1 | /* $NetBSD: rb.c,v 1.15 2019/05/09 10:56:24 skrll Exp $ */ |
2 | |
3 | /*- |
4 | * Copyright (c) 2001 The NetBSD Foundation, Inc. |
5 | * All rights reserved. |
6 | * |
7 | * This code is derived from software contributed to The NetBSD Foundation |
8 | * by Matt Thomas <matt@3am-software.com>. |
9 | * |
10 | * Redistribution and use in source and binary forms, with or without |
11 | * modification, are permitted provided that the following conditions |
12 | * are met: |
13 | * 1. Redistributions of source code must retain the above copyright |
14 | * notice, this list of conditions and the following disclaimer. |
15 | * 2. Redistributions in binary form must reproduce the above copyright |
16 | * notice, this list of conditions and the following disclaimer in the |
17 | * documentation and/or other materials provided with the distribution. |
18 | * |
19 | * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS |
20 | * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED |
21 | * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
22 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS |
23 | * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
24 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
25 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
26 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
27 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
28 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
29 | * POSSIBILITY OF SUCH DAMAGE. |
30 | */ |
31 | |
32 | #if HAVE_NBTOOL_CONFIG_H |
33 | #include "nbtool_config.h" |
34 | #endif |
35 | |
36 | #if !defined(_KERNEL) && !defined(_STANDALONE) |
37 | #include <sys/types.h> |
38 | #include <stddef.h> |
39 | #include <assert.h> |
40 | #include <stdbool.h> |
41 | #ifdef RBDEBUG |
42 | #define KASSERT(s) assert(s) |
43 | #define __rbt_unused |
44 | #else |
45 | #define KASSERT(s) do { } while (/*CONSTCOND*/ 0) |
46 | #define __rbt_unused __unused |
47 | #endif |
48 | __RCSID("$NetBSD: rb.c,v 1.15 2019/05/09 10:56:24 skrll Exp $" ); |
49 | #else |
50 | #include <lib/libkern/libkern.h> |
51 | __KERNEL_RCSID(0, "$NetBSD: rb.c,v 1.15 2019/05/09 10:56:24 skrll Exp $" ); |
52 | #ifndef DIAGNOSTIC |
53 | #define __rbt_unused __unused |
54 | #else |
55 | #define __rbt_unused |
56 | #endif |
57 | #endif |
58 | |
59 | #ifdef _LIBC |
60 | __weak_alias(rb_tree_init, _rb_tree_init) |
61 | __weak_alias(rb_tree_find_node, _rb_tree_find_node) |
62 | __weak_alias(rb_tree_find_node_geq, _rb_tree_find_node_geq) |
63 | __weak_alias(rb_tree_find_node_leq, _rb_tree_find_node_leq) |
64 | __weak_alias(rb_tree_insert_node, _rb_tree_insert_node) |
65 | __weak_alias(rb_tree_remove_node, _rb_tree_remove_node) |
66 | __weak_alias(rb_tree_iterate, _rb_tree_iterate) |
67 | #ifdef RBDEBUG |
68 | __weak_alias(rb_tree_check, _rb_tree_check) |
69 | __weak_alias(rb_tree_depths, _rb_tree_depths) |
70 | #endif |
71 | |
72 | #include "namespace.h" |
73 | #endif |
74 | |
75 | #ifdef RBTEST |
76 | #include "rbtree.h" |
77 | #else |
78 | #include <sys/rbtree.h> |
79 | #endif |
80 | |
81 | static void rb_tree_insert_rebalance(struct rb_tree *, struct rb_node *); |
82 | static void rb_tree_removal_rebalance(struct rb_tree *, struct rb_node *, |
83 | unsigned int); |
84 | #ifdef RBDEBUG |
85 | static const struct rb_node *rb_tree_iterate_const(const struct rb_tree *, |
86 | const struct rb_node *, const unsigned int); |
87 | static bool rb_tree_check_node(const struct rb_tree *, const struct rb_node *, |
88 | const struct rb_node *, bool); |
89 | #else |
90 | #define rb_tree_check_node(a, b, c, d) true |
91 | #endif |
92 | |
93 | #define RB_NODETOITEM(rbto, rbn) \ |
94 | ((void *)((uintptr_t)(rbn) - (rbto)->rbto_node_offset)) |
95 | #define RB_ITEMTONODE(rbto, rbn) \ |
96 | ((rb_node_t *)((uintptr_t)(rbn) + (rbto)->rbto_node_offset)) |
97 | |
98 | #define RB_SENTINEL_NODE NULL |
99 | |
100 | void |
101 | rb_tree_init(struct rb_tree *rbt, const rb_tree_ops_t *ops) |
102 | { |
103 | |
104 | rbt->rbt_ops = ops; |
105 | rbt->rbt_root = RB_SENTINEL_NODE; |
106 | RB_TAILQ_INIT(&rbt->rbt_nodes); |
107 | #ifndef RBSMALL |
108 | rbt->rbt_minmax[RB_DIR_LEFT] = rbt->rbt_root; /* minimum node */ |
109 | rbt->rbt_minmax[RB_DIR_RIGHT] = rbt->rbt_root; /* maximum node */ |
110 | #endif |
111 | #ifdef RBSTATS |
112 | rbt->rbt_count = 0; |
113 | rbt->rbt_insertions = 0; |
114 | rbt->rbt_removals = 0; |
115 | rbt->rbt_insertion_rebalance_calls = 0; |
116 | rbt->rbt_insertion_rebalance_passes = 0; |
117 | rbt->rbt_removal_rebalance_calls = 0; |
118 | rbt->rbt_removal_rebalance_passes = 0; |
119 | #endif |
120 | } |
121 | |
122 | void * |
123 | rb_tree_find_node(struct rb_tree *rbt, const void *key) |
124 | { |
125 | const rb_tree_ops_t *rbto = rbt->rbt_ops; |
126 | rbto_compare_key_fn compare_key = rbto->rbto_compare_key; |
127 | struct rb_node *parent = rbt->rbt_root; |
128 | |
129 | while (!RB_SENTINEL_P(parent)) { |
130 | void *pobj = RB_NODETOITEM(rbto, parent); |
131 | const signed int diff = (*compare_key)(rbto->rbto_context, |
132 | pobj, key); |
133 | if (diff == 0) |
134 | return pobj; |
135 | parent = parent->rb_nodes[diff < 0]; |
136 | } |
137 | |
138 | return NULL; |
139 | } |
140 | |
141 | void * |
142 | rb_tree_find_node_geq(struct rb_tree *rbt, const void *key) |
143 | { |
144 | const rb_tree_ops_t *rbto = rbt->rbt_ops; |
145 | rbto_compare_key_fn compare_key = rbto->rbto_compare_key; |
146 | struct rb_node *parent = rbt->rbt_root, *last = NULL; |
147 | |
148 | while (!RB_SENTINEL_P(parent)) { |
149 | void *pobj = RB_NODETOITEM(rbto, parent); |
150 | const signed int diff = (*compare_key)(rbto->rbto_context, |
151 | pobj, key); |
152 | if (diff == 0) |
153 | return pobj; |
154 | if (diff > 0) |
155 | last = parent; |
156 | parent = parent->rb_nodes[diff < 0]; |
157 | } |
158 | |
159 | return last == NULL ? NULL : RB_NODETOITEM(rbto, last); |
160 | } |
161 | |
162 | void * |
163 | rb_tree_find_node_leq(struct rb_tree *rbt, const void *key) |
164 | { |
