEND(&tip, sizeof(tip)); |
| 99 | |
| 100 | state = ARP_CSTATE(ifp); |
| 101 | return bpf_send(ifp, state->bpf_fd, ETHERTYPE_ARP, arp_buffer, len); |
| 102 | |
| 103 | eexit: |
| 104 | errno = ENOBUFS; |
| 105 | return -1; |
| 106 | } |
| 107 | |
| 108 | static void |
| 109 | arp_packet(struct interface *ifp, uint8_t *data, size_t len) |
| 110 | { |
| 111 | const struct interface *ifn; |
| 112 | struct arphdr ar; |
| 113 | struct arp_msg arm; |
| 114 | const struct iarp_state *state; |
| 115 | struct arp_state *astate, *astaten; |
| 116 | uint8_t *hw_s, *hw_t; |
| 117 | |
| 118 | /* We must have a full ARP header */ |
| 119 | if (len < sizeof(ar)) |
| 120 | return; |
| 121 | memcpy(&ar, data, sizeof(ar)); |
| 122 | |
| 123 | /* These checks are enforced in the BPF filter. */ |
| 124 | #if 0 |
| 125 | /* Families must match */ |
| 126 | if (ar.ar_hrd != htons(ifp->family)) |
| 127 | return; |
| 128 | /* Protocol must be IP. */ |
| 129 | if (ar.ar_pro != htons(ETHERTYPE_IP)) |
| 130 | continue; |
| 131 | /* lladdr length matches */ |
| 132 | if (ar.ar_hln != ifp->hwlen) |
| 133 | continue; |
| 134 | /* Protocol length must match in_addr_t */ |
| 135 | if (ar.ar_pln != sizeof(arm.sip.s_addr)) |
| 136 | return; |
| 137 | /* Only these types are recognised */ |
| 138 | if (ar.ar_op != htons(ARPOP_REPLY) && |
| 139 | ar.ar_op != htons(ARPOP_REQUEST)) |
| 140 | continue; |
| 141 | #endif |
| 142 | |
| 143 | /* Get pointers to the hardware addresses */ |
| 144 | hw_s = data + sizeof(ar); |
| 145 | hw_t = hw_s + ar.ar_hln + ar.ar_pln; |
| 146 | /* Ensure we got all the data */ |
| 147 | if ((size_t)((hw_t + ar.ar_hln + ar.ar_pln) - data) > len) |
| 148 | return; |
| 149 | /* Ignore messages from ourself */ |
| 150 | TAILQ_FOREACH(ifn, ifp->ctx->ifaces, next) { |
| 151 | if (ar.ar_hln == ifn->hwlen && |
| 152 | memcmp(hw_s, ifn->hwaddr, ifn->hwlen) == 0) |
| 153 | break; |
| 154 | } |
| 155 | if (ifn) { |
| 156 | #ifdef ARP_DEBUG |
| 157 | logdebugx("%s: ignoring ARP from self" , ifp->name); |
| 158 | #endif |
| 159 | return; |
| 160 | } |
| 161 | /* Copy out the HW and IP addresses */ |
| 162 | memcpy(&arm.sha, hw_s, ar.ar_hln); |
| 163 | memcpy(&arm.sip.s_addr, hw_s + ar.ar_hln, ar.ar_pln); |
| 164 | memcpy(&arm.tha, hw_t, ar.ar_hln); |
| 165 | memcpy(&arm.tip.s_addr, hw_t + ar.ar_hln, ar.ar_pln); |
| 166 | |
| 167 | /* Run the conflicts */ |
| 168 | state = ARP_CSTATE(ifp); |
| 169 | TAILQ_FOREACH_SAFE(astate, &state->arp_states, next, astaten) { |
| 170 | if (arm.sip.s_addr != astate->addr.s_addr && |
| 171 | arm.tip.s_addr != astate->addr.s_addr) |
| 172 | continue; |
| 173 | if (astate->conflicted_cb) |
| 174 | astate->conflicted_cb(astate, &arm); |
| 175 | } |
| 176 | } |
| 177 | |
| 178 | static void |
| 179 | arp_close(struct interface *ifp) |
| 180 | { |
| 181 | struct iarp_state *state; |
| 182 | |
| 183 | if ((state = ARP_STATE(ifp)) == NULL || state->bpf_fd == -1) |
| 184 | return; |
| 185 | |
| 186 | eloop_event_delete(ifp->ctx->eloop, state->bpf_fd); |
| 187 | bpf_close(ifp, state->bpf_fd); |
| 188 | state->bpf_fd = -1; |
