1 | /* $NetBSD: sha2.c,v 1.24 2013/06/09 19:46:56 christos Exp $ */ |
2 | /* $KAME: sha2.c,v 1.9 2003/07/20 00:28:38 itojun Exp $ */ |
3 | |
4 | /* |
5 | * sha2.c |
6 | * |
7 | * Version 1.0.0beta1 |
8 | * |
9 | * Written by Aaron D. Gifford <me@aarongifford.com> |
10 | * |
11 | * Copyright 2000 Aaron D. Gifford. All rights reserved. |
12 | * |
13 | * Redistribution and use in source and binary forms, with or without |
14 | * modification, are permitted provided that the following conditions |
15 | * are met: |
16 | * 1. Redistributions of source code must retain the above copyright |
17 | * notice, this list of conditions and the following disclaimer. |
18 | * 2. Redistributions in binary form must reproduce the above copyright |
19 | * notice, this list of conditions and the following disclaimer in the |
20 | * documentation and/or other materials provided with the distribution. |
21 | * 3. Neither the name of the copyright holder nor the names of contributors |
22 | * may be used to endorse or promote products derived from this software |
23 | * without specific prior written permission. |
24 | * |
25 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND |
26 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
27 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
28 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE |
29 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
30 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
31 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
32 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
33 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
34 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
35 | * SUCH DAMAGE. |
36 | * |
37 | */ |
38 | |
39 | #if HAVE_NBTOOL_CONFIG_H |
40 | #include "nbtool_config.h" |
41 | #endif |
42 | |
43 | #include <sys/cdefs.h> |
44 | |
45 | #if defined(_KERNEL) || defined(_STANDALONE) |
46 | __KERNEL_RCSID(0, "$NetBSD: sha2.c,v 1.24 2013/06/09 19:46:56 christos Exp $" ); |
47 | |
48 | #include <sys/param.h> /* XXX: to pull <machine/macros.h> for vax memset(9) */ |
49 | #include <lib/libkern/libkern.h> |
50 | |
51 | #else |
52 | |
53 | #if defined(LIBC_SCCS) && !defined(lint) |
54 | __RCSID("$NetBSD: sha2.c,v 1.24 2013/06/09 19:46:56 christos Exp $" ); |
55 | #endif /* LIBC_SCCS and not lint */ |
56 | |
57 | #include "namespace.h" |
58 | #include <string.h> |
59 | |
60 | #endif |
61 | |
62 | #include <sys/types.h> |
63 | #include <sys/sha2.h> |
64 | |
65 | #if HAVE_SYS_ENDIAN_H |
66 | # include <sys/endian.h> |
67 | #endif |
68 | |
69 | /*** SHA-256/384/512 Various Length Definitions ***********************/ |
70 | /* NOTE: Most of these are in sha2.h */ |
71 | #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8) |
72 | #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16) |
73 | #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16) |
74 | |
75 | /* |
76 | * Macro for incrementally adding the unsigned 64-bit integer n to the |
77 | * unsigned 128-bit integer (represented using a two-element array of |
78 | * 64-bit words): |
79 | */ |
80 | #define ADDINC128(w,n) { \ |
81 | (w)[0] += (uint64_t)(n); \ |
82 | if ((w)[0] < (n)) { \ |
83 | (w)[1]++; \ |
84 | } \ |
85 | } |
86 | |
87 | /*** THE SIX LOGICAL FUNCTIONS ****************************************/ |
88 | /* |
89 | * Bit shifting and rotation (used by the six SHA-XYZ logical functions: |
90 | * |
91 | * NOTE: The naming of R and S appears backwards here (R is a SHIFT and |
92 | * S is a ROTATION) because the SHA-256/384/512 description document |
93 | * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this |
94 | * same "backwards" definition. |
95 | */ |
96 | /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ |
97 | #define R(b,x) ((x) >> (b)) |
98 | /* 32-bit Rotate-right (used in SHA-256): */ |
99 | #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) |
100 | /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ |
101 | #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) |
102 | |
103 | /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */ |
104 | #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) |