165 | const rb_tree_ops_t *rbto = rbt->rbt_ops; |
166 | rbto_compare_key_fn compare_key = rbto->rbto_compare_key; |
167 | struct rb_node *parent = rbt->rbt_root, *last = NULL; |
168 | |
169 | while (!RB_SENTINEL_P(parent)) { |
170 | void *pobj = RB_NODETOITEM(rbto, parent); |
171 | const signed int diff = (*compare_key)(rbto->rbto_context, |
172 | pobj, key); |
173 | if (diff == 0) |
174 | return pobj; |
175 | if (diff < 0) |
176 | last = parent; |
177 | parent = parent->rb_nodes[diff < 0]; |
178 | } |
179 | |
180 | return last == NULL ? NULL : RB_NODETOITEM(rbto, last); |
181 | } |
182 | |
183 | void * |
184 | rb_tree_insert_node(struct rb_tree *rbt, void *object) |
185 | { |
186 | const rb_tree_ops_t *rbto = rbt->rbt_ops; |
187 | rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes; |
188 | struct rb_node *parent, *tmp, *self = RB_ITEMTONODE(rbto, object); |
189 | unsigned int position; |
190 | bool rebalance; |
191 | |
192 | RBSTAT_INC(rbt->rbt_insertions); |
193 | |
194 | tmp = rbt->rbt_root; |
195 | /* |
196 | * This is a hack. Because rbt->rbt_root is just a struct rb_node *, |
197 | * just like rb_node->rb_nodes[RB_DIR_LEFT], we can use this fact to |
198 | * avoid a lot of tests for root and know that even at root, |
199 | * updating RB_FATHER(rb_node)->rb_nodes[RB_POSITION(rb_node)] will |
200 | * update rbt->rbt_root. |
201 | */ |
202 | parent = (struct rb_node *)(void *)&rbt->rbt_root; |
203 | position = RB_DIR_LEFT; |
204 | |
205 | /* |
206 | * Find out where to place this new leaf. |
207 | */ |
208 | while (!RB_SENTINEL_P(tmp)) { |
209 | void *tobj = RB_NODETOITEM(rbto, tmp); |
210 | const signed int diff = (*compare_nodes)(rbto->rbto_context, |
211 | tobj, object); |
212 | if (__predict_false(diff == 0)) { |
213 | /* |
214 | * Node already exists; return it. |
215 | */ |
216 | return tobj; |
217 | } |
218 | parent = tmp; |
219 | position = (diff < 0); |
220 | tmp = parent->rb_nodes[position]; |
221 | } |
222 | |
223 | #ifdef RBDEBUG |
224 | { |
225 | struct rb_node *prev = NULL, *next = NULL; |
226 | |
227 | if (position == RB_DIR_RIGHT) |
228 | prev = parent; |
229 | else if (tmp != rbt->rbt_root) |
230 | next = parent; |
231 | |
232 | /* |
233 | * Verify our sequential position |
234 | */ |
235 | KASSERT(prev == NULL || !RB_SENTINEL_P(prev)); |
236 | KASSERT(next == NULL || !RB_SENTINEL_P(next)); |
237 | if (prev != NULL && next == NULL) |
238 | next = TAILQ_NEXT(prev, rb_link); |
239 | if (prev == NULL && next != NULL) |
240 | prev = TAILQ_PREV(next, rb_node_qh, rb_link); |
241 | KASSERT(prev == NULL || !RB_SENTINEL_P(prev)); |
242 | KASSERT(next == NULL || !RB_SENTINEL_P(next)); |
243 | KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context, |
244 | RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0); |
245 | KASSERT(next == NULL || (*compare_nodes)(rbto->rbto_context, |
246 | RB_NODETOITEM(rbto, self), RB_NODETOITEM(rbto, next)) < 0); |
247 | } |
248 | #endif |
249 | |
250 | /* |
251 | * Initialize the node and insert as a leaf into the tree. |
252 | */ |
253 | RB_SET_FATHER(self, parent); |
254 | RB_SET_POSITION(self, position); |
255 | if (__predict_false(parent == (struct rb_node *)(void *)&rbt->rbt_root)) { |
256 | RB_MARK_BLACK(self); /* root is always black */ |
257 | #ifndef RBSMALL |
258 | rbt->rbt_minmax[RB_DIR_LEFT] = self; |
259 | rbt->rbt_minmax[RB_DIR_RIGHT] = self; |
260 | #endif |
261 | rebalance = false; |
262 | } else { |
263 | KASSERT(position == RB_DIR_LEFT || position == RB_DIR_RIGHT); |
264 | #ifndef RBSMALL |
265 | /* |
266 | * Keep track of the minimum and maximum nodes. If our |
267 | * parent is a minmax node and we on their min/max side, |
268 | * we must be the new min/max node. |
269 | */ |
270 | if (parent == rbt->rbt_minmax[position]) |
271 | rbt->rbt_minmax[position] = self; |
272 | #endif /* !RBSMALL */ |
273 | /* |
274 | * All new nodes are colored red. We only need to rebalance |
275 | * if our parent is also red. |
276 | */ |
277 | RB_MARK_RED(self); |
278 | rebalance = RB_RED_P(parent); |
279 | } |
280 | KASSERT(RB_SENTINEL_P(parent->rb_nodes[position])); |
281 | self->rb_left = parent->rb_nodes[position]; |
282 | self->rb_right = parent->rb_nodes[position]; |
283 | parent->rb_nodes[position] = self; |
284 | KASSERT(RB_CHILDLESS_P(self)); |
285 | |
286 | /* |
287 | * Insert the new node into a sorted list for easy sequential access |
288 | */ |
289 | RBSTAT_INC(rbt->rbt_count); |
290 | #ifdef RBDEBUG |
291 | if (RB_ROOT_P(rbt, self)) { |
292 | RB_TAILQ_INSERT_HEAD(&rbt->rbt_nodes, self, rb_link); |
293 | } else if (position == RB_DIR_LEFT) { |
294 | KASSERT((*compare_nodes)(rbto->rbto_context, |
295 | RB_NODETOITEM(rbto, self), |
296 | RB_NODETOITEM(rbto, RB_FATHER(self))) < 0); |
297 | RB_TAILQ_INSERT_BEFORE(RB_FATHER(self), self, rb_link); |
298 | } else { |
299 | KASSERT((*compare_nodes)(rbto->rbto_context, |
300 | RB_NODETOITEM(rbto, RB_FATHER(self)), |
301 | RB_NODETOITEM(rbto, self)) < 0); |
302 | RB_TAILQ_INSERT_AFTER(&rbt->rbt_nodes, RB_FATHER(self), |
303 | self, rb_link); |
304 | } |
305 | #endif |
306 | KASSERT(rb_tree_check_node(rbt, self, NULL, !rebalance)); |
307 | |
308 | /* |
309 | * Rebalance tree after insertion |
310 | */ |
311 | if (rebalance) { |
312 | rb_tree_insert_rebalance(rbt, self); |
313 | KASSERT(rb_tree_check_node(rbt, self, NULL, true)); |
314 | } |
315 | |
316 | /* Succesfully inserted, return our node pointer. */ |
317 | return object; |
318 | } |
319 | |
320 | /* |
321 | * Swap the location and colors of 'self' and its child @ which. The child |
322 | * can not be a sentinel node. This is our rotation function. However, |
323 | * since it preserves coloring, it great simplifies both insertion and |
324 | * removal since rotation almost always involves the exchanging of colors |
325 | * as a separate step. |
326 | */ |
327 | static void |
328 | rb_tree_reparent_nodes(__rbt_unused struct rb_tree *rbt, |
329 | struct rb_node *old_father, const unsigned int which) |
330 | { |
331 | const unsigned int other = which ^ RB_DIR_OTHER; |