| 189 | state->bpf_flags |= BPF_EOF; |
| 190 | } |
| 191 | |
| 192 | static void |
| 193 | arp_tryfree(struct interface *ifp) |
| 194 | { |
| 195 | struct iarp_state *state = ARP_STATE(ifp); |
| 196 | |
| 197 | /* If there are no more ARP states, close the socket. */ |
| 198 | if (TAILQ_FIRST(&state->arp_states) == NULL) { |
| 199 | arp_close(ifp); |
| 200 | if (state->bpf_flags & BPF_READING) |
| 201 | state->bpf_flags |= BPF_EOF; |
| 202 | else { |
| 203 | free(state); |
| 204 | ifp->if_data[IF_DATA_ARP] = NULL; |
| 205 | } |
| 206 | } else { |
| 207 | if (bpf_arp(ifp, state->bpf_fd) == -1) |
| 208 | logerr(__func__); |
| 209 | } |
| 210 | } |
| 211 | |
| 212 | static void |
| 213 | arp_read(void *arg) |
| 214 | { |
| 215 | struct interface *ifp = arg; |
| 216 | struct iarp_state *state; |
| 217 | uint8_t buf[ARP_LEN]; |
| 218 | ssize_t bytes; |
| 219 | |
| 220 | /* Some RAW mechanisms are generic file descriptors, not sockets. |
| 221 | * This means we have no kernel call to just get one packet, |
| 222 | * so we have to process the entire buffer. */ |
| 223 | state = ARP_STATE(ifp); |
| 224 | state->bpf_flags &= ~BPF_EOF; |
| 225 | state->bpf_flags |= BPF_READING; |
| 226 | while (!(state->bpf_flags & BPF_EOF)) { |
| 227 | bytes = bpf_read(ifp, state->bpf_fd, buf, sizeof(buf), |
| 228 | &state->bpf_flags); |
| 229 | if (bytes == -1) { |
| 230 | logerr("%s: %s" , __func__, ifp->name); |
| 231 | arp_close(ifp); |
| 232 | break; |
| 233 | } |
| 234 | arp_packet(ifp, buf, (size_t)bytes); |
| 235 | /* Check we still have a state after processing. */ |
| 236 | if ((state = ARP_STATE(ifp)) == NULL) |
| 237 | break; |
| 238 | } |
| 239 | if (state != NULL) { |
| 240 | state->bpf_flags &= ~BPF_READING; |
| 241 | /* Try and free the state if nothing left to do. */ |
| 242 | arp_tryfree(ifp); |
| 243 | } |
| 244 | } |
| 245 | |
| 246 | int |
| 247 | arp_open(struct interface *ifp) |
| 248 | { |
| 249 | struct iarp_state *state; |
| 250 | |
| 251 | state = ARP_STATE(ifp); |
| 252 | if (state->bpf_fd == -1) { |
| 253 | state->bpf_fd = bpf_open(ifp, bpf_arp); |
| 254 | if (state->bpf_fd == -1) { |
| 255 | logerr("%s: %s" , __func__, ifp->name); |
| 256 | return -1; |
| 257 | } |
| 258 | eloop_event_add(ifp->ctx->eloop, state->bpf_fd, arp_read, ifp); |
| 259 | } |
| 260 | return state->bpf_fd; |
| 261 | } |
| 262 | |
| 263 | static void |
| 264 | arp_probed(void *arg) |
| 265 | { |
| 266 | struct arp_state *astate = arg; |
| 267 | |
| 268 | astate->probed_cb(astate); |
| 269 | } |
| 270 | |
| 271 | static void |
| 272 | arp_probe1(void *arg) |
| 273 | { |
| 274 | struct arp_state *astate = arg; |
| 275 | struct interface *ifp = astate->iface; |
| 276 | struct timespec tv; |
| 277 | |
| 278 | if (++astate->probes < PROBE_NUM) { |
| 279 | tv.tv_sec = PROBE_MIN; |
| 280 | tv.tv_nsec = (suseconds_t)arc4random_uniform( |
| 281 | (PROBE_MAX - PROBE_MIN) * NSEC_PER_SEC); |
| 282 | timespecnorm(&tv); |
| 283 | eloop_timeout_add_tv(ifp->ctx->eloop, &tv, arp_probe1, astate); |
| 284 | } else { |
| 285 | tv.tv_sec = ANNOUNCE_WAIT; |
| 286 | tv.tv_nsec = 0; |