105 | #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) |
106 | |
107 | /* Four of six logical functions used in SHA-256: */ |
108 | #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) |
109 | #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) |
110 | #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) |
111 | #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) |
112 | |
113 | /* Four of six logical functions used in SHA-384 and SHA-512: */ |
114 | #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) |
115 | #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) |
116 | #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x))) |
117 | #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x))) |
118 | |
119 | /*** INTERNAL FUNCTION PROTOTYPES *************************************/ |
120 | /* NOTE: These should not be accessed directly from outside this |
121 | * library -- they are intended for private internal visibility/use |
122 | * only. |
123 | */ |
124 | static void SHA512_Last(SHA512_CTX *); |
125 | void SHA224_Transform(SHA224_CTX *, const uint32_t*); |
126 | void SHA256_Transform(SHA256_CTX *, const uint32_t*); |
127 | void SHA384_Transform(SHA384_CTX *, const uint64_t*); |
128 | void SHA512_Transform(SHA512_CTX *, const uint64_t*); |
129 | |
130 | |
131 | /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ |
132 | /* Hash constant words K for SHA-256: */ |
133 | static const uint32_t K256[64] = { |
134 | 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, |
135 | 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, |
136 | 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, |
137 | 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, |
138 | 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, |
139 | 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, |
140 | 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, |
141 | 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, |
142 | 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, |
143 | 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, |
144 | 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, |
145 | 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, |
146 | 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, |
147 | 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, |
148 | 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, |
149 | 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL |
150 | }; |
151 | |
152 | /* Initial hash value H for SHA-224: */ |
153 | static const uint32_t sha224_initial_hash_value[8] = { |
154 | 0xc1059ed8UL, |
155 | 0x367cd507UL, |
156 | 0x3070dd17UL, |
157 | 0xf70e5939UL, |
158 | 0xffc00b31UL, |
159 | 0x68581511UL, |
160 | 0x64f98fa7UL, |
161 | 0xbefa4fa4UL |
162 | }; |
163 | |
164 | /* Initial hash value H for SHA-256: */ |
165 | static const uint32_t sha256_initial_hash_value[8] = { |
166 | 0x6a09e667UL, |
167 | 0xbb67ae85UL, |
168 | 0x3c6ef372UL, |
169 | 0xa54ff53aUL, |
170 | 0x510e527fUL, |
171 | 0x9b05688cUL, |
172 | 0x1f83d9abUL, |
173 | 0x5be0cd19UL |
174 | }; |
175 | |
176 | /* Hash constant words K for SHA-384 and SHA-512: */ |
177 | static const uint64_t K512[80] = { |
178 | 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, |
179 | 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, |
180 | 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, |
181 | 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, |
182 | 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, |
183 | 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, |
184 | 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, |
185 | 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, |
186 | 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, |
187 | 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, |
188 | 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, |
189 | 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, |
190 | 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, |
191 | 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, |
192 | 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, |
193 | 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, |