332 | struct rb_node * const grandpa = RB_FATHER(old_father); |
333 | struct rb_node * const old_child = old_father->rb_nodes[which]; |
334 | struct rb_node * const new_father = old_child; |
335 | struct rb_node * const new_child = old_father; |
336 | |
337 | KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT); |
338 | |
339 | KASSERT(!RB_SENTINEL_P(old_child)); |
340 | KASSERT(RB_FATHER(old_child) == old_father); |
341 | |
342 | KASSERT(rb_tree_check_node(rbt, old_father, NULL, false)); |
343 | KASSERT(rb_tree_check_node(rbt, old_child, NULL, false)); |
344 | KASSERT(RB_ROOT_P(rbt, old_father) || |
345 | rb_tree_check_node(rbt, grandpa, NULL, false)); |
346 | |
347 | /* |
348 | * Exchange descendant linkages. |
349 | */ |
350 | grandpa->rb_nodes[RB_POSITION(old_father)] = new_father; |
351 | new_child->rb_nodes[which] = old_child->rb_nodes[other]; |
352 | new_father->rb_nodes[other] = new_child; |
353 | |
354 | /* |
355 | * Update ancestor linkages |
356 | */ |
357 | RB_SET_FATHER(new_father, grandpa); |
358 | RB_SET_FATHER(new_child, new_father); |
359 | |
360 | /* |
361 | * Exchange properties between new_father and new_child. The only |
362 | * change is that new_child's position is now on the other side. |
363 | */ |
364 | #if 0 |
365 | { |
366 | struct rb_node tmp; |
367 | tmp.rb_info = 0; |
368 | RB_COPY_PROPERTIES(&tmp, old_child); |
369 | RB_COPY_PROPERTIES(new_father, old_father); |
370 | RB_COPY_PROPERTIES(new_child, &tmp); |
371 | } |
372 | #else |
373 | RB_SWAP_PROPERTIES(new_father, new_child); |
374 | #endif |
375 | RB_SET_POSITION(new_child, other); |
376 | |
377 | /* |
378 | * Make sure to reparent the new child to ourself. |
379 | */ |
380 | if (!RB_SENTINEL_P(new_child->rb_nodes[which])) { |
381 | RB_SET_FATHER(new_child->rb_nodes[which], new_child); |
382 | RB_SET_POSITION(new_child->rb_nodes[which], which); |
383 | } |
384 | |
385 | KASSERT(rb_tree_check_node(rbt, new_father, NULL, false)); |
386 | KASSERT(rb_tree_check_node(rbt, new_child, NULL, false)); |
387 | KASSERT(RB_ROOT_P(rbt, new_father) || |
388 | rb_tree_check_node(rbt, grandpa, NULL, false)); |
389 | } |
390 | |
391 | static void |
392 | rb_tree_insert_rebalance(struct rb_tree *rbt, struct rb_node *self) |
393 | { |
394 | struct rb_node * father = RB_FATHER(self); |
395 | struct rb_node * grandpa = RB_FATHER(father); |
396 | struct rb_node * uncle; |
397 | unsigned int which; |
398 | unsigned int other; |
399 | |
400 | KASSERT(!RB_ROOT_P(rbt, self)); |
401 | KASSERT(RB_RED_P(self)); |
402 | KASSERT(RB_RED_P(father)); |
403 | RBSTAT_INC(rbt->rbt_insertion_rebalance_calls); |
404 | |
405 | for (;;) { |
406 | KASSERT(!RB_SENTINEL_P(self)); |
407 | |
408 | KASSERT(RB_RED_P(self)); |
409 | KASSERT(RB_RED_P(father)); |
410 | /* |
411 | * We are red and our parent is red, therefore we must have a |
412 | * grandfather and he must be black. |
413 | */ |
414 | grandpa = RB_FATHER(father); |
415 | KASSERT(RB_BLACK_P(grandpa)); |
416 | KASSERT(RB_DIR_RIGHT == 1 && RB_DIR_LEFT == 0); |
417 | which = (father == grandpa->rb_right); |
418 | other = which ^ RB_DIR_OTHER; |
419 | uncle = grandpa->rb_nodes[other]; |
420 | |
421 | if (RB_BLACK_P(uncle)) |
422 | break; |
423 | |
424 | RBSTAT_INC(rbt->rbt_insertion_rebalance_passes); |
425 | /* |
426 | * Case 1: our uncle is red |
427 | * Simply invert the colors of our parent and |
428 | * uncle and make our grandparent red. And |
429 | * then solve the problem up at his level. |
430 | */ |
431 | RB_MARK_BLACK(uncle); |
432 | RB_MARK_BLACK(father); |
433 | if (__predict_false(RB_ROOT_P(rbt, grandpa))) { |
434 | /* |
435 | * If our grandpa is root, don't bother |
436 | * setting him to red, just return. |
437 | */ |
438 | KASSERT(RB_BLACK_P(grandpa)); |
439 | return; |
440 | } |
441 | RB_MARK_RED(grandpa); |
442 | self = grandpa; |
443 | father = RB_FATHER(self); |
444 | KASSERT(RB_RED_P(self)); |
445 | if (RB_BLACK_P(father)) { |
446 | /* |
447 | * If our greatgrandpa is black, we're done. |
448 | */ |
449 | KASSERT(RB_BLACK_P(rbt->rbt_root)); |
450 | return; |
451 | } |
452 | } |
453 | |
454 | KASSERT(!RB_ROOT_P(rbt, self)); |
455 | KASSERT(RB_RED_P(self)); |
456 | KASSERT(RB_RED_P(father)); |
457 | KASSERT(RB_BLACK_P(uncle)); |
458 | KASSERT(RB_BLACK_P(grandpa)); |
459 | /* |
460 | * Case 2&3: our uncle is black. |
461 | */ |
462 | if (self == father->rb_nodes[other]) { |
463 | /* |
464 | * Case 2: we are on the same side as our uncle |
465 | * Swap ourselves with our parent so this case |
466 | * becomes case 3. Basically our parent becomes our |
467 | * child. |
468 | */ |
469 | rb_tree_reparent_nodes(rbt, father, other); |
470 | KASSERT(RB_FATHER(father) == self); |
471 | KASSERT(self->rb_nodes[which] == father); |
472 | KASSERT(RB_FATHER(self) == grandpa); |
473 | self = father; |
474 | father = RB_FATHER(self); |
475 | } |
476 | KASSERT(RB_RED_P(self) && RB_RED_P(father)); |
477 | KASSERT(grandpa->rb_nodes[which] == father); |
478 | /* |
479 | * Case 3: we are opposite a child of a black uncle. |
480 | * Swap our parent and grandparent. Since our grandfather |
481 | * is black, our father will become black and our new sibling |
482 | * (former grandparent) will become red. |
483 | */ |
484 | rb_tree_reparent_nodes(rbt, grandpa, which); |
485 | KASSERT(RB_FATHER(self) == father); |
486 | KASSERT(RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER] == grandpa); |
487 | KASSERT(RB_RED_P(self)); |
488 | KASSERT(RB_BLACK_P(father)); |
489 | KASSERT(RB_RED_P(grandpa)); |
490 | |
491 | /* |
492 | * Final step: Set the root to black. |
493 | */ |
494 | RB_MARK_BLACK(rbt->rbt_root); |
495 | } |
496 | |
497 | static void |
498 | rb_tree_prune_node(struct rb_tree *rbt, struct rb_node *self, bool rebalance) |
499 | { |
500 | const unsigned int which = RB_POSITION(self); |
501 | struct rb_node *father = RB_FATHER(self); |
502 | #ifndef RBSMALL |
503 | const bool was_root = RB_ROOT_P(rbt, self); |
504 | #endif |
505 | |
506 | KASSERT(rebalance || (RB_ROOT_P(rbt, self) || RB_RED_P(self))); |