| 287 | eloop_timeout_add_tv(ifp->ctx->eloop, &tv, arp_probed, astate); |
| 288 | } |
| 289 | logdebugx("%s: ARP probing %s (%d of %d), next in %0.1f seconds" , |
| 290 | ifp->name, inet_ntoa(astate->addr), |
| 291 | astate->probes ? astate->probes : PROBE_NUM, PROBE_NUM, |
| 292 | timespec_to_double(&tv)); |
| 293 | if (arp_request(ifp, 0, astate->addr.s_addr) == -1) |
| 294 | logerr(__func__); |
| 295 | } |
| 296 | |
| 297 | void |
| 298 | arp_probe(struct arp_state *astate) |
| 299 | { |
| 300 | |
| 301 | if (arp_open(astate->iface) == -1) { |
| 302 | logerr(__func__); |
| 303 | return; |
| 304 | } else { |
| 305 | const struct iarp_state *state = ARP_CSTATE(astate->iface); |
| 306 | |
| 307 | if (bpf_arp(astate->iface, state->bpf_fd) == -1) |
| 308 | logerr(__func__); |
| 309 | } |
| 310 | astate->probes = 0; |
| 311 | logdebugx("%s: probing for %s" , |
| 312 | astate->iface->name, inet_ntoa(astate->addr)); |
| 313 | arp_probe1(astate); |
| 314 | } |
| 315 | #endif /* ARP */ |
| 316 | |
| 317 | static void |
| 318 | arp_announced(void *arg) |
| 319 | { |
| 320 | struct arp_state *astate = arg; |
| 321 | |
| 322 | if (astate->announced_cb) { |
| 323 | astate->announced_cb(astate); |
| 324 | return; |
| 325 | } |
| 326 | |
| 327 | /* Keep the ARP state open to handle ongoing ACD. */ |
| 328 | } |
| 329 | |
| 330 | static void |
| 331 | arp_announce1(void *arg) |
| 332 | { |
| 333 | struct arp_state *astate = arg; |
| 334 | struct interface *ifp = astate->iface; |
| 335 | |
| 336 | if (++astate->claims < ANNOUNCE_NUM) |
| 337 | logdebugx("%s: ARP announcing %s (%d of %d), " |
| 338 | "next in %d.0 seconds" , |
| 339 | ifp->name, inet_ntoa(astate->addr), |
| 340 | astate->claims, ANNOUNCE_NUM, ANNOUNCE_WAIT); |
| 341 | else |
| 342 | logdebugx("%s: ARP announcing %s (%d of %d)" , |
| 343 | ifp->name, inet_ntoa(astate->addr), |
| 344 | astate->claims, ANNOUNCE_NUM); |
| 345 | if (arp_request(ifp, astate->addr.s_addr, astate->addr.s_addr) == -1) |
| 346 | logerr(__func__); |
| 347 | eloop_timeout_add_sec(ifp->ctx->eloop, ANNOUNCE_WAIT, |
| 348 | astate->claims < ANNOUNCE_NUM ? arp_announce1 : arp_announced, |
| 349 | astate); |
| 350 | } |
| 351 | |
| 352 | /* |
| 353 | * XXX FIXME |
| 354 | * Kernels supporting RFC5227 will announce the address when it's |
| 355 | * added. |
| 356 | * dhcpcd should not announce when this happens, nor need to open |
| 357 | * a BPF socket for it. |
| 358 | * Also, an address might be added to a non preferred inteface when |
| 359 | * the same address exists on a preferred one so we need to instruct |
| 360 | * the kernel not to announce the address somehow. |
| 361 | */ |
| 362 | |
| 363 | void |
| 364 | arp_announce(struct arp_state *astate) |
| 365 | { |
| 366 | struct iarp_state *state; |
| 367 | struct interface *ifp; |
| 368 | struct arp_state *a2; |
| 369 | int r; |
| 370 | |
| 371 | if (arp_open(astate->iface) == -1) { |
| 372 | logerr(__func__); |
| 373 | return; |
| 374 | } |
| 375 | |
| 376 | /* Cancel any other ARP announcements for this address. */ |
| 377 | TAILQ_FOREACH(ifp, astate->iface->ctx->ifaces, next) { |