194 | 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, |
195 | 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, |
196 | 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, |
197 | 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, |
198 | 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, |
199 | 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, |
200 | 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, |
201 | 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, |
202 | 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, |
203 | 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, |
204 | 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, |
205 | 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, |
206 | 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, |
207 | 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, |
208 | 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, |
209 | 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, |
210 | 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, |
211 | 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, |
212 | 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, |
213 | 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, |
214 | 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, |
215 | 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, |
216 | 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, |
217 | 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL |
218 | }; |
219 | |
220 | /* Initial hash value H for SHA-384 */ |
221 | static const uint64_t sha384_initial_hash_value[8] = { |
222 | 0xcbbb9d5dc1059ed8ULL, |
223 | 0x629a292a367cd507ULL, |
224 | 0x9159015a3070dd17ULL, |
225 | 0x152fecd8f70e5939ULL, |
226 | 0x67332667ffc00b31ULL, |
227 | 0x8eb44a8768581511ULL, |
228 | 0xdb0c2e0d64f98fa7ULL, |
229 | 0x47b5481dbefa4fa4ULL |
230 | }; |
231 | |
232 | /* Initial hash value H for SHA-512 */ |
233 | static const uint64_t sha512_initial_hash_value[8] = { |
234 | 0x6a09e667f3bcc908ULL, |
235 | 0xbb67ae8584caa73bULL, |
236 | 0x3c6ef372fe94f82bULL, |
237 | 0xa54ff53a5f1d36f1ULL, |
238 | 0x510e527fade682d1ULL, |
239 | 0x9b05688c2b3e6c1fULL, |
240 | 0x1f83d9abfb41bd6bULL, |
241 | 0x5be0cd19137e2179ULL |
242 | }; |
243 | |
244 | #if !defined(_KERNEL) && !defined(_STANDALONE) |
245 | #if defined(__weak_alias) |
246 | __weak_alias(SHA224_Init,_SHA224_Init) |
247 | __weak_alias(SHA224_Update,_SHA224_Update) |
248 | __weak_alias(SHA224_Final,_SHA224_Final) |
249 | __weak_alias(SHA224_Transform,_SHA224_Transform) |
250 | |
251 | __weak_alias(SHA256_Init,_SHA256_Init) |
252 | __weak_alias(SHA256_Update,_SHA256_Update) |
253 | __weak_alias(SHA256_Final,_SHA256_Final) |
254 | __weak_alias(SHA256_Transform,_SHA256_Transform) |
255 | |
256 | __weak_alias(SHA384_Init,_SHA384_Init) |
257 | __weak_alias(SHA384_Update,_SHA384_Update) |
258 | __weak_alias(SHA384_Final,_SHA384_Final) |
259 | __weak_alias(SHA384_Transform,_SHA384_Transform) |
260 | |
261 | __weak_alias(SHA512_Init,_SHA512_Init) |
262 | __weak_alias(SHA512_Update,_SHA512_Update) |
263 | __weak_alias(SHA512_Final,_SHA512_Final) |
264 | __weak_alias(SHA512_Transform,_SHA512_Transform) |
265 | #endif |
266 | #endif |
267 | |
268 | /*** SHA-256: *********************************************************/ |
269 | int |
270 | SHA256_Init(SHA256_CTX *context) |
271 | { |
272 | if (context == NULL) |
273 | return 1; |
274 | |
275 | memcpy(context->state, sha256_initial_hash_value, |
276 | (size_t)(SHA256_DIGEST_LENGTH)); |
277 | memset(context->buffer, 0, (size_t)(SHA256_BLOCK_LENGTH)); |
278 | context->bitcount = 0; |
279 | |
280 | return 1; |
281 | } |
282 | |
283 | #ifdef SHA2_UNROLL_TRANSFORM |
284 | |
285 | /* Unrolled SHA-256 round macros: */ |
286 | |
287 | #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ |
288 | W256[j] = be32dec(data); \ |
289 | ++data; \ |
290 | T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ |
291 | K256[j] + W256[j]; \ |
292 | (d) += T1; \ |
293 | (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ |
294 | j++ |
295 | |
296 | #define ROUND256(a,b,c,d,e,f,g,h) \ |
297 | s0 = W256[(j+1)&0x0f]; \ |
298 | s0 = sigma0_256(s0); \ |