507 | KASSERT(!rebalance || RB_BLACK_P(self)); |
508 | KASSERT(RB_CHILDLESS_P(self)); |
509 | KASSERT(rb_tree_check_node(rbt, self, NULL, false)); |
510 | |
511 | /* |
512 | * Since we are childless, we know that self->rb_left is pointing |
513 | * to the sentinel node. |
514 | */ |
515 | father->rb_nodes[which] = self->rb_left; |
516 | |
517 | /* |
518 | * Remove ourselves from the node list, decrement the count, |
519 | * and update min/max. |
520 | */ |
521 | RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link); |
522 | RBSTAT_DEC(rbt->rbt_count); |
523 | #ifndef RBSMALL |
524 | if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self)) { |
525 | rbt->rbt_minmax[RB_POSITION(self)] = father; |
526 | /* |
527 | * When removing the root, rbt->rbt_minmax[RB_DIR_LEFT] is |
528 | * updated automatically, but we also need to update |
529 | * rbt->rbt_minmax[RB_DIR_RIGHT]; |
530 | */ |
531 | if (__predict_false(was_root)) { |
532 | rbt->rbt_minmax[RB_DIR_RIGHT] = father; |
533 | } |
534 | } |
535 | RB_SET_FATHER(self, NULL); |
536 | #endif |
537 | |
538 | /* |
539 | * Rebalance if requested. |
540 | */ |
541 | if (rebalance) |
542 | rb_tree_removal_rebalance(rbt, father, which); |
543 | KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true)); |
544 | } |
545 | |
546 | /* |
547 | * When deleting an interior node |
548 | */ |
549 | static void |
550 | rb_tree_swap_prune_and_rebalance(struct rb_tree *rbt, struct rb_node *self, |
551 | struct rb_node *standin) |
552 | { |
553 | const unsigned int standin_which = RB_POSITION(standin); |
554 | unsigned int standin_other = standin_which ^ RB_DIR_OTHER; |
555 | struct rb_node *standin_son; |
556 | struct rb_node *standin_father = RB_FATHER(standin); |
557 | bool rebalance = RB_BLACK_P(standin); |
558 | |
559 | if (standin_father == self) { |
560 | /* |
561 | * As a child of self, any childen would be opposite of |
562 | * our parent. |
563 | */ |
564 | KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other])); |
565 | standin_son = standin->rb_nodes[standin_which]; |
566 | } else { |
567 | /* |
568 | * Since we aren't a child of self, any childen would be |
569 | * on the same side as our parent. |
570 | */ |
571 | KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_which])); |
572 | standin_son = standin->rb_nodes[standin_other]; |
573 | } |
574 | |
575 | /* |
576 | * the node we are removing must have two children. |
577 | */ |
578 | KASSERT(RB_TWOCHILDREN_P(self)); |
579 | /* |
580 | * If standin has a child, it must be red. |
581 | */ |
582 | KASSERT(RB_SENTINEL_P(standin_son) || RB_RED_P(standin_son)); |
583 | |
584 | /* |
585 | * Verify things are sane. |
586 | */ |
587 | KASSERT(rb_tree_check_node(rbt, self, NULL, false)); |
588 | KASSERT(rb_tree_check_node(rbt, standin, NULL, false)); |
589 | |
590 | if (__predict_false(RB_RED_P(standin_son))) { |
591 | /* |
592 | * We know we have a red child so if we flip it to black |
593 | * we don't have to rebalance. |
594 | */ |
595 | KASSERT(rb_tree_check_node(rbt, standin_son, NULL, true)); |
596 | RB_MARK_BLACK(standin_son); |
597 | rebalance = false; |
598 | |
599 | if (standin_father == self) { |
600 | KASSERT(RB_POSITION(standin_son) == standin_which); |
601 | } else { |
602 | KASSERT(RB_POSITION(standin_son) == standin_other); |
603 | /* |
604 | * Change the son's parentage to point to his grandpa. |
605 | */ |
606 | RB_SET_FATHER(standin_son, standin_father); |
607 | RB_SET_POSITION(standin_son, standin_which); |
608 | } |
609 | } |
610 | |
611 | if (standin_father == self) { |
612 | /* |
613 | * If we are about to delete the standin's father, then when |
614 | * we call rebalance, we need to use ourselves as our father. |
615 | * Otherwise remember our original father. Also, sincef we are |
616 | * our standin's father we only need to reparent the standin's |
617 | * brother. |
618 | * |
619 | * | R --> S | |
620 | * | Q S --> Q T | |
621 | * | t --> | |
622 | */ |
623 | KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other])); |
624 | KASSERT(!RB_SENTINEL_P(self->rb_nodes[standin_other])); |
625 | KASSERT(self->rb_nodes[standin_which] == standin); |
626 | /* |
627 | * Have our son/standin adopt his brother as his new son. |
628 | */ |
629 | standin_father = standin; |
630 | } else { |
631 | /* |
632 | * | R --> S . | |
633 | * | / \ | T --> / \ | / | |
634 | * | ..... | S --> ..... | T | |
635 | * |
636 | * Sever standin's connection to his father. |
637 | */ |
638 | standin_father->rb_nodes[standin_which] = standin_son; |
639 | /* |
640 | * Adopt the far son. |
641 | */ |
642 | standin->rb_nodes[standin_other] = self->rb_nodes[standin_other]; |
643 | RB_SET_FATHER(standin->rb_nodes[standin_other], standin); |
644 | KASSERT(RB_POSITION(self->rb_nodes[standin_other]) == standin_other); |
645 | /* |
646 | * Use standin_other because we need to preserve standin_which |
647 | * for the removal_rebalance. |
648 | */ |
649 | standin_other = standin_which; |
650 | } |
651 | |
652 | /* |
653 | * Move the only remaining son to our standin. If our standin is our |
654 | * son, this will be the only son needed to be moved. |
655 | */ |
656 | KASSERT(standin->rb_nodes[standin_other] != self->rb_nodes[standin_other]); |
657 | standin->rb_nodes[standin_other] = self->rb_nodes[standin_other]; |
658 | RB_SET_FATHER(standin->rb_nodes[standin_other], standin); |
659 | |
660 | /* |
661 | * Now copy the result of self to standin and then replace |
662 | * self with standin in the tree. |
663 | */ |
664 | RB_COPY_PROPERTIES(standin, self); |
665 | RB_SET_FATHER(standin, RB_FATHER(self)); |
666 | RB_FATHER(standin)->rb_nodes[RB_POSITION(standin)] = standin; |
667 | |
668 | /* |
669 | * Remove ourselves from the node list, decrement the count, |
670 | * and update min/max. |
671 | */ |
672 | RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link); |
673 | RBSTAT_DEC(rbt->rbt_count); |
674 | #ifndef RBSMALL |
675 | if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self)) |