| 378 | state = ARP_STATE(ifp); |
| 379 | if (state == NULL) |
| 380 | continue; |
| 381 | TAILQ_FOREACH(a2, &state->arp_states, next) { |
| 382 | if (astate == a2 || |
| 383 | a2->addr.s_addr != astate->addr.s_addr) |
| 384 | continue; |
| 385 | r = eloop_timeout_delete(a2->iface->ctx->eloop, |
| 386 | a2->claims < ANNOUNCE_NUM |
| 387 | ? arp_announce1 : arp_announced, |
| 388 | a2); |
| 389 | if (r == -1) |
| 390 | logerr(__func__); |
| 391 | else if (r != 0) |
| 392 | logdebugx("%s: ARP announcement " |
| 393 | "of %s cancelled" , |
| 394 | a2->iface->name, |
| 395 | inet_ntoa(a2->addr)); |
| 396 | } |
| 397 | } |
| 398 | |
| 399 | astate->claims = 0; |
| 400 | arp_announce1(astate); |
| 401 | } |
| 402 | |
| 403 | void |
| 404 | arp_announceaddr(struct dhcpcd_ctx *ctx, const struct in_addr *ia) |
| 405 | { |
| 406 | struct interface *ifp; |
| 407 | struct ipv4_addr *iaf; |
| 408 | struct arp_state *astate; |
| 409 | |
| 410 | TAILQ_FOREACH(ifp, ctx->ifaces, next) { |
| 411 | iaf = ipv4_iffindaddr(ifp, ia, NULL); |
| 412 | #ifdef IN_IFF_NOTUSEABLE |
| 413 | if (iaf && !(iaf->addr_flags & IN_IFF_NOTUSEABLE)) |
| 414 | #else |
| 415 | if (iaf) |
| 416 | #endif |
| 417 | break; |
| 418 | } |
| 419 | if (ifp == NULL) |
| 420 | return; |
| 421 | |
| 422 | astate = arp_find(ifp, ia); |
| 423 | if (astate != NULL) |
| 424 | arp_announce(astate); |
| 425 | } |
| 426 | |
| 427 | void |
| 428 | arp_ifannounceaddr(struct interface *ifp, const struct in_addr *ia) |
| 429 | { |
| 430 | struct arp_state *astate; |
| 431 | |
| 432 | astate = arp_new(ifp, ia); |
| 433 | if (astate != NULL) |
| 434 | arp_announce(astate); |
| 435 | } |
| 436 | |
| 437 | void |
| 438 | arp_report_conflicted(const struct arp_state *astate, |
| 439 | const struct arp_msg *amsg) |
| 440 | { |
| 441 | |
| 442 | if (amsg != NULL) { |
| 443 | char buf[HWADDR_LEN * 3]; |
| 444 | |
| 445 | logerrx("%s: hardware address %s claims %s" , |
| 446 | astate->iface->name, |
| 447 | hwaddr_ntoa(amsg->sha, astate->iface->hwlen, |
| 448 | buf, sizeof(buf)), |
| 449 | inet_ntoa(astate->failed)); |
| 450 | } else |
| 451 | logerrx("%s: DAD detected %s" , |
| 452 | astate->iface->name, inet_ntoa(astate->failed)); |
| 453 | } |
| 454 | |
| 455 | struct arp_state * |
| 456 | arp_find(struct interface *ifp, const struct in_addr *addr) |
| 457 | { |
| 458 | struct iarp_state *state; |
| 459 | struct arp_state *astate; |
| 460 | |
| 461 | if ((state = ARP_STATE(ifp)) == NULL) |
| 462 | goto out; |
| 463 | TAILQ_FOREACH(astate, &state->arp_states, next) { |
| 464 | if (astate->addr.s_addr == addr->s_addr && astate->iface == ifp) |
| 465 | return astate; |
| 466 | } |
| 467 | out: |
| 468 | errno = ESRCH; |
| 469 | return NULL; |
| 470 | } |
| 471 | |
| 472 | struct arp_state * |
| 473 | arp_new(struct interface *ifp, const struct in_addr *addr) |
| 474 | { |
| 475 | struct iarp_state *state; |
| 476 | struct arp_state *astate; |
| 477 | |
| 478 | if ((state = ARP_STATE(ifp)) == NULL) { |
| 479 | ifp->if_data[IF_DATA_ARP] = malloc(sizeof(*state)); |
| 480 | state = ARP_STATE(ifp); |
| 481 | if (state == NULL) { |