299 | s1 = W256[(j+14)&0x0f]; \ |
300 | s1 = sigma1_256(s1); \ |
301 | T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \ |
302 | (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ |
303 | (d) += T1; \ |
304 | (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ |
305 | j++ |
306 | |
307 | void |
308 | SHA256_Transform(SHA256_CTX *context, const uint32_t *data) |
309 | { |
310 | uint32_t a, b, c, d, e, f, g, h, s0, s1; |
311 | uint32_t T1, *W256; |
312 | int j; |
313 | |
314 | W256 = (uint32_t *)context->buffer; |
315 | |
316 | /* Initialize registers with the prev. intermediate value */ |
317 | a = context->state[0]; |
318 | b = context->state[1]; |
319 | c = context->state[2]; |
320 | d = context->state[3]; |
321 | e = context->state[4]; |
322 | f = context->state[5]; |
323 | g = context->state[6]; |
324 | h = context->state[7]; |
325 | |
326 | j = 0; |
327 | do { |
328 | /* Rounds 0 to 15 (unrolled): */ |
329 | ROUND256_0_TO_15(a,b,c,d,e,f,g,h); |
330 | ROUND256_0_TO_15(h,a,b,c,d,e,f,g); |
331 | ROUND256_0_TO_15(g,h,a,b,c,d,e,f); |
332 | ROUND256_0_TO_15(f,g,h,a,b,c,d,e); |
333 | ROUND256_0_TO_15(e,f,g,h,a,b,c,d); |
334 | ROUND256_0_TO_15(d,e,f,g,h,a,b,c); |
335 | ROUND256_0_TO_15(c,d,e,f,g,h,a,b); |
336 | ROUND256_0_TO_15(b,c,d,e,f,g,h,a); |
337 | } while (j < 16); |
338 | |
339 | /* Now for the remaining rounds to 64: */ |
340 | do { |
341 | ROUND256(a,b,c,d,e,f,g,h); |
342 | ROUND256(h,a,b,c,d,e,f,g); |
343 | ROUND256(g,h,a,b,c,d,e,f); |
344 | ROUND256(f,g,h,a,b,c,d,e); |
345 | ROUND256(e,f,g,h,a,b,c,d); |
346 | ROUND256(d,e,f,g,h,a,b,c); |
347 | ROUND256(c,d,e,f,g,h,a,b); |
348 | ROUND256(b,c,d,e,f,g,h,a); |
349 | } while (j < 64); |
350 | |
351 | /* Compute the current intermediate hash value */ |
352 | context->state[0] += a; |
353 | context->state[1] += b; |
354 | context->state[2] += c; |
355 | context->state[3] += d; |
356 | context->state[4] += e; |
357 | context->state[5] += f; |
358 | context->state[6] += g; |
359 | context->state[7] += h; |
360 | |
361 | /* Clean up */ |
362 | a = b = c = d = e = f = g = h = T1 = 0; |
363 | } |
364 | |
365 | #else /* SHA2_UNROLL_TRANSFORM */ |
366 | |
367 | void |
368 | SHA256_Transform(SHA256_CTX *context, const uint32_t *data) |
369 | { |
370 | uint32_t a, b, c, d, e, f, g, h, s0, s1; |
371 | uint32_t T1, T2, *W256; |
372 | int j; |
373 | |
374 | W256 = (uint32_t *)(void *)context->buffer; |
375 | |
376 | /* Initialize registers with the prev. intermediate value */ |
377 | a = context->state[0]; |
378 | b = context->state[1]; |
379 | c = context->state[2]; |
380 | d = context->state[3]; |
381 | e = context->state[4]; |
382 | f = context->state[5]; |
383 | g = context->state[6]; |
384 | h = context->state[7]; |
385 | |
386 | j = 0; |
387 | do { |
388 | W256[j] = be32dec(data); |
389 | ++data; |
390 | /* Apply the SHA-256 compression function to update a..h */ |
391 | T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; |
392 | T2 = Sigma0_256(a) + Maj(a, b, c); |
393 | h = g; |
394 | g = f; |
395 | f = e; |
396 | e = d + T1; |
397 | d = c; |
398 | c = b; |
399 | b = a; |
400 | a = T1 + T2; |
401 | |
402 | j++; |
403 | } while (j < 16); |
404 | |
405 | do { |
406 | /* Part of the message block expansion: */ |
407 | s0 = W256[(j+1)&0x0f]; |
408 | s0 = sigma0_256(s0); |
409 | s1 = W256[(j+14)&0x0f]; |
410 | s1 = sigma1_256(s1); |
411 | |
412 | /* Apply the SHA-256 compression function to update a..h */ |
413 | T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + |
414 | (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); |
415 | T2 = Sigma0_256(a) + Maj(a, b, c); |
416 | h = g; |
417 | g = f; |
418 | f = e; |
419 | e = d + T1; |
420 | d = c; |
421 | c = b; |
422 | b = a; |
423 | a = T1 + T2; |
424 | |
425 | j++; |
426 | } while (j < 64); |
427 | |
428 | /* Compute the current intermediate hash value */ |
429 | context->state[0] += a; |
430 | context->state[1] += b; |
431 | context->state[2] += c; |
432 | context->state[3] += d; |
433 | context->state[4] += e; |
434 | context->state[5] += f; |
435 | context->state[6] += g; |
436 | context->state[7] += h; |
437 | |
438 | /* Clean up */ |
439 | a = b = c = d = e = f = g = h = T1 = T2 = 0; |