676 | rbt->rbt_minmax[RB_POSITION(self)] = RB_FATHER(self); |
677 | RB_SET_FATHER(self, NULL); |
678 | #endif |
679 | |
680 | KASSERT(rb_tree_check_node(rbt, standin, NULL, false)); |
681 | KASSERT(RB_FATHER_SENTINEL_P(standin) |
682 | || rb_tree_check_node(rbt, standin_father, NULL, false)); |
683 | KASSERT(RB_LEFT_SENTINEL_P(standin) |
684 | || rb_tree_check_node(rbt, standin->rb_left, NULL, false)); |
685 | KASSERT(RB_RIGHT_SENTINEL_P(standin) |
686 | || rb_tree_check_node(rbt, standin->rb_right, NULL, false)); |
687 | |
688 | if (!rebalance) |
689 | return; |
690 | |
691 | rb_tree_removal_rebalance(rbt, standin_father, standin_which); |
692 | KASSERT(rb_tree_check_node(rbt, standin, NULL, true)); |
693 | } |
694 | |
695 | /* |
696 | * We could do this by doing |
697 | * rb_tree_node_swap(rbt, self, which); |
698 | * rb_tree_prune_node(rbt, self, false); |
699 | * |
700 | * But it's more efficient to just evalate and recolor the child. |
701 | */ |
702 | static void |
703 | rb_tree_prune_blackred_branch(struct rb_tree *rbt, struct rb_node *self, |
704 | unsigned int which) |
705 | { |
706 | struct rb_node *father = RB_FATHER(self); |
707 | struct rb_node *son = self->rb_nodes[which]; |
708 | #ifndef RBSMALL |
709 | const bool was_root = RB_ROOT_P(rbt, self); |
710 | #endif |
711 | |
712 | KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT); |
713 | KASSERT(RB_BLACK_P(self) && RB_RED_P(son)); |
714 | KASSERT(!RB_TWOCHILDREN_P(son)); |
715 | KASSERT(RB_CHILDLESS_P(son)); |
716 | KASSERT(rb_tree_check_node(rbt, self, NULL, false)); |
717 | KASSERT(rb_tree_check_node(rbt, son, NULL, false)); |
718 | |
719 | /* |
720 | * Remove ourselves from the tree and give our former child our |
721 | * properties (position, color, root). |
722 | */ |
723 | RB_COPY_PROPERTIES(son, self); |
724 | father->rb_nodes[RB_POSITION(son)] = son; |
725 | RB_SET_FATHER(son, father); |
726 | |
727 | /* |
728 | * Remove ourselves from the node list, decrement the count, |
729 | * and update minmax. |
730 | */ |
731 | RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link); |
732 | RBSTAT_DEC(rbt->rbt_count); |
733 | #ifndef RBSMALL |
734 | if (__predict_false(was_root)) { |
735 | KASSERT(rbt->rbt_minmax[which] == son); |
736 | rbt->rbt_minmax[which ^ RB_DIR_OTHER] = son; |
737 | } else if (rbt->rbt_minmax[RB_POSITION(self)] == self) { |
738 | rbt->rbt_minmax[RB_POSITION(self)] = son; |
739 | } |
740 | RB_SET_FATHER(self, NULL); |
741 | #endif |
742 | |
743 | KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true)); |
744 | KASSERT(rb_tree_check_node(rbt, son, NULL, true)); |
745 | } |
746 | |
747 | void |
748 | rb_tree_remove_node(struct rb_tree *rbt, void *object) |
749 | { |
750 | const rb_tree_ops_t *rbto = rbt->rbt_ops; |
751 | struct rb_node *standin, *self = RB_ITEMTONODE(rbto, object); |
752 | unsigned int which; |
753 | |
754 | KASSERT(!RB_SENTINEL_P(self)); |
755 | RBSTAT_INC(rbt->rbt_removals); |
756 | |
757 | /* |
758 | * In the following diagrams, we (the node to be removed) are S. Red |
759 | * nodes are lowercase. T could be either red or black. |
760 | * |
761 | * Remember the major axiom of the red-black tree: the number of |
762 | * black nodes from the root to each leaf is constant across all |
763 | * leaves, only the number of red nodes varies. |
764 | * |
765 | * Thus removing a red leaf doesn't require any other changes to a |
766 | * red-black tree. So if we must remove a node, attempt to rearrange |
767 | * the tree so we can remove a red node. |
768 | * |
769 | * The simpliest case is a childless red node or a childless root node: |
770 | * |
771 | * | T --> T | or | R --> * | |
772 | * | s --> * | |
773 | */ |
774 | if (RB_CHILDLESS_P(self)) { |
775 | const bool rebalance = RB_BLACK_P(self) && !RB_ROOT_P(rbt, self); |
776 | rb_tree_prune_node(rbt, self, rebalance); |
777 | return; |
778 | } |
779 | KASSERT(!RB_CHILDLESS_P(self)); |
780 | if (!RB_TWOCHILDREN_P(self)) { |
781 | /* |
782 | * The next simpliest case is the node we are deleting is |
783 | * black and has one red child. |
784 | * |
785 | * | T --> T --> T | |
786 | * | S --> R --> R | |
787 | * | r --> s --> * | |
788 | */ |
789 | which = RB_LEFT_SENTINEL_P(self) ? RB_DIR_RIGHT : RB_DIR_LEFT; |
790 | KASSERT(RB_BLACK_P(self)); |
791 | KASSERT(RB_RED_P(self->rb_nodes[which])); |
792 | KASSERT(RB_CHILDLESS_P(self->rb_nodes[which])); |
793 | rb_tree_prune_blackred_branch(rbt, self, which); |
794 | return; |
795 | } |
796 | KASSERT(RB_TWOCHILDREN_P(self)); |
797 | |
798 | /* |
799 | * We invert these because we prefer to remove from the inside of |
800 | * the tree. |
801 | */ |
802 | which = RB_POSITION(self) ^ RB_DIR_OTHER; |
803 | |
804 | /* |
805 | * Let's find the node closes to us opposite of our parent |
806 | * Now swap it with ourself, "prune" it, and rebalance, if needed. |
807 | */ |
808 | standin = RB_ITEMTONODE(rbto, rb_tree_iterate(rbt, object, which)); |
809 | rb_tree_swap_prune_and_rebalance(rbt, self, standin); |
810 | } |
811 | |
812 | static void |
813 | rb_tree_removal_rebalance(struct rb_tree *rbt, struct rb_node *parent, |
814 | unsigned int which) |
815 | { |
816 | KASSERT(!RB_SENTINEL_P(parent)); |
817 | KASSERT(RB_SENTINEL_P(parent->rb_nodes[which])); |
818 | KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT); |
819 | RBSTAT_INC(rbt->rbt_removal_rebalance_calls); |
820 | |
821 | while (RB_BLACK_P(parent->rb_nodes[which])) { |
822 | unsigned int other = which ^ RB_DIR_OTHER; |
823 | struct rb_node *brother = parent->rb_nodes[other]; |
824 | |
825 | RBSTAT_INC(rbt->rbt_removal_rebalance_passes); |
826 | |
827 | KASSERT(!RB_SENTINEL_P(brother)); |
828 | /* |
829 | * For cases 1, 2a, and 2b, our brother's children must |
830 | * be black and our father must be black |
831 | */ |
832 | if (RB_BLACK_P(parent) |
833 | && RB_BLACK_P(brother->rb_left) |
834 | && RB_BLACK_P(brother->rb_right)) { |
835 | if (RB_RED_P(brother)) { |
836 | /* |
837 | * Case 1: Our brother is red, swap its |