| 482 | logerr(__func__); |
| 483 | return NULL; |
| 484 | } |
| 485 | state->bpf_fd = -1; |
| 486 | state->bpf_flags = 0; |
| 487 | TAILQ_INIT(&state->arp_states); |
| 488 | } else { |
| 489 | if (addr && (astate = arp_find(ifp, addr))) |
| 490 | return astate; |
| 491 | } |
| 492 | |
| 493 | if ((astate = calloc(1, sizeof(*astate))) == NULL) { |
| 494 | logerr(__func__); |
| 495 | return NULL; |
| 496 | } |
| 497 | astate->iface = ifp; |
| 498 | if (addr) |
| 499 | astate->addr = *addr; |
| 500 | state = ARP_STATE(ifp); |
| 501 | TAILQ_INSERT_TAIL(&state->arp_states, astate, next); |
| 502 | |
| 503 | if (bpf_arp(ifp, state->bpf_fd) == -1) |
| 504 | logerr(__func__); /* try and continue */ |
| 505 | |
| 506 | return astate; |
| 507 | } |
| 508 | |
| 509 | void |
| 510 | arp_cancel(struct arp_state *astate) |
| 511 | { |
| 512 | |
| 513 | eloop_timeout_delete(astate->iface->ctx->eloop, NULL, astate); |
| 514 | } |
| 515 | |
| 516 | void |
| 517 | arp_free(struct arp_state *astate) |
| 518 | { |
| 519 | struct interface *ifp; |
| 520 | struct iarp_state *state; |
| 521 | |
| 522 | if (astate == NULL) |
| 523 | return; |
| 524 | |
| 525 | ifp = astate->iface; |
| 526 | eloop_timeout_delete(ifp->ctx->eloop, NULL, astate); |
| 527 | state = ARP_STATE(ifp); |
| 528 | TAILQ_REMOVE(&state->arp_states, astate, next); |
| 529 | if (astate->free_cb) |
| 530 | astate->free_cb(astate); |
| 531 | free(astate); |
| 532 | arp_tryfree(ifp); |
| 533 | } |
| 534 | |
| 535 | static void |
| 536 | arp_free_but1(struct interface *ifp, struct arp_state *astate) |
| 537 | { |
| 538 | struct iarp_state *state; |
| 539 | |
| 540 | if ((state = ARP_STATE(ifp)) != NULL) { |
| 541 | struct arp_state *p, *n; |
| 542 | |
| 543 | TAILQ_FOREACH_SAFE(p, &state->arp_states, next, n) { |
| 544 | if (p != astate) |
| 545 | arp_free(p); |
| 546 | } |
| 547 | } |
| 548 | } |
| 549 | |
| 550 | void |
| 551 | arp_free_but(struct arp_state *astate) |
| 552 | { |
| 553 | |
| 554 | arp_free_but1(astate->iface, astate); |
| 555 | } |
| 556 | |
| 557 | void |
| 558 | arp_drop(struct interface *ifp) |
| 559 | { |
| 560 | |
| 561 | arp_free_but1(ifp, NULL); |
| 562 | arp_close(ifp); |
| 563 | } |
| 564 | |
| 565 | void |
| 566 | arp_handleifa(int cmd, struct ipv4_addr *addr) |
| 567 | { |
| 568 | struct iarp_state *state; |
| 569 | struct arp_state *astate, *asn; |
| 570 | |
| 571 | state = ARP_STATE(addr->iface); |
| 572 | if (state == NULL) |
| 573 | return; |
| 574 | |
| 575 | TAILQ_FOREACH_SAFE(astate, &state->arp_states, next, asn) { |
| 576 | if (astate->addr.s_addr != addr->addr.s_addr) |
| 577 | continue; |
| 578 | if (cmd == RTM_DELADDR) |
| 579 | arp_free(astate); |
| 580 | #ifdef IN_IFF_DUPLICATED |
| 581 | if (cmd != RTM_NEWADDR) |
| 582 | continue; |
| 583 | if (addr->addr_flags & IN_IFF_DUPLICATED) { |
| 584 | if (astate->conflicted_cb) |
| 585 | astate->conflicted_cb(astate, NULL); |
| 586 | } else if (!(addr->addr_flags & IN_IFF_NOTUSEABLE)) { |
| 587 | if (astate->probed_cb) |
| 588 | astate->probed_cb(astate); |
| 589 | } |
| 590 | #endif |
| 591 | } |
| 592 | } |
| 593 | |