440 | } |
441 | |
442 | #endif /* SHA2_UNROLL_TRANSFORM */ |
443 | |
444 | int |
445 | SHA256_Update(SHA256_CTX *context, const uint8_t *data, size_t len) |
446 | { |
447 | unsigned int freespace, usedspace; |
448 | |
449 | if (len == 0) { |
450 | /* Calling with no data is valid - we do nothing */ |
451 | return 1; |
452 | } |
453 | |
454 | usedspace = (unsigned int)((context->bitcount >> 3) % |
455 | SHA256_BLOCK_LENGTH); |
456 | if (usedspace > 0) { |
457 | /* Calculate how much free space is available in the buffer */ |
458 | freespace = SHA256_BLOCK_LENGTH - usedspace; |
459 | |
460 | if (len >= freespace) { |
461 | /* Fill the buffer completely and process it */ |
462 | memcpy(&context->buffer[usedspace], data, |
463 | (size_t)(freespace)); |
464 | context->bitcount += freespace << 3; |
465 | len -= freespace; |
466 | data += freespace; |
467 | SHA256_Transform(context, |
468 | (uint32_t *)(void *)context->buffer); |
469 | } else { |
470 | /* The buffer is not yet full */ |
471 | memcpy(&context->buffer[usedspace], data, len); |
472 | context->bitcount += len << 3; |
473 | /* Clean up: */ |
474 | usedspace = freespace = 0; |
475 | return 1; |
476 | } |
477 | } |
478 | /* |
479 | * Process as many complete blocks as possible. |
480 | * |
481 | * Check alignment of the data pointer. If it is 32bit aligned, |
482 | * SHA256_Transform can be called directly on the data stream, |
483 | * otherwise enforce the alignment by copy into the buffer. |
484 | */ |
485 | if ((uintptr_t)data % 4 == 0) { |
486 | while (len >= SHA256_BLOCK_LENGTH) { |
487 | SHA256_Transform(context, |
488 | (const uint32_t *)(const void *)data); |
489 | context->bitcount += SHA256_BLOCK_LENGTH << 3; |
490 | len -= SHA256_BLOCK_LENGTH; |
491 | data += SHA256_BLOCK_LENGTH; |
492 | } |
493 | } else { |
494 | while (len >= SHA256_BLOCK_LENGTH) { |
495 | memcpy(context->buffer, data, SHA256_BLOCK_LENGTH); |
496 | SHA256_Transform(context, |
497 | (const uint32_t *)(const void *)context->buffer); |
498 | context->bitcount += SHA256_BLOCK_LENGTH << 3; |
499 | len -= SHA256_BLOCK_LENGTH; |
500 | data += SHA256_BLOCK_LENGTH; |
501 | } |
502 | } |
503 | if (len > 0) { |
504 | /* There's left-overs, so save 'em */ |
505 | memcpy(context->buffer, data, len); |
506 | context->bitcount += len << 3; |
507 | } |
508 | /* Clean up: */ |
509 | usedspace = freespace = 0; |
510 | |
511 | return 1; |
512 | } |
513 | |
514 | static int |
515 | SHA224_256_Final(uint8_t digest[], SHA256_CTX *context, size_t len) |
516 | { |
517 | unsigned int usedspace; |
518 | size_t i; |
519 | |
520 | /* If no digest buffer is passed, we don't bother doing this: */ |
521 | if (digest != NULL) { |
522 | usedspace = (unsigned int)((context->bitcount >> 3) % |
523 | SHA256_BLOCK_LENGTH); |
524 | context->bitcount = htobe64(context->bitcount); |
525 | if (usedspace > 0) { |
526 | /* Begin padding with a 1 bit: */ |
527 | context->buffer[usedspace++] = 0x80; |
528 | |
529 | if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) { |
530 | /* Set-up for the last transform: */ |
531 | memset(&context->buffer[usedspace], 0, |
532 | (size_t)(SHA256_SHORT_BLOCK_LENGTH - |
533 | usedspace)); |
534 | } else { |
535 | if (usedspace < SHA256_BLOCK_LENGTH) { |
536 | memset(&context->buffer[usedspace], 0, |
537 | (size_t)(SHA256_BLOCK_LENGTH - |
538 | usedspace)); |
539 | } |
540 | /* Do second-to-last transform: */ |
541 | SHA256_Transform(context, |
542 | (uint32_t *)(void *)context->buffer); |
543 | |
544 | /* And set-up for the last transform: */ |
545 | memset(context->buffer, 0, |
546 | (size_t)(SHA256_SHORT_BLOCK_LENGTH)); |
547 | } |
548 | } else { |
549 | /* Set-up for the last transform: */ |
550 | memset(context->buffer, 0, |
551 | (size_t)(SHA256_SHORT_BLOCK_LENGTH)); |
552 | |
553 | /* Begin padding with a 1 bit: */ |
554 | *context->buffer = 0x80; |
555 | } |
556 | /* Set the bit count: */ |
557 | memcpy(&context->buffer[SHA256_SHORT_BLOCK_LENGTH], |
558 | &context->bitcount, sizeof(context->bitcount)); |
559 | |
560 | /* Final transform: */ |
561 | SHA256_Transform(context, (uint32_t *)(void *)context->buffer); |
562 | |
563 | for (i = 0; i < len / 4; i++) |
564 | be32enc(digest + 4 * i, context->state[i]); |