838 | * position (and colors) with our parent. |
839 | * This should now be case 2b (unless C or E |
840 | * has a red child which is case 3; thus no |
841 | * explicit branch to case 2b). |
842 | * |
843 | * B -> D |
844 | * A d -> b E |
845 | * C E -> A C |
846 | */ |
847 | KASSERT(RB_BLACK_P(parent)); |
848 | rb_tree_reparent_nodes(rbt, parent, other); |
849 | brother = parent->rb_nodes[other]; |
850 | KASSERT(!RB_SENTINEL_P(brother)); |
851 | KASSERT(RB_RED_P(parent)); |
852 | KASSERT(RB_BLACK_P(brother)); |
853 | KASSERT(rb_tree_check_node(rbt, brother, NULL, false)); |
854 | KASSERT(rb_tree_check_node(rbt, parent, NULL, false)); |
855 | } else { |
856 | /* |
857 | * Both our parent and brother are black. |
858 | * Change our brother to red, advance up rank |
859 | * and go through the loop again. |
860 | * |
861 | * B -> *B |
862 | * *A D -> A d |
863 | * C E -> C E |
864 | */ |
865 | RB_MARK_RED(brother); |
866 | KASSERT(RB_BLACK_P(brother->rb_left)); |
867 | KASSERT(RB_BLACK_P(brother->rb_right)); |
868 | if (RB_ROOT_P(rbt, parent)) |
869 | return; /* root == parent == black */ |
870 | KASSERT(rb_tree_check_node(rbt, brother, NULL, false)); |
871 | KASSERT(rb_tree_check_node(rbt, parent, NULL, false)); |
872 | which = RB_POSITION(parent); |
873 | parent = RB_FATHER(parent); |
874 | continue; |
875 | } |
876 | } |
877 | /* |
878 | * Avoid an else here so that case 2a above can hit either |
879 | * case 2b, 3, or 4. |
880 | */ |
881 | if (RB_RED_P(parent) |
882 | && RB_BLACK_P(brother) |
883 | && RB_BLACK_P(brother->rb_left) |
884 | && RB_BLACK_P(brother->rb_right)) { |
885 | KASSERT(RB_RED_P(parent)); |
886 | KASSERT(RB_BLACK_P(brother)); |
887 | KASSERT(RB_BLACK_P(brother->rb_left)); |
888 | KASSERT(RB_BLACK_P(brother->rb_right)); |
889 | /* |
890 | * We are black, our father is red, our brother and |
891 | * both nephews are black. Simply invert/exchange the |
892 | * colors of our father and brother (to black and red |
893 | * respectively). |
894 | * |
895 | * | f --> F | |
896 | * | * B --> * b | |
897 | * | N N --> N N | |
898 | */ |
899 | RB_MARK_BLACK(parent); |
900 | RB_MARK_RED(brother); |
901 | KASSERT(rb_tree_check_node(rbt, brother, NULL, true)); |
902 | break; /* We're done! */ |
903 | } else { |
904 | /* |
905 | * Our brother must be black and have at least one |
906 | * red child (it may have two). |
907 | */ |
908 | KASSERT(RB_BLACK_P(brother)); |
909 | KASSERT(RB_RED_P(brother->rb_nodes[which]) || |
910 | RB_RED_P(brother->rb_nodes[other])); |
911 | if (RB_BLACK_P(brother->rb_nodes[other])) { |
912 | /* |
913 | * Case 3: our brother is black, our near |
914 | * nephew is red, and our far nephew is black. |
915 | * Swap our brother with our near nephew. |
916 | * This result in a tree that matches case 4. |
917 | * (Our father could be red or black). |
918 | * |
919 | * | F --> F | |
920 | * | x B --> x B | |
921 | * | n --> n | |
922 | */ |
923 | KASSERT(RB_RED_P(brother->rb_nodes[which])); |
924 | rb_tree_reparent_nodes(rbt, brother, which); |
925 | KASSERT(RB_FATHER(brother) == parent->rb_nodes[other]); |
926 | brother = parent->rb_nodes[other]; |
927 | KASSERT(RB_RED_P(brother->rb_nodes[other])); |
928 | } |
929 | /* |
930 | * Case 4: our brother is black and our far nephew |
931 | * is red. Swap our father and brother locations and |
932 | * change our far nephew to black. (these can be |
933 | * done in either order so we change the color first). |
934 | * The result is a valid red-black tree and is a |
935 | * terminal case. (again we don't care about the |
936 | * father's color) |
937 | * |
938 | * If the father is red, we will get a red-black-black |
939 | * tree: |
940 | * | f -> f --> b | |
941 | * | B -> B --> F N | |
942 | * | n -> N --> | |
943 | * |
944 | * If the father is black, we will get an all black |
945 | * tree: |
946 | * | F -> F --> B | |
947 | * | B -> B --> F N | |
948 | * | n -> N --> | |
949 | * |
950 | * If we had two red nephews, then after the swap, |
951 | * our former father would have a red grandson. |
952 | */ |
953 | KASSERT(RB_BLACK_P(brother)); |
954 | KASSERT(RB_RED_P(brother->rb_nodes[other])); |
955 | RB_MARK_BLACK(brother->rb_nodes[other]); |
956 | rb_tree_reparent_nodes(rbt, parent, other); |
957 | break; /* We're done! */ |
958 | } |
959 | } |
960 | KASSERT(rb_tree_check_node(rbt, parent, NULL, true)); |
961 | } |
962 | |
963 | void * |
964 | rb_tree_iterate(struct rb_tree *rbt, void *object, const unsigned int direction) |
965 | { |
966 | const rb_tree_ops_t *rbto = rbt->rbt_ops; |
967 | const unsigned int other = direction ^ RB_DIR_OTHER; |
968 | struct rb_node *self; |
969 | |
970 | KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT); |
971 | |
972 | if (object == NULL) { |
973 | #ifndef RBSMALL |
974 | if (RB_SENTINEL_P(rbt->rbt_root)) |
975 | return NULL; |
976 | return RB_NODETOITEM(rbto, rbt->rbt_minmax[direction]); |
977 | #else |
978 | self = rbt->rbt_root; |
979 | if (RB_SENTINEL_P(self)) |
980 | return NULL; |
981 | while (!RB_SENTINEL_P(self->rb_nodes[direction])) |
982 | self = self->rb_nodes[direction]; |
983 | return RB_NODETOITEM(rbto, self); |
984 | #endif /* !RBSMALL */ |
985 | } |
986 | self = RB_ITEMTONODE(rbto, object); |
987 | KASSERT(!RB_SENTINEL_P(self)); |
988 | /* |
989 | * We can't go any further in this direction. We proceed up in the |
990 | * opposite direction until our parent is in direction we want to go. |
991 | */ |
992 | if (RB_SENTINEL_P(self->rb_nodes[direction])) { |
993 | while (!RB_ROOT_P(rbt, self)) { |
994 | if (other == RB_POSITION(self)) |
995 | return RB_NODETOITEM(rbto, RB_FATHER(self)); |
996 | self = RB_FATHER(self); |
997 | } |
998 | return NULL; |
999 | } |
1000 | |
1001 | /* |
1002 | * Advance down one in current direction and go down as far as possible |
1003 | * in the opposite direction. |
1004 | */ |
1005 | self = self->rb_nodes[direction]; |
1006 | KASSERT(!RB_SENTINEL_P(self)); |
1007 | while (!RB_SENTINEL_P(self->rb_nodes[other])) |
1008 | self = self->rb_nodes[other]; |