565 | } |
566 | |
567 | /* Clean up state data: */ |
568 | memset(context, 0, sizeof(*context)); |
569 | usedspace = 0; |
570 | |
571 | return 1; |
572 | } |
573 | |
574 | int |
575 | SHA256_Final(uint8_t digest[], SHA256_CTX *context) |
576 | { |
577 | return SHA224_256_Final(digest, context, SHA256_DIGEST_LENGTH); |
578 | } |
579 | |
580 | /*** SHA-224: *********************************************************/ |
581 | int |
582 | SHA224_Init(SHA224_CTX *context) |
583 | { |
584 | if (context == NULL) |
585 | return 1; |
586 | |
587 | /* The state and buffer size are driven by SHA256, not by SHA224. */ |
588 | memcpy(context->state, sha224_initial_hash_value, |
589 | (size_t)(SHA256_DIGEST_LENGTH)); |
590 | memset(context->buffer, 0, (size_t)(SHA256_BLOCK_LENGTH)); |
591 | context->bitcount = 0; |
592 | |
593 | return 1; |
594 | } |
595 | |
596 | int |
597 | SHA224_Update(SHA224_CTX *context, const uint8_t *data, size_t len) |
598 | { |
599 | return SHA256_Update((SHA256_CTX *)context, data, len); |
600 | } |
601 | |
602 | void |
603 | SHA224_Transform(SHA224_CTX *context, const uint32_t *data) |
604 | { |
605 | SHA256_Transform((SHA256_CTX *)context, data); |
606 | } |
607 | |
608 | int |
609 | SHA224_Final(uint8_t digest[], SHA224_CTX *context) |
610 | { |
611 | return SHA224_256_Final(digest, (SHA256_CTX *)context, |
612 | SHA224_DIGEST_LENGTH); |
613 | } |
614 | |
615 | /*** SHA-512: *********************************************************/ |
616 | int |
617 | SHA512_Init(SHA512_CTX *context) |
618 | { |
619 | if (context == NULL) |
620 | return 1; |
621 | |
622 | memcpy(context->state, sha512_initial_hash_value, |
623 | (size_t)(SHA512_DIGEST_LENGTH)); |
624 | memset(context->buffer, 0, (size_t)(SHA512_BLOCK_LENGTH)); |
625 | context->bitcount[0] = context->bitcount[1] = 0; |
626 | |
627 | return 1; |
628 | } |
629 | |
630 | #ifdef SHA2_UNROLL_TRANSFORM |
631 | |
632 | /* Unrolled SHA-512 round macros: */ |
633 | #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ |
634 | W512[j] = be64dec(data); \ |
635 | ++data; \ |
636 | T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \ |
637 | K512[j] + W512[j]; \ |
638 | (d) += T1, \ |
639 | (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \ |
640 | j++ |
641 | |
642 | #define ROUND512(a,b,c,d,e,f,g,h) \ |
643 | s0 = W512[(j+1)&0x0f]; \ |
644 | s0 = sigma0_512(s0); \ |
645 | s1 = W512[(j+14)&0x0f]; \ |
646 | s1 = sigma1_512(s1); \ |
647 | T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \ |
648 | (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ |
649 | (d) += T1; \ |
650 | (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \ |
651 | j++ |
652 | |
653 | void |
654 | SHA512_Transform(SHA512_CTX *context, const uint64_t *data) |
655 | { |
656 | uint64_t a, b, c, d, e, f, g, h, s0, s1; |
657 | uint64_t T1, *W512 = (uint64_t *)context->buffer; |
658 | int j; |
659 | |
660 | /* Initialize registers with the prev. intermediate value */ |
661 | a = context->state[0]; |
662 | b = context->state[1]; |
663 | c = context->state[2]; |
664 | d = context->state[3]; |
665 | e = context->state[4]; |
666 | f = context->state[5]; |
667 | g = context->state[6]; |
668 | h = context->state[7]; |
669 | |
670 | j = 0; |
671 | do { |
672 | ROUND512_0_TO_15(a,b,c,d,e,f,g,h); |
673 | ROUND512_0_TO_15(h,a,b,c,d,e,f,g); |
674 | ROUND512_0_TO_15(g,h,a,b,c,d,e,f); |
675 | ROUND512_0_TO_15(f,g,h,a,b,c,d,e); |
676 | ROUND512_0_TO_15(e,f,g,h,a,b,c,d); |
677 | ROUND512_0_TO_15(d,e,f,g,h,a,b,c); |
678 | ROUND512_0_TO_15(c,d,e,f,g,h,a,b); |
679 | ROUND512_0_TO_15(b,c,d,e,f,g,h,a); |
680 | } while (j < 16); |
681 | |
682 | /* Now for the remaining rounds up to 79: */ |
683 | do { |
684 | ROUND512(a,b,c,d,e,f,g,h); |
685 | ROUND512(h,a,b,c,d,e,f,g); |
686 | ROUND512(g,h,a,b,c,d,e,f); |
687 | ROUND512(f,g,h,a,b,c,d,e); |
688 | ROUND512(e,f,g,h,a,b,c,d); |
689 | ROUND512(d,e,f,g,h,a,b,c); |
690 | ROUND512(c,d,e,f,g,h,a,b); |
691 | ROUND512(b,c,d,e,f,g,h,a); |
692 | } while (j < 80); |
693 | |
694 | /* Compute the current intermediate hash value */ |
695 | context->state[0] += a; |
696 | context->state[1] += b; |
697 | context->state[2] += c; |
698 | context->state[3] += d; |
699 | context->state[4] += e; |
700 | context->state[5] += f; |
701 | context->state[6] += g; |
702 | context->state[7] += h; |
703 | |
704 | /* Clean up */ |
705 | a = b = c = d = e = f = g = h = T1 = 0; |
706 | } |
707 | |
708 | #else /* SHA2_UNROLL_TRANSFORM */ |
709 | |
710 | void |
711 | SHA512_Transform(SHA512_CTX *context, const uint64_t *data) |
712 | { |
713 | uint64_t a, b, c, d, e, f, g, h, s0, s1; |
714 | uint64_t T1, T2, *W512 = (void *)context->buffer; |
715 | int j; |
716 | |
717 | /* Initialize registers with the prev. intermediate value */ |
718 | a = context->state[0]; |
719 | b = context->state[1]; |
720 | c = context->state[2]; |
721 | d = context->state[3]; |
722 | e = context->state[4]; |
723 | f = context->state[5]; |
724 | g = context->state[6]; |
725 | h = context->state[7]; |
726 | |
727 | j = 0; |
728 | do { |
729 | W512[j] = be64dec(data); |
730 | ++data; |
731 | /* Apply the SHA-512 compression function to update a..h */ |
732 | T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; |
733 | T2 = Sigma0_512(a) + Maj(a, b, c); |
734 | h = g; |
735 | g = f; |
736 | f = e; |
737 | e = d + T1; |
738 | d = c; |
739 | c = b; |
740 | b = a; |
741 | a = T1 + T2; |
742 | |
743 | j++; |
744 | } while (j < 16); |
745 | |
746 | do { |
747 | /* Part of the message block expansion: */ |
748 | s0 = W512[(j+1)&0x0f]; |
749 | s0 = sigma0_512(s0); |
750 | s1 = W512[(j+14)&0x0f]; |
751 | s1 = sigma1_512(s1); |
752 | |
753 | /* Apply the SHA-512 compression function to update a..h */ |
754 | T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + |
755 | (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); |
756 | T2 = Sigma0_512(a) + Maj(a, b, c); |
757 | h = g; |
758 | g = f; |
759 | f = e; |
760 | e = d + T1; |
761 | d = c; |
762 | c = b; |
763 | b = a; |
764 | a = T1 + T2; |
765 | |
766 | j++; |
767 | } while (j < 80); |
768 | |
769 | /* Compute the current intermediate hash value */ |
770 | context->state[0] += a; |
771 | context->state[1] += b; |
772 | context->state[2] += c; |
773 | context->state[3] += d; |
774 | context->state[4] += e; |
775 | context->state[5] += f; |
776 | context->state[6] += g; |
777 | context->state[7] += h; |
778 | |
779 | /* Clean up */ |
780 | a = b = c = d = e = f = g = h = T1 = T2 = 0; |
781 | } |
782 | |
783 | #endif /* SHA2_UNROLL_TRANSFORM */ |
784 | |
785 | int |
786 | SHA512_Update(SHA512_CTX *context, const uint8_t *data, size_t len) |
787 | { |
788 | unsigned int freespace, usedspace; |
789 | |
790 | if (len == 0) { |
791 | /* Calling with no data is valid - we do nothing */ |
792 | return 1; |
793 | } |
794 | |
795 | usedspace = (unsigned int)((context->bitcount[0] >> 3) % |
796 | SHA512_BLOCK_LENGTH); |
797 | if (usedspace > 0) { |
798 | /* Calculate how much free space is available in the buffer */ |
799 | freespace = SHA512_BLOCK_LENGTH - usedspace; |
800 | |
801 | if (len >= freespace) { |
802 | /* Fill the buffer completely and process it */ |
803 | memcpy(&context->buffer[usedspace], data, |
804 | (size_t)(freespace)); |
805 | ADDINC128(context->bitcount, freespace << 3); |
806 | len -= freespace; |
807 | data += freespace; |
808 | SHA512_Transform(context, |
809 | (uint64_t *)(void *)context->buffer); |
810 | } else { |
811 | /* The buffer is not yet full */ |
812 | memcpy(&context->buffer[usedspace], data, len); |
813 | ADDINC128(context->bitcount, len << 3); |
814 | /* Clean up: */ |
815 | usedspace = freespace = 0; |
816 | return 1; |
817 | } |
818 | } |
819 | /* |
820 | * Process as many complete blocks as possible. |
821 | * |
822 | * Check alignment of the data pointer. If it is 64bit aligned, |
823 | * SHA512_Transform can be called directly on the data stream, |
824 | * otherwise enforce the alignment by copy into the buffer. |
825 | */ |
826 | if ((uintptr_t)data % 8 == 0) { |
827 | while (len >= SHA512_BLOCK_LENGTH) { |
828 | SHA512_Transform(context, |
829 | (const uint64_t*)(const void *)data); |
830 | ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3); |
831 | len -= SHA512_BLOCK_LENGTH; |
832 | data += SHA512_BLOCK_LENGTH; |
833 | } |
834 | } else { |
835 | while (len >= SHA512_BLOCK_LENGTH) { |