1009 | return RB_NODETOITEM(rbto, self); |
1010 | } |
1011 | |
1012 | #ifdef RBDEBUG |
1013 | static const struct rb_node * |
1014 | rb_tree_iterate_const(const struct rb_tree *rbt, const struct rb_node *self, |
1015 | const unsigned int direction) |
1016 | { |
1017 | const unsigned int other = direction ^ RB_DIR_OTHER; |
1018 | KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT); |
1019 | |
1020 | if (self == NULL) { |
1021 | #ifndef RBSMALL |
1022 | if (RB_SENTINEL_P(rbt->rbt_root)) |
1023 | return NULL; |
1024 | return rbt->rbt_minmax[direction]; |
1025 | #else |
1026 | self = rbt->rbt_root; |
1027 | if (RB_SENTINEL_P(self)) |
1028 | return NULL; |
1029 | while (!RB_SENTINEL_P(self->rb_nodes[direction])) |
1030 | self = self->rb_nodes[direction]; |
1031 | return self; |
1032 | #endif /* !RBSMALL */ |
1033 | } |
1034 | KASSERT(!RB_SENTINEL_P(self)); |
1035 | /* |
1036 | * We can't go any further in this direction. We proceed up in the |
1037 | * opposite direction until our parent is in direction we want to go. |
1038 | */ |
1039 | if (RB_SENTINEL_P(self->rb_nodes[direction])) { |
1040 | while (!RB_ROOT_P(rbt, self)) { |
1041 | if (other == RB_POSITION(self)) |
1042 | return RB_FATHER(self); |
1043 | self = RB_FATHER(self); |
1044 | } |
1045 | return NULL; |
1046 | } |
1047 | |
1048 | /* |
1049 | * Advance down one in current direction and go down as far as possible |
1050 | * in the opposite direction. |
1051 | */ |
1052 | self = self->rb_nodes[direction]; |
1053 | KASSERT(!RB_SENTINEL_P(self)); |
1054 | while (!RB_SENTINEL_P(self->rb_nodes[other])) |
1055 | self = self->rb_nodes[other]; |
1056 | return self; |
1057 | } |
1058 | |
1059 | static unsigned int |
1060 | rb_tree_count_black(const struct rb_node *self) |
1061 | { |
1062 | unsigned int left, right; |
1063 | |
1064 | if (RB_SENTINEL_P(self)) |
1065 | return 0; |
1066 | |
1067 | left = rb_tree_count_black(self->rb_left); |
1068 | right = rb_tree_count_black(self->rb_right); |
1069 | |
1070 | KASSERT(left == right); |
1071 | |
1072 | return left + RB_BLACK_P(self); |
1073 | } |
1074 | |
1075 | static bool |
1076 | rb_tree_check_node(const struct rb_tree *rbt, const struct rb_node *self, |
1077 | const struct rb_node *prev, bool red_check) |
1078 | { |
1079 | const rb_tree_ops_t *rbto = rbt->rbt_ops; |
1080 | rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes; |
1081 | |
1082 | KASSERT(!RB_SENTINEL_P(self)); |
1083 | KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context, |
1084 | RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0); |
1085 | |
1086 | /* |
1087 | * Verify our relationship to our parent. |
1088 | */ |
1089 | if (RB_ROOT_P(rbt, self)) { |
1090 | KASSERT(self == rbt->rbt_root); |
1091 | KASSERT(RB_POSITION(self) == RB_DIR_LEFT); |
1092 | KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self); |
1093 | KASSERT(RB_FATHER(self) == (const struct rb_node *) &rbt->rbt_root); |
1094 | } else { |
1095 | int diff = (*compare_nodes)(rbto->rbto_context, |
1096 | RB_NODETOITEM(rbto, self), |
1097 | RB_NODETOITEM(rbto, RB_FATHER(self))); |
1098 | |
1099 | KASSERT(self != rbt->rbt_root); |
1100 | KASSERT(!RB_FATHER_SENTINEL_P(self)); |
1101 | if (RB_POSITION(self) == RB_DIR_LEFT) { |
1102 | KASSERT(diff < 0); |
1103 | KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self); |
1104 | } else { |
1105 | KASSERT(diff > 0); |
1106 | KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_RIGHT] == self); |
1107 | } |
1108 | } |
1109 | |
1110 | /* |
1111 | * Verify our position in the linked list against the tree itself. |
1112 | */ |
1113 | { |
1114 | const struct rb_node *prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT); |
1115 | const struct rb_node *next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT); |
1116 | KASSERT(prev0 == TAILQ_PREV(self, rb_node_qh, rb_link)); |
1117 | KASSERT(next0 == TAILQ_NEXT(self, rb_link)); |
1118 | #ifndef RBSMALL |
1119 | KASSERT(prev0 != NULL || self == rbt->rbt_minmax[RB_DIR_LEFT]); |
1120 | KASSERT(next0 != NULL || self == rbt->rbt_minmax[RB_DIR_RIGHT]); |
1121 | #endif |
1122 | } |
1123 | |
1124 | /* |
1125 | * The root must be black. |
1126 | * There can never be two adjacent red nodes. |
1127 | */ |
1128 | if (red_check) { |
1129 | KASSERT(!RB_ROOT_P(rbt, self) || RB_BLACK_P(self)); |
1130 | (void) rb_tree_count_black(self); |
1131 | if (RB_RED_P(self)) { |
1132 | const struct rb_node *brother; |
1133 | KASSERT(!RB_ROOT_P(rbt, self)); |
1134 | brother = RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER]; |
1135 | KASSERT(RB_BLACK_P(RB_FATHER(self))); |
1136 | /* |
1137 | * I'm red and have no children, then I must either |
1138 | * have no brother or my brother also be red and |
1139 | * also have no children. (black count == 0) |
1140 | */ |
1141 | KASSERT(!RB_CHILDLESS_P(self) |
1142 | || RB_SENTINEL_P(brother) |
1143 | || RB_RED_P(brother) |
1144 | || RB_CHILDLESS_P(brother)); |
1145 | /* |
1146 | * If I'm not childless, I must have two children |
1147 | * and they must be both be black. |
1148 | */ |
1149 | KASSERT(RB_CHILDLESS_P(self) |
1150 | || (RB_TWOCHILDREN_P(self) |
1151 | && RB_BLACK_P(self->rb_left) |
1152 | && RB_BLACK_P(self->rb_right))); |
1153 | /* |
1154 | * If I'm not childless, thus I have black children, |
1155 | * then my brother must either be black or have two |
1156 | * black children. |
1157 | */ |
1158 | KASSERT(RB_CHILDLESS_P(self) |
1159 | || RB_BLACK_P(brother) |
1160 | || (RB_TWOCHILDREN_P(brother) |
1161 | && RB_BLACK_P(brother->rb_left) |
1162 | && RB_BLACK_P(brother->rb_right))); |
1163 | } else { |
1164 | /* |
1165 | * If I'm black and have one child, that child must |
1166 | * be red and childless. |
1167 | */ |
1168 | KASSERT(RB_CHILDLESS_P(self) |
1169 | || RB_TWOCHILDREN_P(self) |
1170 | || (!RB_LEFT_SENTINEL_P(self) |
1171 | && RB_RIGHT_SENTINEL_P(self) |
1172 | && RB_RED_P(self->rb_left) |
1173 | && RB_CHILDLESS_P(self->rb_left)) |
1174 | || (!RB_RIGHT_SENTINEL_P(self) |
1175 | && RB_LEFT_SENTINEL_P(self) |
1176 | && RB_RED_P(self->rb_right) |
1177 | && RB_CHILDLESS_P(self->rb_right))); |
1178 | |
1179 | /* |
1180 | * If I'm a childless black node and my parent is |
1181 | * black, my 2nd closet relative away from my parent |
1182 | * is either red or has a red parent or red children. |
1183 | */ |
1184 | if (!RB_ROOT_P(rbt, self) |
1185 | && RB_CHILDLESS_P(self) |
1186 | && RB_BLACK_P(RB_FATHER(self))) { |
1187 | const unsigned int which = RB_POSITION(self); |
1188 | const unsigned int other = which ^ RB_DIR_OTHER; |
1189 | const struct rb_node *relative0, *relative; |
1190 | |
1191 | relative0 = rb_tree_iterate_const(rbt, |
1192 | self, other); |
1193 | KASSERT(relative0 != NULL); |
1194 | relative = rb_tree_iterate_const(rbt, |
1195 | relative0, other); |
1196 | KASSERT(relative != NULL); |
1197 | KASSERT(RB_SENTINEL_P(relative->rb_nodes[which])); |
1198 | #if 0 |
1199 | KASSERT(RB_RED_P(relative) |
1200 | || RB_RED_P(relative->rb_left) |
1201 | || RB_RED_P(relative->rb_right) |
1202 | || RB_RED_P(RB_FATHER(relative))); |
1203 | #endif |
1204 | } |
1205 | } |
1206 | /* |
1207 | * A grandparent's children must be real nodes and not |
1208 | * sentinels. First check out grandparent. |
1209 | */ |
1210 | KASSERT(RB_ROOT_P(rbt, self) |
1211 | || RB_ROOT_P(rbt, RB_FATHER(self)) |
1212 | || RB_TWOCHILDREN_P(RB_FATHER(RB_FATHER(self)))); |
1213 | /* |
1214 | * If we are have grandchildren on our left, then |
1215 | * we must have a child on our right. |
1216 | */ |
1217 | KASSERT(RB_LEFT_SENTINEL_P(self) |
1218 | || RB_CHILDLESS_P(self->rb_left) |
1219 | || !RB_RIGHT_SENTINEL_P(self)); |
1220 | /* |
1221 | * If we are have grandchildren on our right, then |
1222 | * we must have a child on our left. |
1223 | */ |
1224 | KASSERT(RB_RIGHT_SENTINEL_P(self) |
1225 | || RB_CHILDLESS_P(self->rb_right) |
1226 | || !RB_LEFT_SENTINEL_P(self)); |
1227 | |
1228 | /* |
1229 | * If we have a child on the left and it doesn't have two |
1230 | * children make sure we don't have great-great-grandchildren on |
1231 | * the right. |
1232 | */ |
1233 | KASSERT(RB_TWOCHILDREN_P(self->rb_left) |
1234 | || RB_CHILDLESS_P(self->rb_right) |
1235 | || RB_CHILDLESS_P(self->rb_right->rb_left) |
1236 | || RB_CHILDLESS_P(self->rb_right->rb_left->rb_left) |
1237 | || RB_CHILDLESS_P(self->rb_right->rb_left->rb_right) |
1238 | || RB_CHILDLESS_P(self->rb_right->rb_right) |
1239 | || RB_CHILDLESS_P(self->rb_right->rb_right->rb_left) |
1240 | || RB_CHILDLESS_P(self->rb_right->rb_right->rb_right)); |
1241 | |
1242 | /* |
1243 | * If we have a child on the right and it doesn't have two |
1244 | * children make sure we don't have great-great-grandchildren on |
1245 | * the left. |
1246 | */ |
1247 | KASSERT(RB_TWOCHILDREN_P(self->rb_right) |
1248 | || RB_CHILDLESS_P(self->rb_left) |
1249 | || RB_CHILDLESS_P(self->rb_left->rb_left) |
1250 | || RB_CHILDLESS_P(self->rb_left->rb_left->rb_left) |
1251 | || RB_CHILDLESS_P(self->rb_left->rb_left->rb_right) |
1252 | || RB_CHILDLESS_P(self->rb_left->rb_right) |
1253 | || RB_CHILDLESS_P(self->rb_left->rb_right->rb_left) |
1254 | || RB_CHILDLESS_P(self->rb_left->rb_right->rb_right)); |
1255 | |
1256 | /* |
1257 | * If we are fully interior node, then our predecessors and |
1258 | * successors must have no children in our direction. |
1259 | */ |
1260 | if (RB_TWOCHILDREN_P(self)) { |
1261 | const struct rb_node *prev0; |
1262 | const struct rb_node *next0; |
1263 | |
1264 | prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT); |
1265 | KASSERT(prev0 != NULL); |
1266 | KASSERT(RB_RIGHT_SENTINEL_P(prev0)); |
1267 | |
1268 | next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT); |
1269 | KASSERT(next0 != NULL); |
1270 | KASSERT(RB_LEFT_SENTINEL_P(next0)); |
1271 | } |
1272 | } |
1273 | |
1274 | return true; |
1275 | } |
1276 | |
1277 | void |
1278 | rb_tree_check(const struct rb_tree *rbt, bool red_check) |
1279 | { |
1280 | const struct rb_node *self; |
1281 | const struct rb_node *prev; |
1282 | #ifdef RBSTATS |
1283 | unsigned int count = 0; |
1284 | #endif |
1285 | |
1286 | KASSERT(rbt->rbt_root != NULL); |
1287 | KASSERT(RB_LEFT_P(rbt->rbt_root)); |
1288 | |
1289 | #if defined(RBSTATS) && !defined(RBSMALL) |
1290 | KASSERT(rbt->rbt_count > 1 |
1291 | || rbt->rbt_minmax[RB_DIR_LEFT] == rbt->rbt_minmax[RB_DIR_RIGHT]); |
1292 | #endif |
1293 | |
1294 | prev = NULL; |
1295 | TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) { |
1296 | rb_tree_check_node(rbt, self, prev, false); |
1297 | #ifdef RBSTATS |
1298 | count++; |
1299 | #endif |
1300 | } |
1301 | #ifdef RBSTATS |
1302 | KASSERT(rbt->rbt_count == count); |
1303 | #endif |
1304 | if (red_check) { |
1305 | KASSERT(RB_BLACK_P(rbt->rbt_root)); |
1306 | KASSERT(RB_SENTINEL_P(rbt->rbt_root) |
1307 | || rb_tree_count_black(rbt->rbt_root)); |
1308 | |
1309 | /* |
1310 | * The root must be black. |
1311 | * There can never be two adjacent red nodes. |
1312 | */ |
1313 | TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) { |
1314 | rb_tree_check_node(rbt, self, NULL, true); |
1315 | } |
1316 | } |
1317 | } |
1318 | #endif /* RBDEBUG */ |
1319 | |
1320 | #ifdef RBSTATS |
1321 | static void |
1322 | rb_tree_mark_depth(const struct rb_tree *rbt, const struct rb_node *self, |
1323 | size_t *depths, size_t depth) |
1324 | { |
1325 | if (RB_SENTINEL_P(self)) |
1326 | return; |
1327 | |
1328 | if (RB_TWOCHILDREN_P(self)) { |
1329 | rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1); |
1330 | rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1); |
1331 | return; |
1332 | } |
1333 | depths[depth]++; |
1334 | if (!RB_LEFT_SENTINEL_P(self)) { |
1335 | rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1); |
1336 | } |
1337 | if (!RB_RIGHT_SENTINEL_P(self)) { |
1338 | rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1); |
1339 | } |
1340 | } |
1341 | |
1342 | void |
1343 | rb_tree_depths(const struct rb_tree *rbt, size_t *depths) |
1344 | { |
1345 | rb_tree_mark_depth(rbt, rbt->rbt_root, depths, 1); |
1346 | } |
1347 | #endif /* RBSTATS */ |
1348 | |