836 | memcpy(context->buffer, data, SHA512_BLOCK_LENGTH); |
837 | SHA512_Transform(context, |
838 | (const void *)context->buffer); |
839 | ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3); |
840 | len -= SHA512_BLOCK_LENGTH; |
841 | data += SHA512_BLOCK_LENGTH; |
842 | } |
843 | } |
844 | if (len > 0) { |
845 | /* There's left-overs, so save 'em */ |
846 | memcpy(context->buffer, data, len); |
847 | ADDINC128(context->bitcount, len << 3); |
848 | } |
849 | /* Clean up: */ |
850 | usedspace = freespace = 0; |
851 | |
852 | return 1; |
853 | } |
854 | |
855 | static void |
856 | SHA512_Last(SHA512_CTX *context) |
857 | { |
858 | unsigned int usedspace; |
859 | |
860 | usedspace = (unsigned int)((context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH); |
861 | context->bitcount[0] = htobe64(context->bitcount[0]); |
862 | context->bitcount[1] = htobe64(context->bitcount[1]); |
863 | if (usedspace > 0) { |
864 | /* Begin padding with a 1 bit: */ |
865 | context->buffer[usedspace++] = 0x80; |
866 | |
867 | if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) { |
868 | /* Set-up for the last transform: */ |
869 | memset(&context->buffer[usedspace], 0, |
870 | (size_t)(SHA512_SHORT_BLOCK_LENGTH - usedspace)); |
871 | } else { |
872 | if (usedspace < SHA512_BLOCK_LENGTH) { |
873 | memset(&context->buffer[usedspace], 0, |
874 | (size_t)(SHA512_BLOCK_LENGTH - usedspace)); |
875 | } |
876 | /* Do second-to-last transform: */ |
877 | SHA512_Transform(context, |
878 | (uint64_t *)(void *)context->buffer); |
879 | |
880 | /* And set-up for the last transform: */ |
881 | memset(context->buffer, 0, |
882 | (size_t)(SHA512_BLOCK_LENGTH - 2)); |
883 | } |
884 | } else { |
885 | /* Prepare for final transform: */ |
886 | memset(context->buffer, 0, (size_t)(SHA512_SHORT_BLOCK_LENGTH)); |
887 | |
888 | /* Begin padding with a 1 bit: */ |
889 | *context->buffer = 0x80; |
890 | } |
891 | /* Store the length of input data (in bits): */ |
892 | memcpy(&context->buffer[SHA512_SHORT_BLOCK_LENGTH], |
893 | &context->bitcount[1], sizeof(context->bitcount[1])); |
894 | memcpy(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8], |
895 | &context->bitcount[0], sizeof(context->bitcount[0])); |
896 | |
897 | /* Final transform: */ |
898 | SHA512_Transform(context, (uint64_t *)(void *)context->buffer); |
899 | } |
900 | |
901 | int |
902 | SHA512_Final(uint8_t digest[], SHA512_CTX *context) |
903 | { |
904 | size_t i; |
905 | |
906 | /* If no digest buffer is passed, we don't bother doing this: */ |
907 | if (digest != NULL) { |
908 | SHA512_Last(context); |
909 | |
910 | /* Save the hash data for output: */ |
911 | for (i = 0; i < 8; ++i) |
912 | be64enc(digest + 8 * i, context->state[i]); |
913 | } |
914 | |
915 | /* Zero out state data */ |
916 | memset(context, 0, sizeof(*context)); |
917 | |
918 | return 1; |
919 | } |
920 | |
921 | /*** SHA-384: *********************************************************/ |
922 | int |
923 | SHA384_Init(SHA384_CTX *context) |
924 | { |
925 | if (context == NULL) |
926 | return 1; |
927 | |
928 | memcpy(context->state, sha384_initial_hash_value, |
929 | (size_t)(SHA512_DIGEST_LENGTH)); |
930 | memset(context->buffer, 0, (size_t)(SHA384_BLOCK_LENGTH)); |
931 | context->bitcount[0] = context->bitcount[1] = 0; |
932 | |
933 | return 1; |
934 | } |
935 | |
936 | int |
937 | SHA384_Update(SHA384_CTX *context, const uint8_t *data, size_t len) |
938 | { |
939 | return SHA512_Update((SHA512_CTX *)context, data, len); |
940 | } |
941 | |
942 | void |
943 | SHA384_Transform(SHA512_CTX *context, const uint64_t *data) |
944 | { |
945 | SHA512_Transform((SHA512_CTX *)context, data); |
946 | } |
947 | |
948 | int |
949 | SHA384_Final(uint8_t digest[], SHA384_CTX *context) |
950 | { |
951 | size_t i; |
952 | |
953 | /* If no digest buffer is passed, we don't bother doing this: */ |
954 | if (digest != NULL) { |
955 | SHA512_Last((SHA512_CTX *)context); |
956 | |
957 | /* Save the hash data for output: */ |
958 | for (i = 0; i < 6; ++i) |
959 | be64enc(digest + 8 * i, context->state[i]); |
960 | } |
961 | |
962 | /* Zero out state data */ |
963 | memset(context, 0, sizeof(*context)); |
964 | |
965 | return 1; |
966 | } |
967 | |